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Supplementary Note 1: “Modeling the near-field amplitude” 

 

 

Supplementary Figure 1| a, Schematic of the experiment. Silver tip represents the AFM with a radius of ~20 nm at the apex. 
Yellow triangular slab denotes the WSe2 crystal. Red and purple pulses indicate the pump and probe radiation, respectively. b, 
Geometry of the experiment. The incoming probe light is indicated with the purple pulse. Two possible beam paths for the scattered 
light, labeled #1 and #2 are indicated with purple arrows.  

It is instructive to, first, consider the case that a monochromatic continuous wavelength 
(CW) light source with frequency, 𝜔 = 𝜔!, interacts with the tip/sample system1. 
Subtleties imposed by broadband sources, which are necessarily employed in time-
resolved experiments, are discussed in Supplementary Note 12. In our experiments we 
illuminate a large area surrounding the AFM tip with pump and probe radiation 
(Supplementary Fig. 1). Optical contrasts from the near-field are isolated from 
background radiation using the time-resolved psuedoheterodyne technique2. At 
equilibrium the laser beam #1, with the complex amplitude E1,r, is backscattered from 
the AFM tip. Simultaneously, a photonic waveguide mode is launched with the complex 
wavevector, 𝑞" = 𝑞#," + i𝑞%," (see Section 3) and travels within the WSe2 crystal3, 4, 5. The 
beam following path #2 is scattered from the edge of the WSe2 crystal. Both of the 
scattered beams, #1 and #2, reach our detector. We consider the complex electric field 
amplitude at the position x relative to the location of the AFM tip: 
 
𝐸&,"(𝑥, 𝑡) = 𝐶&,"(𝑥) exp0−𝑞%,"𝑥2 exp0i3𝑞#,"𝑥 − 𝜔!𝑡42 (1) 
 
The subscript k is used to indicate the beam path, k = 1, or 2. Beam path #1 (k = 1) is 
scattered from the AFM probe at x = 0. The waveguide mode, which travels along beam 
path #2 (k = 2), is also scattered to the detector after traveling a distance, of about x, 
within the WSe2 waveguide. The near-field amplitude that is detected in our experiments 
can be written as5: 
 
𝑆"(𝑥) ∝ abs[𝐸%,"(𝑥) + 𝐸#,"(0)] (x>0) (2) 
 



The waveguide mode propagates away from the AFM probe and decays as 𝐶%,"(𝑥) =
𝐶%/√𝑥. We assume that the amplitude of the waveguide mode is small, 𝐶%," ≪ 𝐶#,". 
Indeed, the efficiency of launching the waveguide modes is low and the intensity decays 
with increasing distance6. Then it is straightforward to expand Supplementary Equation 
2 as: 
 
𝑆" ≅

'!
√)
exp0−𝑞%,"𝑥2 cos3𝑞#,"𝑥 + 𝜑4 + 𝐶#," (3) 

 
In our experiments, photoexcitation is utilized to perturb the properties of a WSe2 crystal. 
The pump beam has an elliptical cross-section with the calculated semi-minor and semi-
major axes of 9 µm and 16 µm respectively. Thus, the pump intensity is nearly 
homogeneous over the sub-10 µm fields of view investigated in our work. The pump 
beam is, furthermore, chosen to have horizontal polarization, which couples weakly to 
the AFM probe resulting in minimal distortion of the electric field at the tip apex7. In our 
modeling we assume that the coefficient for the amplitude, C2,r = C2,p = C2, and phase 
factor, 𝜑 are unchanged by photo-excitation, while the wavevector is modified: 
 
𝑆* ≅

'!
√)
exp0−𝑞%,*𝑥2 cos3𝑞#,*𝑥 + 𝜑4 + 𝐶#,*  (4) 

 
The pump-beam operates at half of the repetition rate of the probe beam (approximately 
375 kHz) so that each pair of probe pulses contains a pump ON event, Supplementary 
Equation (4), and pump OFF event, Supplementary Equation (3). By using two separate 
digital boxcars to collect the intensity from both of these probe pulses, as described in 
Ref. [14], Sr and Sp are simultaneously measured at each pixel. The pump-induced 
change in near-field amplitude is readily calculated: 
 
∆𝑆 = 𝑆* − 𝑆" =

'!
√)
(exp0−𝑞%,*𝑥2 cos3𝑞#,*𝑥 + 𝜑4 − exp0−𝑞%,"𝑥2 cos3𝑞#,"𝑥 + 𝜑4) − δ𝑐  (5) 

 
where the change in near-field amplitude in the interior of the sample is given by δ𝑐 =
𝐶#,* − 𝐶#,". In Supplementary Figures 4, 6 and 7 we display DS in units of percent by 
further dividing DS as expressed in Supplementary Equation 5 by the mean-value of the 
near-field amplitude in the interior of the film <Sr>. We re-write the complex wavevector 
under photoexcitation as 𝑞+,* = 𝑞+," + δ𝑞+ to highlight the pump-induced change to the 
complex wavevector, δ𝑞+. The subscript i is used to indicate the real or imaginary 
component of the complex wavevector, i = 1, or 2 respectively. In the specific case that 
the pump-induced change to the complex wavevector is small, δ𝑞+𝑋 ≪ 1 we may expand 
Supplementary Equation 5. Where 𝑋 is the largest distance from the edge of WSe2 where 
we investigate the waveguide mode. 𝑋 ranges from 2-10 µm in our work. If this signal is 
normalized such that C2=1 it can be easily verified that to the leading order: 
 
∆𝑆 + δ𝑐 ≅ 	√𝑥exp	[−𝑞%,"𝑥]	(δ𝑞#sin3𝑞#,"𝑥 + 𝜑4 − δ𝑞%cos3𝑞#,"𝑥 + 𝜑4)  

= √𝑥exp	[−𝑞%,"𝑥]	 Kδ𝑞#% + δ𝑞%% cos3𝑞#,"𝑥 + 𝜑 + 𝑦4  (6) 



 
with 
 
𝑦 = tan,# N-."

