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Appendix S1 Model for transmission of HLB

The model used is the same as in Taylor et al. (2016), which is a compartmental model

of Huanglongbing (HLB) disease status with transmission between trees and psyllids. We

outline the model equations here alongside explanation of the calculation of S(T ).

In our model, Equations (S.1)-(S.9), citrus trees are categorized as either Susceptible,

S(t), Asymptomatic, A(t), or Infected, I(t), in which Infected implies the disease is detectable

by symptoms; we assume Asymptomatic and Infected trees transmit the pathogen with the

same probability. Adult psyllids are Susceptible, SV (t); Exposed, EV (t); or Infected, IV (t);

where Exposed indicates that the psyllids are infected but are not yet able to pass the disease

on to another tree. Once infected, psyllids remain so for their entire lifespan. Successful

transmission between psyllid and tree can only occur when psyllids feed off the phloem of the

tree; the feeding rate is independent of grove size thus transmission is frequency-dependent.

We assume well-mixing between trees and psyllids. A very small rate of natural death of

susceptible and asymptomatic trees occurs and we include roguing of infected trees; together

these trees are categorized as Removed, R(t). However, removed trees are immediately

replaced in the grove by susceptible trees, keeping the grove size constant. Thus, the removed

category exists to keep track of how many trees have been removed and replaced over time;

it does not represent alive trees in the grove. We assume that the grove has 100% susceptible

trees initially, with psyllids feeding freely from the trees. At time 0, we introduce one infected

tree.
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dS

dt
= −ab

N
IV S − rS + r(N − I) + r1I (S.1)

dA

dt
=
ab

N
IV (t− τ)S(t− τ)e−rτ − γA− rA (S.2)

dI

dt
= γA− r1I (S.3)

dR

dt
= r(N − I) + r1I (S.4)

dSV
dt

= λF − ac

N
(A+ I)SV − µSV (S.5)

dEV 1

dt
=
ac

N
(A+ I)SV − 3φEV 1 − µEV 1 (S.6)

dEV 2

dt
= 3φEV 1 − 3φEV 2 − µEV 2 (S.7)

dEV 3

dt
= 3φEV 2 − 3φEV 3 − µEV 3 (S.8)

dIV
dt

= 3φEV 3 − µIV . (S.9)

N is the total number of trees in the grove, which is kept constant, and V = SV +

EV 1 + EV 2 + EV 3 + IV is the total number of psyllids. We split the Exposed stage into

three compartments to more accurately represent the length of the extrinsic incubation

period. Following Lloyd (2001), using n compartments, in which the rate of leaving each

compartment is nφ, produces a Gamma distribution for overall psyllid progression to the

infectious class with a mean rate of φ. The more compartments used leads to a Gamma

distribution with lower variance around the mean. This is a useful alternative to fixed time

delays, which can be problematic when parameters are temperature-dependent. We measure

time in years so all rates are per year. a is the feeding rate of the psyllid on the trees, b is the

probability that a susceptible tree becomes infected from contact with an infected psyllid,

and c is the probability that a susceptible psyllid becomes infected from contact with an

infected tree. Hence bc is the vector competence. We impose a time delay τ on trees moving

from susceptible to asymptomatic state to represent the length of the incubation period

when a tree is infected but not yet infectious. This time delay is long (approximately 6

months (Gottwald, 2010)), hence we use a fixed time delay of length τ to represent this more

accurately than using a simple exponentially distributed exposure period (Kuang, 1993). r

is the natural death rate of susceptible and asymptomatic trees. Trees that are exposed may

not survive the exposure period due to natural death, thus we include a discount term e−rτ

to correctly model how many trees move from susceptible to asymptomatic. Asymptomatic

trees develop symptoms and move to the infected class with rate γ. The rate of removal of
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infectious trees by roguing is r1. We assume all removed and dead trees are replanted with

susceptible trees, hence the addition of these trees in equation (S.1).

