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Table S1. A summary of the NMR restraints used for structure calculations of (ATTCT)..

Distribution of NOE-derived distance restraints (total = 284; inter/intra-residue = 169/115)

Residue Al T2 T3 C4 TS5 A6 T7 T8 C9 T10
Al 14 21 1 1 2 5 3
T2 11 11 4 1
T3 9 14 2 2
c4 10 8 9
T5 7 8
A6 13 23 2
T7 14 14 8
T8 7 19
C9 16 11

T10 14

Hydrogen bond restraints

Atom pair

Distance (A)

A1 N1-T7 N3, A6 N1-T2 N3
Al N6-T7 O4, A6 N6-T2 O4

2.72-2.92
2.85-3.05

Sugar, backbone and glycosidic torsion angle restraints

Residue  3Jur2z  H1-C1-C2-H2 3Jha-ns 3Jha-Hs" v (°) 1 ()
(Hz) torsion angle (°) (Hz) (Hz)
Al a - 2.8 3.3 30-90 (gauche®) 90-330 (high anti)
T2 a - 5.7 b 30-90 (gauche®) 90-270 (anti)
T3 8.8 153+ 15 d d - 90-270 (anti)
C4 a - ¢ ¢ - 90-270 (anti)
T5 a - d d - 90-270 (anti)
A6 8.4 150 + 15 d d - 90-330 (high anti)
T7 a - d d - 90-270 (anti)
T8 9.0 154 + 15 51 b 30-90 (gauche*) 90-270 (anti)
C9 a - c - 90-270 (anti)
T10 a - d d - 90-270 (anti)

aThe coupling constant was not determined due to peak overlap.
b Due to weak coupling, the correlation peaks were not observed.
¢ The coupling constant was not determined due to peak broadening or weak coupling.
4 The coupling constant was not determined due to peak overlap/broadening or weak coupling.

Chirality restraints for all residues?®

C2’, 04, N1, HT’

03, C2, C4’, H¥

C3, C5, O4’, H4'

60-80°

60-80°

60-80°

aThe chirality restraints were generated by AMBERTools. A total of 30 chirality restraints were obtained for
(ATTCT)a.
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Table S2. Proton NMR chemical shifts (ppm) of (ATTCT),.2

Residue  H3 N NS~ A - NV O
AL ] c 834 812 624 284 286 479 423 400 3.89
T2 1336 ] 747 139 619 214 238 493 441 423 411
T3 g ] 776 198 631 206 252 479 440 424 411
ca . 7o5/53 7.63 569 560 183 228 461 348 403 401
15 a ] 756 185 619 216 244 482 427 370 3.70
26 ] c 8.49 818 637 288 296 486 447 419 419
T7 13.00 - 7.34 1.37 6.19 2.09 242 491 4.40 4.33 4.12
T8 a ] 774 196 632 217 258 481 438 422 414
co  1.9/658 7.68 578 569 201 220 465 366 415 4.03
10 a ] 752 173 620 220 228 448 407 389 3.89

aThe chemical shifts of labile and non-labile protons were measured at 0 and 5 °C, respectively.

bThe IUPAC nomenclature for the amino protons of A and C are H61/H62 and H41/H42, respectively.
¢ The chemical shifts could not be determined as these labile protons were too broad to be observed.
4 The chemical shifts could not be determined as these H3 signals were overlapped.
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Table S3. DNA sequences used for in vitro primer extension assays.

Sequence

Template in P1-T and P2-T

Primer in P1-T
Primer in P2-T
Ref-56nt in P1-T

Ref-58nt in P2-T

Template in MDB+6bp, MDB+5bp,
MDB+4bp and MDB+3bp

Primer in MDB+6bp
Primer in MDB+5bp
Primer in MDB+4bp
Primer in MDB+3bp

Ref-30nt in MDB+6bp, MDB+5bp,
MDB-+4bp and MDB+3bp

5-AGTCTG AGAAT AGAAT AGAAT AGAAT AGAAT AGAAT
AGAAT AGAAT AGAAT AGAAT GCACTG C3s-3’

5-ATTCT ATTCT ATTCT ATTCT ATTCT-3’
5'-GC ATTCT ATTCT ATTCT ATTCT ATTCT-3

5-ATTCT ATTCT ATTCT ATTCT ATTCT ATTCT ATTCT
ATTCT ATTCT ATTCT CAGACT-3

5'-GC ATTCT ATTCT ATTCT ATTCT ATTCT ATTCT ATTCT
ATTCT ATTCT ATTCT CAGACT-3

5’-CAGTGCTGCGTGTCTGCATG-3'