-.!
O (7) 

 
We emphasize that 𝜑, q1,r, and q2,r can be determined from the measurement of Sr in 
equilibrium. Two unknown quantities remain to describe the line profiles of DS: the 
amplitude of the oscillations, 𝐴 ∝ Kδ𝑞#% + δ𝑞%%, and the relative phase difference, 
𝑦 = tan,# N-."

-.!
O. These two experimentally determined quantities, amplitude and phase, 

may be used to determine the two desired components of the differential wavevector, 
δ𝑞# and δ𝑞%. Therefore, in our approach we have the full set of information needed to 
quantify pump-induced changes to the complex wavevector from raw data of DS, 
bypassing a Fourier Transform analysis. Importantly measurements of Sr and DS are 
carried out simultaneously2 minimizing the error in our procedure. 
 
Supplementary Note 2: “Angular corrections of the wavevector” 
 

Supplementary Figure 1 shows the propagating waveguide mode that is detected 
by near-field imaging. Fringes are observed with a wavelength of 𝜆/01 due to the 
interference of beams with the electric fields 𝐄# and 𝐄%, produced by beam paths #1 and 
#2 in Supplementary Fig. 1b (see Supplementary Note 1). The in-coming laser beam is 
focused to the apex of the tip with incident angles 𝛼 and 𝜃 with respect to horizontal 
plane and sample edge respectively. Laser beam #1 is back-scattered directly by the tip 
and registered on the detector. The tip also launches a waveguide mode which travels 
to the sample edge and scattered out as beam #2. Momentum conservation along the 
sample edge requires that the traveling direction of the waveguide mode makes an angle 
𝛽 with respect to normal direction of sample edge, which satisfies the following 
momentum conservation equation: 

 
%2
3#
sin(𝛽) = %2

3$
cos(𝛼) cos	(𝜃) (8) 

𝛽 = sin,# N4#
4$
cos(𝛼) cos	(𝜃)O (9) 

 
where 𝜆* and 𝜆! are the wavelengths of the waveguide mode and free-space light 
respectively. In our set-up the angle 𝛼 is fixed at approximately	30°. The two beams 
accumulate a relative phase difference, Δ𝜙, as the waveguide mode travels in WSe2. The 
difference in the emission position of the scattered light satisfies: 
 
Δ𝜙 = %2

3#

)
5/1(7)

− %2
3$
cos N2

%
− 𝜃 − 𝛽O )

5/1(7)
cos(𝛼) (10) 

 
where 𝑥 is the distance between the tip and sample edge. Thus, Δ𝜙 = %2

3%&'
𝑥 and 



𝜆/01 = 𝜆* N
#

5/1	(7)
− 3#

3$

5/1	(:)1+;	(7<=)
5/1	(7)

O
,#

 (11) 
 
is the wavelength observed in a near-field imaging experiment. In the perpendicular 
configuration 𝜃 = 90° and 𝛽 = 0. The observed oscillation wavelength is given by, 𝜆/01 =
𝜆* N1 −

3#
3$
cos(𝛼)O

,#
. Thus, our formulas reduce to a form that is in good agreement with 

previous reports5. We recognize that the observed wavevector 𝑞/01 = 1/𝜆/01 must be 
corrected for angle of incidence using Supplementary Equation 11 to extract the angular 
corrected wavevector of the waveguide mode 𝑞#,> = 2π/𝜆*. The subscript l = r, or p 
indicates the reference and photo-excited wavevector respectively.  
 

We now present data taken to experimentally test the model of angular correction 
described above. In Supplementary Fig. 2a we show the near-field scattering amplitude 
as a function of the real space co-ordinate, x, relative to the edge of the flake at x = 0. 
The measurement is repeated on the same flake for a series of different angles of 
incidence. The Fourier transforms of these data are shown in Supplementary Fig. 2b. A 
maximum at lobs

-1, is observed in the Fourier transform. The observed wavevectors of 
the TM0 mode are marked with the black arrows. The observed wavelength is plotted 
against the angle, q, in Supplementary Fig. 2c. The solid line is produced with 
Supplementary Equation 11 using lp=470 nm, which is the angular corrected wavelength 
of the waveguide mode. Good agreement with Supplementary Equation 11 is 
established with the data presented in Supplementary Fig. 2. 

 

 
Supplementary Figure 2| Angle dependence of the polaritonic wavevector. a, Raw data taken on a 90 nm WS2 flake on Al2O3 
substrate with the probe energy of E=1.46 eV after rotating the sample at a series of angles, q. b, Fourier transforms of the data in 
panel a. The arrows indicate the real component of the observed q-vector, qobs. c, The observed wavelength of the waveguide mode 
extracted from the Fourier transform analysis is shown at a series of probe angles. The solid line is a fit using Supplementary 
Equation 11. 

 
For the configuration used in the main text, 𝜃 ≅ 55 +/−	5°. In our modeling we 

applied Supplementary Equation 11 directly to extract the wavevector, 𝑞#,>=2p/lp, from 
the raw data where the subscript l = r, or p indicates if the data were collected at 
equilibrium or under photo-excited conditions, respectively. In the main text the Fourier 
transforms of the raw data (Supplementary Fig. 2b) are displayed in angular corrected 



units where we mapped the value of qobs to q1,l at each point of frequency space using 
Supplementary Equation 11. The latter, angle-corrected wavevector, is displayed and 
compared with calculation throughout the main text and supporting information. The 
imaginary component of the wavevector, presented in Fig. 3a of the main text, was not 
corrected for angle of incidence. 
 
