
Supplemental Data: An Agent-Based Systems Pharmacology Model of the Antibody Drug 

Conjugate Kadcyla to Predict Efficacy of Different Dosing Regimens 

 

 

Bruna Menezes*, Cornelius Cilliers*, Timothy Wessler*, Greg M. Thurber*#, and Jennifer 

Linderman*# 

 
 
 
* Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 
 
# Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 
 
 
 
 
 
 
 
 
 
 
Supplementary Data 
 
Supplementary Figures – S1-S4 
 
Supplementary Methods  

1. Vessel Density Determination 
2. Cell Shuffling Algorithm 
3. Estimating the minimum concentration of T-DM1 necessary to kill a cell 

 
References 
 
  



Supplemental Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1: T-DM1 plasma clearance. Rates for antibody and T-DM1 clearance (CLTT, CL2, CLDEC) 
were calibrated to experimental data (1) and literature (2).  
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Figure S2: Relationship between blood vessel density and doubling time. Tumors with lower blood 
vessel density should have a higher cell doubling time td to account for hypoxic areas which often 
show lower proliferation (3). Here, we assume a linear relationship between the ranges of possible 
number of vessels for the simulation (18 - 36) and the doubling time (5 - 17 days). For each 
simulation, the doubling time is chosen from a normal distribution in which the mean is provided 
from this linear relationship, and the standard deviation is 1 day. Ten simulations with each value 
of blood vessel density are plotted to demonstrate the corresponding doubling time. 
 
 
 
  



 

 
 
Figure S3: Comparison of treatment regimen for drugs with different Cmin. Prediction of regimens 
with coadministration of trastuzumab and T-DM1 with a hypothetical without minimum threshold 
and for 10nM, 120nM, and 500nM Cmin at 30 days.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4: Distribution and efficacy for tumors with an average of 50,000 receptors/cell and 
comparison with 0.2M. A. T-DM1 bound for 0:1, 1:1, 3:1, 8:1, and 12:1 distribution and 
comparison with distribution 200,000 receptors/cell with Thiele modulus displayed. B. Efficacy 
predictions for 50,000 and 200,000 receptor/cell tumors at 30 days. There is no efficacy for tumors 
with 50,000 receptors/cell even at clinical doses. 
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Figure S5: In vitro simulations and comparison with experimental data(4). A. Toxicity assay 
showing the fraction of viable NCI-N87 cells incubated for 6 days with different concentrations of 
ado-trastuzumab emtansine (T-DM1). B. Viability of NCI-N87 cells following coincubation of 
trastuzumab and T-DM1 ratio (kept at a constant total antibody concentration of 10 nM and 
varying the fraction of T-DM1) and comparison with experimental data (normalized to 
trastuzumab treatment account for the effect of trastuzumab alone). Both of these results indicate 
that the cell killing parameters fit to the in vivo data are similar to the sensitivity in vitro. 
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Figure S6: Fractionation of T-DM1 and qualitative comparison with literature. A) Results from 
Jumbe, N. et al. using a BT474EEI xenograft model that is resistant to trastuzumab (5). Data was 
extracted using ‘Data Thief’ software. Fractionated dosing leads to worse overall efficacy, but with 
higher total doses (enabled by fractionated dosing), the efficacy improves. B) The model 
simulation for fractionated dosing in NCI-N87 cells is replotted from the manuscript for 
convenience. The dose frequency (once weekly ‘Q1W’ versus every three weeks ‘Q3W’) and dose 
escalation enabled by fractionation (2-fold increase) are the same for both studies, but the doses 
and number of cycles are different. Note that the x and y axes are also different.  Despite these 
differences, the overall trend is the same: fractionation has similar or worse efficacy compared to 
single dosing, but fractionated dosing can improve efficacy if it enables larger total doses to be 
administered.  
 