5-CATGCAGACACG ATTCTATTCT CAGCAC-3’
5-CATGCAGACACG ATTCTATTCT CAGCA-3’
5-CATGCAGACACG ATTCTATTCT CAGC-3
5-CATGCAGACACG ATTCTATTCT CAG-3’
5-CATGCAGACACG ATTCTATTCT CAGCACTG-3’

Note: C3s is the three-carbon spacer (Glen Research) to avoid template extension or cleavage by KF.
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Figure S1. Schematics of the TTTA MDB (left) (1), CCTG MDB (middle) (2) and CTTG MDB (right)
(3). In each of the MDBs, the first (L1/L1’) and the fourth loop residues (L4/L4’) form loop-closing
base pairs, the second loop residues (L2/L2’) sit in the minor groove, and the third loop residues
(L3/L3’) stack on the loop-closing base pairs. In the TTTA MDB, the bases of L2 and L2’ partially
stack with each other. In the CCTG and CTTG MDBs, L2 and L2’ form a C-C and T-T base pairs,

respectively.
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Figure S2. 1D 'H NMR spectra show the aromatic and methyl proton resonance assignments of (A)
(ATTCT)2, (ATTCT)s, (ATTCT)4, and (ATTCT)s, and (B) (TTCTA)2. The spectra were acquired at 5 °C.
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Figure S3. 1D 'H NMR spectra show the aromatic and methyl proton resonance assignments of (A)
(ATTCT)2A, (ATTCT)AT, (ATTCT)ATT, and (ATTCT)ATTC, (B) T(ATTCT),, CT(ATTCT),,
TCT(ATTCT),, TTCT(ATTCT)2, and (C) T(ATTCT).A. The spectra were acquired at 5 °C.
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Figure S4. (A) The H6/H8-H1’ sequential resonance assignment of (ATTCT), under 10 mM NaPi.
The NOESY NMR spectrum was acquired at 5 °C with a mixing time of 300 ms. (B) 1D 'H NMR
spectra show the aromatic and methyl proton resonances of (ATTCT). under 10 mM NaPi (top), and
addition of 150 mM NacCl (bottom) at 5 °C.
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Figure S5. The H6/H8-H1' sequential resonance assignment of (TTCTA).. The NOESY spectrum
was acquired at 0 °C with a mixing time of 600 ms.
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Figure S6. The H6/H8-H1' sequential resonance assignments of (A) (ATTCT)z and (B) (ATTCT)a.
The NOESY spectra were acquired at 10 °C with a mixing time of 600 ms.
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Figure S7. The H6/H8-H1’ sequential resonance assignments of (ATTCT)s. The NOESY spectrum
was acquired at 15 °C with a mixing time of 600 ms.
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Figure S8. The H6/H8-H1’ sequential resonance assignments of (A) (ATTCT).A and (B) (ATTCT)2AT.
The NOESY spectra were acquired at 0 °C with a mixing time of 300 ms for (ATTCT)2A, and at 5 °C
with a mixing time of 600 ms for (ATTCT)2AT.
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Figure S9. The H6/H8-H1’ sequential resonance assignments of (A) (ATTCT).ATT and (B)

(ATTCT).ATTC. The NOESY spectra were acquired at 0 °C with a mixing time of 300 ms.
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Figure S10. The H6/H8-H1’ sequential resonance assignments of (A) T(ATTCT). and (B)
CT(ATTCT),. The NOESY spectra were acquired at 0 °C with a mixing time of 600 ms.
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Figure S11. The H6/H8-H1’ sequential resonance assignments of (A) TCT(ATTCT). and (B)
TTCT(ATTCT)2. The NOESY spectra were acquired at 0 °C with a mixing time of 600 ms.
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Figure S12. The H6/H8-H1’ sequential resonance assignment of T(ATTCT).A. The NOESY