Supplementary Note 3: “Relationship between q-vectors and the dielectric 
function” 
 
In this Section we establish the quantitative relationship between the q-vector of the 
waveguide mode and the dielectric function of the sample/substrate system. To 
calculate the dispersion relationship of the waveguide mode we utilize Supplementary 
Equation 12, which was reported in Ref. [4]. Here we quote the result that TM modes 
satisfy the transcendental equation: 
 

!
!!"
!#
"𝜀"𝑘#$ − 𝑞$𝑑 = tan%&,

'($%!%&")'$!!"

'
(!"
(#
'!#)'$%($!%&"

- + tan%& ,
'($%)'$!!"

'
(!"
(#
'!#)'$%($

-+ nπ (12) 

 
where 𝜀*+ is the complex dielectric function in the plane of the WSe2 crystal, while 𝜀5 is 
the complex dielectric function in the c-axis of WSe2. The wavevector of the infrared 
radiation in free space is k0, and the sample thickness is d. The sample is surrounded by 
air and a substrate with dielectric function 𝜀1?0.  
 
In our experiments we consider the case of small light-driven perturbations altering the 
material properties. In the case that 𝜀@0 → 𝜀@0 + Δ𝜀@0, the wavevector will satisfy 
Supplementary Equation 12 with 𝑞 → 𝑞 + δ𝑞. It is straightforward to show that: 
 
δ𝑞 ≅ 𝜅 ∙ Δ𝜀@0 (13) 
 
in the limit Δ𝜀@0 ≪ 𝜀. Thus, small perturbations of the wavevector reveal an approximate 
linear relationship with the dielectric function. The coefficient, 𝜅, depends on the probe 
energy, sample thickness, equilibrium dielectric constant of the sample and 
environment. We numerically calculate the value of 𝜅 with the aid of Supplementary 
Equation 12 to determine changes in the dielectric function of WSe2 from our 
measurements of the complex wavevector. We emphasize that the latter description is 
valid if the effective optical constants of WSe2 do not change during the course of 
waveguide propagation. If the optical constants do change while the waveguide mode 
propagates through the WSe2 flake, we expect that the waveguide mode energy will be 
altered, which can cause changes of the phase velocity that are not captured by 
Supplementary Equation 13. 
 
Supplementary Note 4: “Equilibrium spectroscopy” 
 



We proceed to discuss data and calculations of the energy-momentum (E vs. q) 
dispersion relationship at equilibrium. The raw data of our experiment (Supplementary 
Fig. 3a) are Fourier transformed to produce traces in Supplementary Fig. 3b. The maxima 
of each peak in the Fourier transform (FT) correspond to the observed wavevector, qobs 
=lobs

-1 (Section 3) of a waveguide mode (red and black dots). Two peaks are observed in 
FT traces. We extract the real part of the wavevector, q1,r, from the peak positions of the 
FT while the imaginary component of the wavevector, q2,r, is proportionate to the full 
width half maximum of the peak5. The experimentally determined wavevectors are 
corrected for the angle of incidence, as described in Supplementary Note 2, and plotted 
in Supplementary Fig. 3c. The low frequency mode (red dots) is in reasonable agreement 
with the trivial “air mode” with wavelength equal to that of radiation propagating in free 
space with lp = l0, consistent with previous reports4. We emphasize that the observed 
wavelength of the air mode is given by 𝜆! N

#
5/1	(7$)

− 5/1	(:)1+;	(7$,=)
5/1	(7$)

O
,#

 where 𝛽! =
asin	(cos(𝛼) cos(𝜃)) (see Supplementary Equation 11 section 3). Excellent agreement 
between the observed dispersion of the high frequency waveguide mode (black circles) 
and the calculated dispersion of the TM0 waveguide mode that propagates in the WSe2 
crystal is evident in Supplementary Fig. 3c, as we discuss in detail in the next paragraph. 
The air mode is inevitably mixed with the TM0 waveguide mode in the real-space fringe 
profiles. Nevertheless, the air mode is well separated from the TM0 waveguide mode in 
the frequency domain, which allows us to separate these two modes. Furthermore, 
photoexcitation is only observed to impact the wavevector of the TM0 waveguide mode. 
As such, we neglect the air mode in our analysis. After extracting the values of qr = q1,r + 
iq2,r from the FT analysis (Supplementary Fig. 3b) the wavevector of the TM0 mode, qr 
can be used to fit the real-space line profiles of nano-imaging data (Supplementary Fig. 
3a). Utilizing Supplementary Equation 3 we produce the solid red lines in Supplementary 
Fig. 3a with the phase of the waveguide mode, 𝜑, as the sole fit parameter. Thus, we are 
able fully characterize the q-vectors and phase of the TM0 waveguide mode in 
equilibrium.   
 
The imaginary part of the momentum-dependent reflectance co-efficient, Im{Rp}, 
governs the dispersion relationship of the WSe2 crystal and uncovers the parameter 
space for light propagation within the sample/substrate system. We display calculations 
of Im{Rp} in Supplementary Fig. 3c obtained using the Lorentz model for the dielectric 
function of WSe2 (Section 8). Defining 2pk=q1 and using the known index of refraction of 
the SiO2 substrate, nSiO2=1.46 we highlight three features, which are apparent in the 
calculations shown in Supplementary Fig. 3: (1) A vertical line at k0 (green line); (2) A 
vertical line at k0

.nSiO2 (yellow); (3) A third maximum is observed at still higher momenta 
with a non-monotonic relationship between the dominant wavevector and probe energy. 
We overlay the analytic solution for the dispersion of the TM0 waveguide mode, 
Supplementary Equation 12, on the Im{Rp} calculations (white line). The above trends in 
the dispersion relationship are identical between the two calculation methods. The 
feature (3) is, therefore, assigned to TM0 waveguide modes that propagate through the 
slab of WSe2, which are the focus of the main text.  