Adult psyllids have a fixed birth rate λ, which includes the development of eggs and

nymphs. We include a term F to represent flush seasons, which is when trees produce new

leaves. Development of psyllids is very closely connected to availability of flush, as eggs are

laid on flush and nymphs remain on the same flush for their development period. Thus, the

birth rate λ is defined as the number of adult psyllids produced on a single flush, and F

determines how many flush are in the grove over the year. The birth rate per flush patch,

λ, can be expressed as the product of the number of eggs laid over a lifetime FE

µ
(where

FE is the number of eggs laid per female per year) and the probability the eggs survive to

adulthood pEA, over the average duration of the immature stages (Mordecai et al., 2013).

Hence,

λ =
FEpEADP

µ
(S.10)

where DP is the vector development rate, i.e. 1/time for a vector to develop from egg to

adult. The death rate of psyllids is µ. φ is the development rate of the bacteria within the

psyllid, determining the length of their extrinsic incubation period.

The size of the vector population can be modeled as a function of the demographic

parameters. The probability of having V vectors at time t tends to a Poisson distribution

with mean λF
µ

(Parham & Michael, 2010).

Mathematical models of disease systems often use R0, the basic reproductive number, as

a measure of disease prevalence. It is a measure of how many secondary hosts will become

infected if one initial host is infected in a näıve population. The equation for R0 for Equa-

tions (S.1)-(S.9) is calculated using next-generation matrices as put forward in Diekmann &

Heesterbeek (2000); Diekmann et al. (2009). This leads to the following equation:

R0 =

(
FEpEADPa

2bcF

Nµ3

(
3φ

3φ+ µ

)3

e−rτ
(

1

γ + r
+

γ

(γ + r)r1

))1/2

. (S.11)

An interpretation of the terms involved in R0 is given in the main text.

The focus of this paper is on the temperatures that promote and prohibit the spread of

HLB. Therefore we consider only relative values of R0 as temperature changes across regions.

We assume that all other parameters related to the trees, such as average lifespan of a citrus

tree or the length of time until symptoms appear, will be the same regardless of whether the

tree is in Florida or Spain or anywhere else. Therefore, we focus on four parameters which

we expect to vary with temperatures and for which there exists data across a sufficient
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temperature range: fecundity (FE); probability of egg to adult survival (pEA); mortality rate

(µ); and the development rate of psyllids from eggs into adults (DP ).
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Appendix S2 Details of Bayesian Fitting

In this paper we use a Bayesian statistical approach to fitting the thermal responses of

psyllid traits to data. Taking this approach allows a straightforward way to quantify the

uncertainty in the data and also incorporate additional prior information into the analysis

if needed. Further, this approach allows us to combine the traits and the uncertainty in fits

to propagate the uncertainty into uncertainty in S(T ) overall, and partition the sources of

uncertainty in S(T ) (Johnson et al., 2015).

Most classical statistical analyses focus on the likelihood, L(θ;Y ) defined as how likely

are the data to be obtained under a particular setting of the parameters, and interpreted

as a function of the parameters. The Bayesian approach instead focuses on the posterior

distribution of parameters given the observed data, Pr[θ|Y ], where θ is a vector of model

parameters and Y are the data. This posterior distribution is related to the likelihood of

the data through Bayes Theorem:

Pr[θ|Y ] ≡ L(θ;Y ) Pr[θ]

Pr[Y ]

where Pr[Y ] is the probability of the data and Pr[θ] is the prior probability of parameters.

In practice the denominator is not known, so numerical methods, such as Markov Chain

Monte Carlo (MCMC), are used to approximate the posterior distribution. Further details

on Bayesian approaches in ecological contexts can be found in Clark (2007).

Appendix S2.1 Specification of Likelihoods and Priors

Our methods follow closely those of Johnson et al. (2015). For each thermal performance

trait, we choose a parametric unimodal functional response as the mean function. We then

specify the error distribution around this mean appropriate to the data. More specifically,

we use a truncated normal distribution for parameters pEA, DP and 1/µ, and a Poisson

distribution for FE (both Liu & Tsai data and Hall data). This error distribution together

with the mean function defines the likelihood for the data. We then set priors that represent

biologically reasonable limits on the values of parameters but otherwise are uninformative

(See Table S2.1).
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Model Parameter Mean Function Parameters Prior
Prob Egg Adult Survival T0 dunif(0, 20)

PEA Quadratic TM dunif(30,50)
qn dgamma(10,1)
τ dgamma(0.01,0.01)