spectrum was acquired at 0 °C with a mixing time of 600 ms.
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Figure S13. The 'H-13C HMBC spectra show the adenine H2 resonance assignments of (A)
(ATTCT)2 and (B) (ATTCT)s. The spectra were acquired at 10 °C.
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Figure S14. The H-13C HMBC spectra of (A) (ATTCT)s and (B) (ATTCT)s show that except for Al,
the C4 signals of other adenine residues were overlapped, thus their H2 resonances could not be
assigned using these HMBC spectra. (C-D) Alternatively, adenine H2 resonances were assighed
based on intranucleotide H1’/H2’/H2”-H2 NOEs from the NOESY spectra. The spectra in (A), (C) and
(D) were acquired at 10 °C, and the spectrum in (B) was acquired at 15 °C.
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Figure S15. The 'H-13C HMBC spectra show the adenine H2 resonance assignments of (A)
(ATTCT)2A, (B) (ATTCT)2AT, (C) (ATTCT)ATT and (D) (ATTCT).ATTC. The spectra in (A), (B), (C)
and (D) were acquired at 10, 0, 15 and 15 °C, respectively.
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Figure S16. The 'H-13C HMBC spectra show the adenine H2 resonance assignments of (A)
T(ATTCT)2, (B) CT(ATTCT)2, (C) TCT(ATTCT)2, (D) TTCT(ATTCT)2 at 5 °C and (E) T(ATTCT)2A at

0 °C.
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Figure S17.

The TOCSY (top and middle) and 'H-3!P HSQC (bottom) spectra show the 3P

resonance assignments of (A) (ATTCT), and (B) (ATTCT)s. The spectra for (ATTCT), and (ATTCT)3
were acquired at 5 °C and 10 °C, respectively.
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Figure S18. The TOCSY (top and middle) and 'H-3'P HSQC (bottom) spectra show the 3P
resonance assignments of (A) (ATTCT)s and (B) (ATTCT)s. Due to peak overlaps, the 3P
resonances could only be partially assigned. The spectra for (ATTCT)4 and (ATTCT)s were acquired
at 10 °C and 15 °C, respectively.
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Figure S19. The TOCSY (top and middle) and 'H-3'P HSQC (bottom) spectra show the 3P
resonance assignments of (A) (ATTCT)2A and (B) (ATTCT)AT. The spectra of (ATTCT).A and
(ATTCT)AT were acquired at 10 °C and 0 °C, respectively.
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Figure S

ppm |
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2:5~
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3.0

20. The TOCSY (top and middle) and H-3'P HSQC (bottom) spectra show the 3P
resonance assignments of (A) (ATTCT).ATT and (B) (ATTCT),ATTC. The spectra were acquired at
0 °C. Due to peak overlaps, the 3P resonances of (ATTCT),ATTC were patrtially assigned.
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Figure S21.

The TOCSY (top and middle) and 'H-3!P HSQC (bottom) spectra show the 3P
The spectra in (A) and (B) were

resonance assignments of (A) T(ATTCT)2 and (B) CT(ATTCT)..
acquired at 5 and 0 °C, respectively.
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Figure S22.