 
Supplementary Figure 3| Equilibrium dispersion relationship.  a, Near-field amplitude at several probe energies plotted as a 
function of real-space position relative to the edge of the WSe2/SiO2 interface. The WSe2 crystal is 90 nm thick. The solid red lines 
are fits to Supplementary Equation 3. b, Fourier transforms of the data shown in panel a. The curves displayed in panels a and b 
are vertically offset for clarity. The red dots indicate the dominant wavevector of the air mode. The black circles indicate the 
dominant wavevector, q1,r, of the TM0 waveguide mode, which propagates in WSe2. c, The imaginary component of the p-polarized 
reflection coefficient, Im{Rp} is shown by the false color map as a function of frequency and momentum. The dispersion 
relationship calculated analytically using Supplementary Equation 12 is displayed with the white line. The calculations were 
produced with the Lorentz model for the dielectric function (Section 8). The green and yellow lines indicate the light cones of air 
and SiO2 respectively as described above. The trend of q1,r vs. w from the data (black dots with white interior) are overlaid.  

The interaction of the waveguided probe radiation with excitons in the WSe2 crystal is 
manifest in dispersion relationship of the waveguide mode (Supplementary Fig. 3). We 
emphasize that the dielectric function of bulk WSe2 is highly anisotropic but remains 
positive throughout the investigated range of the electromagnetic spectrum8 (1.45-1.8 
eV). In the case that the real part of the permittivity is positive, the iso-frequency surface 
of the anisotropic crystal is a closed ellipse. Abbe’s law of diffraction applies to such a 
system and the q-vectors of the waveguide mode consequentially reside within the 
material’s light cone9, which is in good agreement with our experimental results.  
 
Supplementary Note 5: “Transient dynamics of the complex wavevector” 
 
Raw data for the time-dependence measurements (Fig. 3 of the main text) are presented 
in this Section. The center frequency of the probe is red-detuned by approximately 5 
meV from the center frequency of the A-exciton. In Supplementary Fig. 4 we report the 
dynamics of the near-field amplitude in the non-equilibrium case, Sp(Dt), where Dt is the 
time-delay between the pump and probe pulses. In Supplementary Fig. 4a, we display 



the pump-probe data collected at a time delay, Dt=-70 fs, along with a reference trace 
(Section 4) for comparison. The minus sign indicates that the peak of the pump intensity 
arrives at the sample 70 fs after the maximum of the probe intensity. We emphasize that 
the pump-probe convolution, approximately 160 fs, is much longer than 70 fs. At the 
time delay Dt=-70 fs the pump-intensity is, therefore, finite but not at its maximum value. 
The line profiles obtained for the photo excited and reference cases both reveal 
characteristic oscillations. An increase of the decay length with minor changes in the 
period, as compared with the equilibrium data, are observed at Dt=-70 fs. At a later time 
delay of Dt=330 fs, an enhancement of the decay length is no longer clearly observed. 
Pump-induced changes in the period of the oscillations are, however, evident. We chose 
to display data at these two representative time delays because the pump intensity is 
substantial at the former time delay (Dt=-70 fs) and negligible at the latter time delay 
(Dt=330 fs). The pump-induced changes are clearly revealed in the differential signal, DS, 
which is shown in Supplementary Figs. 4c, and d. Notably, a p/2 phase shift of the 
oscillations in DS is observed between the data collected at these two-time delays. 
These findings indicate a rapid decrease of dq2 has occurred, which promptly recovers 
(see Supplementary Equations 6 and 7). In Supplementary Fig. 5 we show 
autocorrelation data used to determine the pump-probe convolution under conditions 
that were similar to those used in the experiment reported in the main text Figs. 3 a and 
b and in Supplementary Fig. 4. The dynamics of dq2 are in agreement with the pump-
probe convolution.  
 

 
Supplementary Figure 4| Pump-probe dynamics of a WSe2 crystal. The probe energy of E=1.61 eV is used throughout this 
study while a pump with energy of E=1.56 eV and power of 1.5 mW was applied to photo-excite a 90 nm thick WSe2 crystal. a and 
b, Near-field amplitude as a function of real-space position relative to the edge of the WSe2/SiO2 interface. A reference trace of the 
near-field amplitude at equilibrium (blue) is shown. a, The near-field amplitude recorded with photo-excitation near pump probe 
overlap, while the intensity of the pump is non-zero (Dt = -70 fs), is shown in green. b, identical to panel a, except the photo-excited 
trace (red) is collected at Dt = 330 fs – a time-delay where the probe arrives after the pump intensity has completely decayed. c, 
Subtracting the reference data from the photo-excited data yields the differential DS signal, which is normalized to the mean value 



of the reference data in the interior of the WSe2 crystal. d, The differential signal, DS, recorded at a series of pump probe time 
delays are shown with the black dots. Fits constructed using Supplementary Equation 5 with the extracted values of dq1 and dq2 
reported in Figs. 3a and 3b of the main text are overlaid with the solid red curves. The vertical red dashed lines indicate the locations 
where maxima are observed in line profiles of the waveguide mode at equilibrium, blue curves displayed in panels a and b. We 
emphasize that the 𝑦 ≅ 𝜋/2 phase shift (see Supplementary Equation 7), clearly observed at Dt=330 fs in panels c, develops within 
three hundred femtoseconds of the photo-excitation event. g The curves displayed in panel d are vertically offset for clarity. 