  



Supplemental Methods 
 

1. Vessel Density Determination 

To determine the number of vessels to include in simulations, we analyzed images of 

mouse tumor slices that were stained ex-vivo with CD31-AF555 to show blood vessels. Images 

were processed in MATLAB to find the vessel density (4). Briefly, random lines are placed on the 

images, and the number of cuts is counted. Based on that, we can find the surface of the blood 

vessel over tumor volume ratio (S/V) from (6):  

𝑆
𝑉 =	

2𝑐
𝐿𝑛 

 where c is the number of cuts, L is the length of the line (𝜇𝑚), and n is the number of the 

lines placed. Here we used 75𝜇𝑚 for L and 10000 lines. To match experimental data, we 

determined 18 to 36 blood vessels per initial simulation area (S/V range from 23/cm to 45/cm) is 

appropriate. 

  



2. Cell Shuffling Algorithm 

We assume that at all times cells are close to each other. After cell proliferation and 

removal of any dead cells from the grid, cells “shuffle” to fill empty grid compartments while also 

maintaining only one cell per grid compartment. First, cells shuffle to make room for all daughter 

cells that proliferated on that agent time step, and then the tumor contracts to remove all empty 

spaces inside the tumor.  

For the tumor growth/expansion following cell division, two daughter cells are formed. 

One cell remains in the original grid compartment, and the other displaces the neighboring cell 

that is closest to an empty grid compartment or border. The newly displaced cell then displaces 

the next cell that is closest to that same empty grid compartment or border. If there is more than 

one empty grid compartment with the same distance, one of the compartments is chosen randomly. 

This shuffling algorithm repeats until only one cell occupies each grid space as shown below. 

 

 

 

 

 

 

Figure S7: Shuffling of cells to make room for daughter cell on the grid. 

Dead cells were estimated to leave the grid at 2.5 days based on observations of our 

published data, which show that maximum degradation occurs between 2 and 3 days and lower 

tumor volume decrease around 5 days (4). Model results have low sensitivity to this parameter 

(Figure S8). When a dead cell is removed from the grid, an empty grid compartment is left. In this 



case, cells are shuffled from the farthest point on the border of the tumor (i.e. they collapse from 

the most protruding region of the tumor edge). This process is similar to the growth/expansion but 

in the opposite direction with the furthest cell displacing a neighboring cell that is closest to the 

empty grid compartment until a cell fills that empty grid compartment.   

 
Figure S8: Effect of cell degradation time parameter on tumor volume.  Simulations were run 
with cell degradation times varying from 0 - 3 days; the average of 100 simulations is plotted.    



3. Estimating the minimum concentration of T-DM1 necessary to kill a cell 

We estimated the minimum concentration of T-DM1 necessary to kill a cell, Cmin, based 

on the concentration of T-DM1 in vitro that causes the first statistically significant drop in viability 

from in vitro data published in (4). We found that at least 5% of cell receptors on NCI-N87 cells 

(which have ~1 million receptors per cell) must be bound by T-DM1 for any efficacy. Assuming 

a steady state process, with internalization (ke) and loss rate constants (kloss) of 3.3 x 10-5 s-1 and 

3.94 x 10-5 respectively: 

 𝐷𝑀1!" ∗ 𝑘# = 𝐷𝑀1$%& ∗ 𝑘'$(( and Cmin is ~ 120nM. 

The explicit inclusion of Cmin in the pharmacodynamic model ensures that the simulations 

capture the scenario where the ADC is ‘diluted’ too much with unconjugated antibody, lowering 

efficacy. Otherwise, the model choice (e.g. using a Hill coefficient less than or equal to one) may 

eliminate this possibility. In such a scenario, the simulations would always predict maximum 

efficacy by adding enough antibody to saturate the tumor, regardless of the payload potency, 

receptor expression, internalization rate, etc. By adding Cmin to these pharmacodynamic (PD) 

models, the results are less sensitive to the subjective choice of the PD model and therefore more 

robust. 
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