The TOCSY (top and middle) and 'H-3!P HSQC (bottom) spectra show the 3P
resonance assignments of (A) TCT(ATTCT), and (B) TTCT(ATTCT).. The spectra were acquired at
0 °C. Due to peak overlaps, the 3P resonances of TTCT(ATTCT), were partially assigned.
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Figure S23. The TOCSY (top and middle) and 'H-3'P HSQC (bottom) spectra show the 3P
resonance assignments of T(ATTCT).A. The spectrum was acquired at 5 °C.
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Figure S24. The native PAGE results of (A) (ATTCT)z, (TTCTA)2, (ATTCT)s, (ATTCT)s4, (ATTCT)s,
and (B) (ATTCT)2A, (ATTCT)AT, (ATTCT)ATT, (ATTCT)ATTC, T(ATTCT);, CT(ATTCT),,
TCT(ATTCT)2, and TTCT(ATTCT).. All these sequences adopted monomeric conformations by a
single strand, as their mobilities were similar to those corresponding single-strand DNA ladders. The
gel assays were conducted at ~5 °C in a fridge. DNA sample condition: ~1 mM DNA in 10 mM NaPi
(pH 7). DNA ladder information: sequences containing two, three, four, five, six, seven, and eight
TTTA repeats which correspond to 8, 12, 16, 20, 24, 28 and 32 nt in 10 mM NaPi (pH 7) and 8 M urea.
The monomeric states of these TTTA repeating sequences have been demonstrated in our previous
study (4).
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Figure S25. The fitted UV melting curves of (ATTCT).. The UV absorbance data at 260 nm (Azeo)
were normalized to 1.0. The Tm value of the MDB structure formed by (ATTCT), was determined to
be 17.0 £ 0.5 °C by three replicate measurements, i.e. 16.6 °C (red diamond), 16.8 °C (blue circle),
and 17.6 °C (black asterisk), respectively. The UV melting curves shown here were fitted using a two-
state transition model (5).
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Figure S26. For (ATTCT)2, (A) 1D NOE spectra (middle and bottom) using excitation sculpting (6) for
water suppression. To enhance the H3 signals, the reference spectrum was acquired using jump-
return pulse (7) for water suppression (top). (B) NOEs of T2 H6-A1 H8 and T7 H6-A6 H8 suggest
base-base stackings between the two loop-closing base pairs. (C) NOEs of T3 H2'/H2”-A6 H2, T3
H7-A1 H2, T8 H2'/H2”-A1 H2 and T8 H7-A6 H2 suggest T3 and T8 located in the minor groove, as A6
and Al H2 residues pointed to the minor groove side of the MDB. (D) The NOEs between C4 and T2-
A6, and between C9 and T7-Al suggest C4 and C9 stack on T2-A6 and T7-Al loop-closing base
pairs, respectively. (E) The 3’-5’ terminal NOEs between T10 and A1. The NOESY spectra shown
here were acquired at 5 °C.
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Figure S27. Among the 20 refined solution structures of the ATTCT-Q/L5 MDB formed by (ATTCT)z,
3 structures show that T5 base is nearly perpendicular to A6 base (#4, 8 and 9), and 17 structures
show that T5 base is far from A6 base, None of them show base-base stacking between T5 and A6.
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Figure S28. (TTCTA), formed an MDB containing two regular TTCTA pentaloops, as supported by
(A) the relatively downfield shifted H7/3'P signals of T2 and T7, and the relatively upfield shifted H7
signals of T1 and T6, (B) the base-base NOEs of C3 H5-T1 H6 and C8 H5-T6 H6 suggesting C3 and
C8 stacked on T1-A5 and T6-A10, respectively, and (C) the NOEs of T1 H6-A10 H2/H8 suggesting
the existence of 3’-5’ terminal stacking. The NMR spectra shown here were acquired at 0 °C.
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Figure S29. The NOESY NMR spectra of (A) (ATTCT)4 and (B) (ATTCT)s show the base-base NOEs
of C4 H5-T2 H6, C4 H6-A6 H2, C9 H5-T7 H6, C9 H6-A1 H2, which suggest C4 and C9 stacked on
T2-A6 and T7-Al base pairs, respectively. The spectra shown here were acquired at 5 °C.
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Figure S30. (A) The downfield shifted T3/T8 3P signals, and (B) the base-base NOEs of T2 H6-C4
H5 and T7 H6-C9 H5 suggest the formation of MDB in (ATTCT).A. (C) The NOEs of T10 H7-T8 H6,
T10 H6-A11l H2/H8, and (D) the NOEs of A1 H8-A11 H1’/H2’/H2” suggest T10 stacked on T8-All
base pair, and Al and Al1 were close in space, respectively, in the minor dumbbell conformer. (E-F)
The NMR spectral features of the MDBs formed by (ATTCT)AT, (ATTCT).ATT and (ATTCT)ATTC,
including the relatively downfield shifted T3/T8 31P signals, and the base-base NOEs between C4/C9
H5 and T2/T7 H6. The spectra shown here were acquired at 0 °C.
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Figure S31. NMR spectral features of the MDBs formed by T(ATTCT),, CT(ATTCT),, TCT(ATTCT)x,
and TTCT(ATTCT), including (A) their relatively downfield T3/T8 3!P signals, and (B) the base-base
NOEs between C4/C9 H5 and T2/T7 H6. The spectra shown here were acquired at 0 °C.
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Figure S32. The NMR spectral features of the MDB formed by T(ATTCT)2A, including (A) the
downfield shifted T3/T8 3P signals, and (B) the base-base NOEs between C4/C9 H5 and T2/T7 H6.
The spectra shown here were acquired at 0 °C.
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Figure S33. 1D 'H NMR spectrum showing the methyl proton region of MDB+6bp. The unusually
downfield shifted signals of T15 H7 (2.04 ppm) and T20 H7 (1.98 ppm) suggest formation of the
ATTCT-Q/L5S MDB in the primer. The sample was prepared under 10 mM NaPi (pH 7), 50 mM NaCl
and 10 mM MgClz.. The NMR spectrum was acquired at 37 °C.
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