 

 
Supplementary Figure 5| Pulse characteristics for the pump probe experiment. a, autocorrelation measurements of the pump 
and probe pulses are shown by red and green curves respectively. The pump-probe convolution (blue) is fit to a gaussian function 
(black) to determine the pump-probe convolution, approximately 160 fs. b, Spectral intensity of the pump and probe pulses are 
shown with red and green curves respectively. The full width at half maximum of the spectral intensity is approximately 16 and 20 
meV for the pump and probe respectively. 

Supplementary Note 6: “Fluence dependence of the complex wavevector” 
 
We proceed to characterize how the photo-induced changes of WSe2 evolve with the 
pump power, P, and photon energy of our pumping laser. First, we note that P = 2 mW 
corresponds to a 5 nJ energy per pump pulse at our repetition rate of 377 kHz. Using 
the calculated area of the 9x16 µm2 elliptical pump beam we estimate the maximum 
fluence applied to WSe2, which is approximately 1 mJ cm-2. The probe energy is fixed at 
approximately 1.61 eV, which is slightly red detuned from the A-exciton resonance 
(Supplementary Table 1). At pump-probe overlap (Dt=0) we study the pump-induced 
changes of the propagation length of the waveguide mode, dq2. We find that dq2 follows 
a linear trend against the pump power, P, with fixed pump-photon energy (solid lines). 
The measurement is repeated for two values of the detuning, D, defined as the energy of 
the pump relative to the energy of the A-exciton. The magnitude of dq2 increases as D is 
decreased at constant P. These data collapse onto a single curve when the pump-
induced change in wavevector is plotted against 𝑃/∆ (Supplementary Fig. 6). The 
experimentally measured scaling of the pump power and energy is, therefore, consistent 
with the trend anticipated for the optical stark effect10.  
 



 
Supplementary Figure 6| Fluence dependence of the pump-probe response of WSe2. The 90 nm thick WSe2 crystal was 
investigated with a fixed probe photon energy of E = 1.61 eV at pump probe overlap (Dt = 0) for this study. The pump pulse has a 
bandwidth of approximately 15 meV. a and b, Line profiles of the near-field amplitude, S, under photoexcitation (red) are shown 
together with a reference trace (blue). a, Photo-excited data collected with a pump photon energy of Epump=1.56 eV and pump 
power of P=2 mW and b, Photo-excited data collected with a pump photon energy of Epump=1.58 eV and pump power of P=2 mW. 
c and d, Differential change in the near-field amplitude, DS, at a series of pump powers. The black dots are data, while the fits, 
constructed using Supplementary Equation 5 with the extracted values of dq2 shown in panel e, are overlaid with red solid lines. c, 
Data were collected with the pump energy of Epump=1.56 eV and d, Data collected with the pump energy of Epump=1.58 eV. The 
curves shown in panels c and d are vertically offset for clarity. e, The detuning, D=EA-Epump, is defined as the energy difference of 
the pump relative to the resonant energy of the A-exciton. The extracted values of dq2 plotted against the rescaled x-axis, defined 
as power over detuning P/D. The extracted values of dq2 are shown against the applied pump power in the inset.  

 
Supplementary Note 7: “Pump-probe spectroscopy and transient nano-imaging” 
 
The raw DS data for the pump probe spectroscopy measurements are displayed with 
black dots in Supplementary Fig. 7. Throughout our experiment the pump conditions 
were fixed (pump photon energy E=1.56 eV and pump power of 3 mW) while we the 
probe energy was varied. We highlight several significant features that are observed in 
the raw data. First, characteristic oscillations in line-profiles of DS are observed at all 
probe frequencies. The amplitude of these oscillations, A, is proportionate to the 
differential change of the wavevector (Supplementary Note 1). Second, as the probe 
energy is increased from 1.46 eV to 1.57 eV substantial increases of the amplitude A are 
observed. The rapid increase of A with increasing probe energy is followed by a non-
monotonic decrease of A when the probe energy is slightly red-detuned from the A-
exciton resonance. Finally, differences between the differential data collected at the two-
time delays, Dt=1 ps and Dt=0, are also most apparent when the probe photon energy is 
nearly resonant with the A-exciton. The differential change in periodicity, dq1, reported 
in Fig 3e of the main text were extracted from the line-profiles of DS using Supplementary 
Equation 5. Our study reveals a clear dispersion anomaly in the vicinity of the A-exciton 
with significant sub-ps dynamics exposing photo-induced transformations of the A-
exciton. 



 

 
Supplementary Figure 7| Non-equilibrium spectroscopy and nano-imaging. These data were collected on a 90 nm slab of WSe2 
photo-excited with a pump energy E=1.56 eV and pump power of 3 mW a, Line profiles of the differential change in near-field 
amplitude DS at a series of probe energies collected at pump-probe overlap (Dt=0). The black dots are data while the fits constructed 
using Supplementary Equation 5 with the extracted values of dq1 and dq2 are overlaid in red. b, Identical to panel a, except with a 
pump probe time delay of Dt = 1 ps. The curves in panels a and b are vertically offset for clarity. 

