Supporting Information

Probing the interaction between human serum albumin and 9-hydroxyphenanthrene: a spectroscopic and molecular docking study

Jing Zhang*, Xuan Gao, Jinyang Huang, Honghui Wang

Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, PR China

**Corresponding* Author:

Address: Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou, Fujian Province, 363105, PR China.

Tel.: +86 0596-6289870; Fax: +86 0596-6288214

E-mail address: jingz421@xujc.com (J. Zhang).

Photophysical properties of HSA and 9-OHPhe

The singlet energies of HSA and 9-OHPhe are 101.22 and 85.55 kcal·mol⁻¹, respectively.

3.2. Fluorescence quenching mechanism of HSA-9-OHPhe system

Stern–Volmer equation:

$$F_0/F = 1 + K_{SV}[Q] = 1 + K_q \tau_0[Q]$$
(S1)

 F_0 and F are the relative fluorescence intensities of HSA in the absence and presence of 9-OHPhe; [Q] is the concentration of 9-OHPhe, τ_0 is the average fluorescence lifetime of HSA in the absence of 9-OHPhe (6.09×10^{-9} s), K_{SV} is the Stern-Volmer quenching constant and K_q is the quenching rate constant.

Figure S1. Stern-Volmer plots for the quenching of HSA by 9-OHPhe at three temperatures

Figure S2. The UV-visible absorption spectra of HSA in the presence of

9-OHPhe at different concentrations. T = 298.15 K; a ~ d: [HSA]= 5.0×10^{-6}

 $mol \cdot L^{-1}$, [9-OHPhe] = (0, 2, 4, 6) × 10⁻⁶ mol · L⁻¹

Figure S3. The UV-visible absorption spectra of 9-OHPhe in the presence of the

increasing concentrations of HSA. T = 298.15 K; a ~ e: [9-OHPhe]= 2.0×10^{-5}

$$mol \cdot L^{-1}$$
, [HSA] = (0, 2, 6, 8, 10) × 10⁻⁶ mol · L⁻¹

Figure S4. The fitting lines for the fluorescence lifetime decay plots of the HSA-9-OHPhe system. [HSA]= $5.0 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1}$; [9-OHPhe], a-e: (5.0, 10.0, 15.0, $20.0, 25.0) \times 10^{-6} \text{ mol} \cdot \text{L}^{-1}$

Table S1 The fluorescence lifetime of HSA in the presence of various

System	$ au_{av}(\mathrm{ns})$	χ^2
HSA	5.39	0.9995
HSA-9-OHPhe ^a	5.00	0.9996
HSA-9-OHPhe ^b	4.98	0.9992
HSA-9-OHPhe ^c	4.57	0.9995
HSA-9-OHPhe ^d	4.40	0.9994
HSA-9-OHPhe ^e	4.22	0.9995

concentrations of 9-OHPhe

 $[[]HSA] = 5.0 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1}$; [9-OHPhe], a-e: (0, 5.0, 10.0, 15.0, 20.0, 25.0) $\times 10^{-6} \text{ mol} \cdot \text{L}^{-1}$; The reduced χ^2 value approaching 1 suggests a good fit.

3.3. Energy transfer from HSA to 9-OHPhe

Figure S5. The overlap of the fluorescence emission spectrum of HSA (a) and the absorption spectrum of 9-OHPhe (b). [HSA]=[9-OHPhe] = 5.0×10^{-6} mol·L⁻¹; T = 298.15 K; $\lambda_{ex} = 295.0$ nm, Ex. / Em. Slit =5.0 / 5.0 nm

The efficiency of energy transfer (E) between the donor (HSA) and acceptor (9-OHPhe) can be calculated by applying equation (S2):

$$E = 1 - \frac{F}{F_0} = \frac{R_0^6}{R_0^6 + r^6}$$
(82)