Longevity T0 dunif(-10, 20)
1/µ Quadratic TM dunif(30,50)

qn dgamma(10,1)
τ dgamma(50,5)

Development rate T0 dunif(0, 20)
DP Brière TM dunif(30,50)

c dgamma(10,1000)
τ dgamma(1,0.01)

Fecundity T0 dunif(0, 25)
FE Brière TM dunif(30,50)

(Liu & Tsai, 2000) c dgamma(1,10)
Fecundity T0 dunif(0, 25)

FE Quadratic TM dunif(30,50)
(Hall et al., 2011) qn dgamma(10,1)

Table S2.1: Prior distributions for each of the parameters for the best fitting of the responses for each of the
thermal traits considered.

Appendix S2.2 MCMC implementation and assessment of con-

vergence

All analyses were conducted in the R programming language (R Development Core Team,

2008). MCMC samplers were implemented using the JAGS/rjags packages (Plummer, 2003,

2013). Details of the general MCMC approach are available elsewhere (e.g. Clark, 2007). For

each trait, we initialized 3 independent chains and collected 50,000 adaptive samples during

the tuning/burn-in phase. We assessed convergence using these samples, and, if the chains

had not converged, increased the number of samples until convergence was achieved. We

then collected an additional 5000 samples after convergence for each of the 3 chains. This

resulted in a total of 15000 samples for each trait. All of these samples were used to calculate

the posterior distributions for each thermal trait. We then took a random sub-sample of the

parameters for each trait to use in the calculation of the posterior distribution of R0 and

summaries of the posterior. The subsample was of size 3000, chosen to allow computational

tractability while including enough samples to assure good representation of the posterior.
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Appendix S3 Full posterior results for all thermal traits

Appendix S3.1 Probability of egg to adult survival, pEA
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Figure S3.1: (A) The quadratic (red) and Brière (green) fits of pEA data against temperature using vague
priors. The quadratic is the better fit according to DIC. Data points are plotted in black and dashed lines
indicate the mean trajectory. (B) Histograms of draws from the posterior distribution for each parameter
of the quadratic fit. In B, the prior distribution for each parameter is plotted in red. The quadratic fit is
determined by the equation qn(T − T0)(T − TM) using a normal distribution with precision τ .
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Appendix S3.2 Development rate, DP
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Figure S3.2: (A) The quadratic (red) and Brière (green) trajectories of DP against temperature using vague
priors. The Brière is the better fit according to DIC. Data points are plotted in black and dashed lines
indicate the mean trajectory. (B) Histograms of draws from the posterior distribution for each parameter of
the Brière fit. In B, the prior distribution for each parameter is plotted in red. The Brière fit is determined
by the equation cT (T − T0)(T − TM)1/2 using a normal distribution with precision τ .
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Appendix S3.3 Adult psyllid longevity, 1/µ
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Figure S3.3: (A) The quadratic (red) and Brière (green) trajectories of 1/µ against temperature using vague
priors. The quadratic is the better fit according to DIC. Data points are plotted in black and dashed lines
indicate the mean trajectory. (B) Histograms of draws from the posterior distribution for each parameter of
the quadratic fit. The prior distribution for each parameter is plotted in red. The quadratic fit is determined
by the equation qn(T − T0)(T − TM) using a normal distribution with precision τ .
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Appendix S3.4 Fecundity, FE, from Liu & Tsai (2000)
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Figure S3.4: (A) The quadratic (red) and Brière (green) trajectories of LT00 FE against temperature using
vague priors. The Brière is the better fit according to DIC. Data points are plotted in black and dashed lines
indicate the mean trajectory. (B) Histograms of draws from the posterior distribution for each parameter of
the Brière fit. In B, the prior distribution for each parameter is plotted in red. The Brière fit is determined
by the equation cT (T − T0)(T − TM)1/2 using a Poisson distribution.
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Appendix S3.5 Fecundity, FE, from Hall et al. (2011)
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Figure S3.5: (A) The quadratic (red) and Brière (green) trajectories of 1/µ against temperature using vague
priors. The quadratic is the better fit according to DIC. Data points are plotted in black and dashed lines
indicate the mean trajectory. (B) Histograms of draws from the posterior distribution for each parameter of
the quadratic fit. The prior distribution for each parameter is plotted in red. The quadratic fit is determined
by the equation qn(T − T0)(T − TM) using a Poisson distribution.
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Appendix S4 Further results from the posterior distri-