 
Supplementary Note 8: “Modeling the equilibrium dielectric function” 
 
In this Section we discuss our model for the dielectric function in equilibrium. The salient 
features of the dielectric function are accurately re-produced with a model based on a 
series of Lorentzian oscillators: 
 
𝜀() ≅ 𝜀*+,+ +∑

-)
(/))$1/$12/3)

4
567  (14) 

 
The parameters of the six oscillators considered in the Lorentz model are reported in 
Supplementary Table 1. The parameters 𝜀1A@A=15.5 and the out of plane dielectric 
function 𝜀5=8 are also used. Our measurements were conducted over a limited range of 
probe energies (1.45 eV < E < 1.7 eV). Thus, only the A-exciton is directly observed in 
the experimental energy window. In the investigated range of energies, a further 
approximation is valid: 
 
𝜀() ≅ 𝜀*+,+∗ + -*

(/*)$1/$12/3*
 (15) 

 
In Supplementary Equation 15 the offset of the real part of the dielectric function, 𝜀1A@A∗  
includes contributions from the static dielectric function and from excitons at high 
energies outside the investigated range of probe energies. In Supplementary Fig. 8 we 
display the dielectric computed with Supplementary Equations 14 and 15. All significant 
spectral features are accurately represented in the energy scale of 1.45 - 1.8 eV where 
our investigation of the waveguide mode was performed. In the main text, 



Supplementary Equation 14 was used in our model calculations of the dispersion 
relationship in equilibrium (Fig. 2d of the main text), we remark that the results using 
Supplementary Equation 15 are nearly identical.  
 

The simpler single oscillator model Supplementary Equation 15 was used in our 
non-equilibrium analysis (Fig. 3 of the main text). In the single oscillator model photo-
induced changes to high-energy excitons that are outside the range of energies we 
investigated, and are not directly measured, are accounted for with the dispersion-less 
offset of the dielectric function, e*

stat. Thus, we report only the specific perturbations to 
the A-exciton, which are directly extracted from our measurements in Table 1 of the main 
text. We remark that apart from a slight dispersionless offset, the in-plane component of 
the dielectric function constructed from the Lorentz model, (Supplementary Table 1; and 
Supplementary Equation 14), is in excellent agreement with the data of Li et al., reported 
in Supplementary Ref. [8].  
 
Supplementary Table 1: Parameters for the equilibrium dielectric function of WSe2:  

 j=1 j=2 j=3 j=4 j=5 j=6 
Ej (eV) 1.612 1.8 2.18 2.6 2.8 3 

gj (meV) 106.8 251.9 258.4 248 1,264.8 1,248 

fj (eV2) 1.2046 0.5337 2.081 1.0608 15.4973 20.9515 

 



 
Supplementary Figure 8| The equilibrium dielectric function of WSe2. a, All dashed curves display the real part of the 
permittivity, e1,ab, while all solid curves display the imaginary part of the permittivity, e2,ab. Fits using a multi-oscillator (MO) 
Lorentz model (Supplementary Equation 14; Supplementary Table 1), representing multiple excitonic transitions are shown with 
green curves. Fits with a single oscillator (SO) Lorentz model representing the A-exciton (Supplementary Equation 15; Table 1 at 
equilibrium) are shown with blue curves. b, First principles calculations of the dielectric function. The values for e2,ab calculated 
with the Bethe-Salpeter equation (BSE) are shown in purple while the values for e2,ab calculated within the Random Phase 
Approximation (RPA) are shown with the orange curve. 

The dielectric response of WSe2 is also obtained from first-principles calculations based 
on the GPAW code11, 12 (Supplementary Fig. 8b). The imaginary part of the dielectric 
function is obtained from Bethe-Salpeter Equation (BSE) using 2 valence and 2 
conduction bands based of the LDA functional, 150 eV cut-off energy for the static 
screened interaction and a 45x45x3 k-point grid. The data displayed in the main text 
were offset by the A-exciton energy, defined as the energy where the first maxima of e2 
is observed. The BSE results contain spectral weight from excitons in addition to spectral 
weight from band-to-band transitions. To estimate the spectral weight associated with 
excitons we also calculated the dielectric function with the random phase approximation 
(RPA), which excludes excitonic effects. To obtain the excitonic portion of the dielectric 
response we first calculate the variation of the imaginary part of the permittivity due to 
the excitonic effects and then map it to the real part of the permittivity through the 
Kramers-Kronig relations in formulas:  

𝜀#,@05/""(ω) = 𝜀#,@0CDE(ω) + %
2∫ d𝜔′F9

!
-G!,;&(F)
F<!,F!

	 (16)	

 
Where δ𝜀%,@0(𝜔) = 𝜀%,@0HIJ(𝜔) − 𝜀%,@0CDE(𝜔) was defined. The integration was truncated at the 
frequency 𝜔5 = 2.5	eV. The results were insensitive to our exact choice of wc indicating 



the calculation has converged. In terms of the index of refraction, 𝜀HIJ(ω) = 𝜀#,@0CDE(𝜔) +
𝜀#,@05/""(𝜔) + i𝜀%,@0HIJ(𝜔) includes excitonic contributions, while 𝜀CDE(𝜔) = 𝜀#,@0CDE(𝜔) +
i𝜀%,@0CDE(𝜔) does not. Finally, we are able to estimate the contribution to the index of 
refraction from excitons as  𝜀JK(ω) = 𝜀HIJ(𝜔) − 𝜀CDE(𝜔).  
 
We emphasize that our first principles estimates are capable of separating spectral 
weight associated with band-to-band transitions from the spectral weight associated 
with excitonic transitions. The latter information, reported in Supplementary Fig. 10b, 
augment our experimental optical data, which are affected by both excitonic and 
interband effects. Our approach, therefore, allows us to accurately determine the 
maximum possible changes of the dielectric response that can be attained by targeted 
manipulation of excitons – a fundamental limit to the modulation of the optical properties 
within bulk WSe2 crystals. 
 
