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SUPPLEMENTARY FIG. S7. Cx32 inhibition decreases H24R4-induced ROS generation and apoptotic injury.
Before H24R4 exposure, different methods were used to inhibit GJ function composed of Cx32, including 2APB (gap
junction inhibitor, 25 uM, 1 h pretreatment), Gap27 (Cx32 peptide, 100 uM, 24 h pretreatment), and specific Cx32-siRNA, to
observe effects of Cx32 GJ function on NRKS52E cellular ROS production. (A-C) Effects of 2APB, Gap27, and Cx32-
siRNA on cellular ROS production, detected with DHE staining (A, B, stained in red, scale bar 50 um) and DCFH-DA
staining (C). (D, E) Effects of 2APB, Gap27, and Cx32-siRNA on mitochondrial superoxide formation, detected by
MitoSOX Red dye staining. (F). Effects of 2APB, Gap27, Cx32-siRNA, DPI, and NAC on m1toch0ndr1al membrane
potentlal Data are presented as mean+SE (n=4). *p<0.05 compared with control group; *p<0.05 versus H24R4
group. $p<0.05 compared with Cx32-NC+H24R4 group.