bution of S(T )
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Figure S4.1: Posterior distributions of the lower temperature limit, peak temperature and the upper tem-
perature limit of S(T ). Top row: Liu & Tsai (2000), bottom row: Hall et al. (2011).
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Appendix S5 Quantiles of the suitability metric S(T )
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Figure S5.1: The suitability metrics S(T ) for Liu & Tsai (2000) (left) and Hall et al. (2011) (right). The
quantiles indicating where S(T ) > 0, for permissive suitability, and where S(T ) > 0.75, for high suitability,
are plotted with green dashed and purple dotted lines respectively.
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Appendix S6 Full Validation Results

Appendix S6.1 Data on HLB presence

Non-mountainous regions, only.
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Figure S6.1: The number of months that every location with current HLB presence that is either permissive
or highly suitable, excluding mountainous locations. We define permissive suitability as S(T ) > 0 and
high suitability as S(T ) > 0.75. Top row: Predictions based on the model built with the Liu & Tsai data.
Bottom row: Predictions based on the model built with the Hall data.
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All locations.
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Figure S6.2: The number of months that every location with current HLB presence that is either permissive
or highly suitable, including mountainous locations. We define permissive suitability as S(T ) > 0 and
high suitability as S(T ) > 0.75. Top row: Predictions based on the model built with the Liu & Tsai data.
Bottom row: Predictions based on the model built with the Hall data.
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Appendix S6.2 Data on Asian Citrus Psyllid (ACP) presence

Non-mountainous regions, only.
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Figure S6.3: The number of months that every location with current ACP presence that is either permissive
or highly suitable, excluding mountainous locations. We define permissive suitability as S(T ) > 0 and
high suitability as S(T ) > 0.75. Top row: Predictions based on the model built with the Liu & Tsai data.
Bottom row: Predictions based on the model built with the Hall data.
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All locations.

L&T, ACP − permissive
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Figure S6.4: The number of months that every location with current ACP presence that is either permissive
or highly suitable, including mountainous locations. We define permissive suitability as S(T ) > 0 and
high suitability as S(T ) > 0.75. Top row: Predictions based on the model built with the Liu & Tsai data.
Bottom row: Predictions based on the model built with the Hall data.
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Appendix S7 Liu & Tsai (2000) model maps

Figure S7.1: The number of months a year that locations have permissive temperatures according to the Liu
& Tsai (2000) model. Inset plots of California, Florida and the Iberian peninsula, respectively, are included.
We define permissive temperatures for suitability as S(T ) > 0. Locations in grey have zero months suitable
for HLB transmission.
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Figure S7.2: The number of months a year that locations have highly suitable temperatures according to
the Liu & Tsai (2000) model. Inset plots of California, Florida and the Iberian peninsula, respectively,
are included. We define highly suitable temperatures as S(T ) > 0.75. Locations in grey have zero months
suitable for HLB transmission.
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Appendix S8 Thermal Suitability Maps with Valida-

tion Points

We plot the permissive suitability maps for both Liu & Tsai (2000) and Hall et al. (2011) with

first the HLB occurrence locations and then the ACP occurrence locations from Narouei-

Khandan et al. (2016) indicated.

Figure S8.1: The number of months a year that locations have permissive temperatures according to the Hall
et al. (2011) model. Black dots represent confirmed locations of HLB. We define permissive temperatures
for suitability as S(T ) > 0.
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Figure S8.2: The number of months a year that locations have permissive temperatures according to the Liu
& Tsai (2000) model. Black dots represent confirmed locations of HLB. We define permissive temperatures
for suitability as S(T ) > 0.

Figure S8.3: The number of months a year that locations have permissive temperatures according to the Hall
et al. (2011) model. Black dots represent confirmed locations of ACP. We define permissive temperatures
for suitability as S(T ) > 0.
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Figure S8.4: The number of months a year that locations have permissive temperatures according to the Liu
& Tsai (2000) model. Black dots represent confirmed locations of ACP. We define permissive temperatures
for suitability as S(T ) > 0.
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