Supplementary Note 9: “Incoherent photo-induced transformations” 
 
To investigate plausible roles of optically generated carriers in optical modulation we 
turn our attention to the mid-infrared spectral range. We observed the appearance of a 
“Drude-like” edge in WSe2 at the pump-probe time delay Dt=2 ps (Supplementary Fig. 
9). We use the Drude-Lorrentz model: 
 
𝜀 = 𝜀1A@A + ∆𝜀 ≅ 𝜀1A@A −

F#!

F!,F$!,+FL
 (17) 

 
To model the dielectric function. In Supplementary Equation 17 the Drude limit is 
recovered by taking the resonant energy 𝜔! → 0. We emphasize that Supplementary 
Equation 17 agrees with our data provided that w0 < 45 meV. Thus, our measurement 
cannot distinguish between bound excitons and a pure Drude response from itinerant 
carriers. To simplify the model, we consider the Drude limit by setting 𝜔! = 0. To 
quantitatively extract wp and 𝛤 we employ the lightning rod model13, 14, 15 which allows us 
to calculate the near-field amplitude (solid black curve in Supplementary Fig. 9). For 
simplicity the dielectric response was taken to be isotropic in our lighting rod model 
calculations. Under nominally similar photoexcitation conditions (pump laser with 820 
nm center wavelength, 80 meV bandwidth, 2 mW excitation power, 750 kHz repetition 
rate) we extract wp = 2,500 cm-1. The scattering rate 𝛤 = 350	cm,# is also extracted. As 
argued in the main text the decrease of the estat, observed in our waveguide experiments 
implies that a fraction of the optically generated carriers are itinerant. Under the extreme 
assumption that all optically generated carriers are itinerant we can extract the carrier 
density as16:  
 
𝑛 = (0.724	x	10%#	cm,M) NN

∗

N=
O NℏF#

P!QQ
O
%
 (18) 

 
The extracted three dimensional free carrier density is n=n3D=1.4x1019 cm-3; in this 
analysis we assumed the effective mass of the direct band m*=0.17 me  in accord with 



Ref. [17]. In terms of the carrier density per atomic layer n2D, we obtained 
n2D=n3DdWSe2=1x1012 cm-2 assuming the atomic thickness of WSe2 layers dWSe2=0.7 nm 
(Ref. [18]). At comparable densities of itinerant carriers drastic changes in the optical 
spectra of monolayer and bilayer TMD systems have been reported19, 20, 21, 22. These 
transformations were attributed to the onset of a Mott transition where the electron-hole 
plasma screens the Coulomb interaction that binds excitons together causing the 
excitons to dissociate23. Estimates for the critical Mott density have been reported in a 
wide range from 3x1012 cm-2 [Ref. 21] to 1x1014 cm-2 [Ref. 19] in mono and bilayer TMD 
systems. Bulk three dimensional models predict a lower Mott-threshold, with a lower 
bound of approximately 3x1018 cm-3 [Ref. 24]. In our experimental data we observe about 
a 10% bleaching of the A-exciton, which is consistent with other experimental spectra 
taken near, but not significantly above, the Mott threshold19, 20, 21. Finally, we remark that 
as one approaches the Mott-transition the binding energy of excitons decreases. An 
interesting follow up study, suggested by our results, would be to investigate how the 
optical Stark effect is impacted as the binding energy of the A-exciton approaches zero 
in TMDs. The suggested study could be carried out by monitoring the optical Stark shift 
as the carrier density is tuned to, and beyond, the Mott threshold with photo-excitation19, 

21 or electrostatic gating20. 
 

 
Supplementary Figure 9| Mid-IR spectroscopy.  Near-field amplitude spectra recorded with the pump on, Sp, were normalized 
to spectra obtained with the pump off, Sr. The Lightning Rod Model13 was used to produce the solid line as described in the text.  

Following an abrupt increase of the periodicity of the waveguide mode, which is 
described by dq1, the decay process is well described by Auger equation:  
 
R(-.")
RS

= −𝜂δ𝑞#% + 𝐴exp[−𝑡/𝜏] (19)  
 



Our motivation for using Supplementary Equation 19 is purely phenomenological. The fit 
presented as the blue line in Fig 3b of the main text yields 𝜂=1.2x1013 k0

-1 s-1. The 
intensity, modeled with the pump-probe convolution, 𝜏, (Supplementary Fig. 5) and an 
arbitrary amplitude, A, dictates the anticipated rise time (green curve in Fig. 3a of the 
main text). The constant pre-factor 𝜂 can be regarded the decay rate of an annihilation 
processes, which may include decay by collision with defect or trap states and exciton-
exciton annihilation25, 26.  
 
Supplementary Note 10: “Excitonic optical modulation and tunable birefringence 
within WSe2 waveguides” 
 
Our transient images allow us to assess fundamental limits to excitonic vdW optical 
modulators. Strong modulation of the index of refraction near excitonic resonances has 
been discussed in several previous reports on TMD monolayers27 and the potential for 
excitons to enhance optical modulation has been suggested28. Here, our transient nano-
imaging experiment provides direct evidence that excitons do enhance optical 
modulation within a vdW semiconducting waveguide. We observed considerable 
changes of the phase velocity, the magnitude of De1,ab(E=1.45 eV) reached 1.3 in our 
experiments, which exceeds 5% of the value of the permittivity at equilibrium (Main text; 
Fig. 1). The data of the main text Fig. 3 may be recast as the spectra of differential 
changes of the in-plane component of the dielectric tensor, De1,ab(E), which are displayed 
in Supplementary Fig. 10. To assess the potential to exploit excitons in optical 
modulation applications we computed the excitonic contribution to the index of 
refraction, eEX, from first-principles density functional calculations (see Supplementary 
Section 8). Our first principles results provide an upper bound of refractive changes that 
would be attained provided all excitons in WSe2 were to dissociate reaches -De1,x= eEX = 
4.5, which exceeds 16% of the value of the ab-plane permittivity at equilibrium 
(Supplementary Fig. 10b).  