In the equation (S2), F and F_0 are the fluorescence intensity of HSA in the presence and absence of 9-OHPhe. r is the distance between the donor and acceptor. R_0 is the Förster radius, the critical distance at which the transfer efficiency equals 50%, which is given by the following equation:

$$R_0^6 = 8.79 \times 10^{-25} K^2 n^{-4} \phi J \tag{S3}$$

Where K^2 is the factor describing the relative orientation (2/3), *n* is the refractive index of medium (1.336), ϕ is the fluorescence quantum yield of HSA (0.15), and the

overlap integral J expresses the degree of spectral overlap between the donor emission and the acceptor absorption, which is calculated by the following equation:

$$J = \frac{\int_0^\infty F(\lambda)\varepsilon(\lambda)\lambda^4 d\lambda}{\int_0^\infty F(\lambda)d\lambda}$$
(84)

 $F(\lambda)$ is the fluorescence intensity of the donor in the wavelength ranges from λ to $\lambda + \Delta \lambda$ and $\varepsilon(\lambda)$ is the molar absorption coefficient of the acceptor at the wavelength λ .

3.4. Binding site number (*n*) of HSA with 9-OHPhe

Figure S6. Fluorescence emission spectra of HSA in the presence (A) and absence

(B) of 9-OHPhe. [HSA]+[9-OHPhe]= $2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$; T = 298.15 K; $\lambda_{\text{ex}} = 295.0 \text{ nm}$, Ex. / Em. Slit =5.0 / 10.0 nm; a ~ m: [HSA]= (20, 18, 16, 14, 12, 11, 10, 9, 8, 6, 4, 2, 0) × 10^{-6} \text{ mol} \cdot \text{L}^{-1}

3.5. Binding constant (Kb) of HSA with 9-OHPhe at different temperatures

Figure S7. The fitting plots for the fluorescence quenching of HSA by 9-OHPhe at three temperatures

3.6. Thermodynamics analysis

Van't Hoff equations:

$$InK_{b} = -\frac{\Delta H}{RT} + \frac{\Delta S}{R}$$
(S5)
$$\Delta G = \Delta H - T\Delta S$$
(S6)

where *T* is the experimental temperature (i.e. 298.15, 303.15, 308.15 K), *R* is the universal constant of gases (8.314 J mol⁻¹·K⁻¹). K_b is the binding constant at each temperature, obtained in Section 3.5.

Figure S8. Fitting line of Van't Hoff equation for 9-OHPhe-HSA system

3.7. Molecular docking

Hydrophobic Interactions	Index	Residue	Distance (Å)	Ligand Atom	Residue Atom ^{<i>a</i>}
	1	LEU134	3.15	C3	CD2
	2	TYR138	3.37	C3	CG
	3	LEU139	3.17	C11	CD2
	4	ILE142	3.52	O15	CG2
	5	ILE142	3.71	C14	CD1
	6	LEU154	3.44	C13	CD2
	7	PHE157	3.80	C13	CG
	8	ALA158	3.41	C11	Ν
	9	TYR161	3.26	O15	CZ
	10	TYR161	3.56	C9	CE1
Hydrogen	Index	Residue	Distance (Å)	Donor Atom ^{<i>a</i>}	Acceptor Atom ^{<i>a</i>}
Bonds	1	LEU135	1.86	O15 (Ligand)	O (Residue)
	Index	Residue	Distance (Å)	Angle (°)	Ligand Atoms ^a
π -Stacking	1 TYR161		4.10	10.75	C6, C7, C2, C3,
		4.17	19.73	C4, C5	

Table S2 Specific information on the interaction forces between 9-OHPhe and

HSA

^{*a*} The first one character of the atom name consists of the chemical symbol for the atom type. All the atom names beginning with "C" are carbon atoms; "N" indicates a nitrogen and "O" indicates oxygen. The next character is the remoteness indicator code, which is transliterated according to: "D" stands for (~) " δ "; "E" ~ " ϵ "; "G" ~ " γ "; "Z" ~ " ζ ".