Apart from |De1,ab|, losses within the waveguide are of paramount importance for 
devices. Remarkably, additional losses are unobservable in our pump-probe data even 
under the strongest photo-excitation conditions. In fact, losses can be suppressed by 
photoexcitation as witnessed by the negative sign of dq2 (see main text Fig. 3a), albeit 
over a restricted frequency region in the vicinity of the A-exciton (Supplementary Fig. 
10c). Notably, the magnitude of Dex is maximized near excitonic transitions, in the range 
of several eV, where added losses from itinerant carriers are exceedingly small in WSe2.  
These photo-induced changes establish unique virtues of optically-induced modulation 
in vdW semiconductors that are rooted in manipulation of excitons29, 30. Provided that 
equilibrium loss governed by the excitonic linewidth is further reduced in WSe2 and other 
vdW semiconductors, these systems could offer practical modulation solutions. Such a 
reduction of equilibrium loss may be possible given observations of ultra-narrow exciton 
linewidths in high purity transition-metal-dichalcogenides31 at liquid nitrogen 
temperatures.  

Additionally, we emphasize the significance of anisotropy in the modulation of the 
real component of the dielectric tensor, studied in this work. In Ref. [5] D. Hu et. al., have 



noted that the strong anisotropy inherent to vdW semiconductors can be used to tune 
the modal birefringence in MoS2 waveguides of varying thickness. Here, we note that the 
optical polarizability associated with excitons is highly anisotropic. Manipulation of 
excitons may, therefore, present an opportunity to control the optical birefringence of 
WSe2 and other related vdW semiconductors on-demand. Finally, we stress that an 
encouraging degree of modulation is attained at fs time scales meeting the most 
stringent demands of ultra-fast optical circuits.  
 

 
Supplementary Figure 10| Limits to excitonic optical modulators based on WSe2. a, Experimental change in the permittivity 
within a WSe2 waveguide, De1,ab under fixed pumping conditions (dots) and Lorentz model calculations with identical parameters 
to those displayed in Fig. 3e of the main text (solid lines; see Table 1 of the main text). Data and Lorentz model calculations at the 
time delay of Dt = 1 ps are shown in red. b, The upper limit of changes of the real and c, imaginary components of the permittivity 
attainable from perturbing excitons in WSe2 waveguides at room temperature obtained from first principles theory (green and 
purple curves respectively; see Supplementary Section 8). The transparency window of WSe2 is indicated by the blue shaded region. 

 
Supplementary Note 11: “Thickness dependence” 
 
By measuring the complex wavevector as a function of the film thickness both the in-
plane, e1,ab and out of plane, e1,c, components of the dielectric tensor can be determined 
as shown in Ref. 4. The thickness dependence data in Supplementary Fig. 11, acquired 
with the probe energy of 1.45 eV, were used to extract the real component of the 
dielectric tensor: 
 

o|Real{𝜀(𝐸 = 1.45	eV)}|o = u
24.5 0 0
0 24.5 0
0 0 8

w (20) 

 
We stress that the optical polarizability of e1,c exhibits negligible dispersion within the 
investigated range of probe energies (1.4 < E < 1.8 eV)32, 33.  
 



 
Supplementary Figure 11| Thickness dependence of the TM0 waveguide mode. a, Experimental line profiles of S as a function 
of the real space position of the AFM probe, x, for flakes of three different thicknesses, d. b, The real component of the complex 
wavevector extracted from the data in panel a (red dots) are overlaid on a calculation using Supplementary Equation 12 for the 
TM0 branch of the waveguide mode. The in-plane component of the dielectric function (given in Supplementary Section 8) at the 
probe energy of E = 1.45 eV as well as the out-of-plane component of the dielectric function ec = 8 are used in the calculation. 

Supplementary Note 12: “Transient spectroscopy and imaging with broad-band 
pulsed lasers” 
 
In our experiments, we employ broadband pulsed lasers. To account for the finite 
bandwidth of the laser pulse we consider a wave-packet:  
 
𝐸(𝐫, 𝑡) = ∫ d𝑘	𝛭(𝑘)exp	[i(𝑘𝑥 − 𝜔𝑡)] (21) 
 
In free space, M(k) is simply the momenta of the incident radiation. When the sharp tip 
of the AFM probe is illuminated by an infrared beam described by Supplementary 
Equation 21 the wave packet will be modified: 
 
𝐸*(𝐫, 𝑡) = ∫d𝑘	𝐵(𝑘)	exp	[i(𝑘𝑥 − 𝜔𝑡)] (22) 
 
The sharp apex of the AFM probe confines radiation to a length scale, a, equal to the 
radius of the probe (~20 nm). In turn the momentum response function of the AFM probe, 
R(k), facilitates access to momenta outside of the light-cone, a well-known feature that 
is described in previous works13. The properties of the sample, together with the 
response of the AFM probe, determine the distribution of momenta in the tip/sample 
system, B(k). In the present case, our WSe2 samples support propagating TM0 modes 
with momenta that are outside of the free-space light cone but inside the light-cone of 
WSe2 (see Section 4). The broadband wave-packet launches multiple TM0 waveguide 
modes simultaneously, which can interfere. Inserting a gaussian wave-packet 𝐵(𝑘) =
𝑣Texp	[−

(U,U$)!

(VU/X>)!
] into Supplementary Equation 22 we recognize general, qualitative, 



features that are expected when broadband light sources are employed. In the latter 
expression, k0, is the momenta at the center of the wave-packet, Dk, characterizes the 
distribution of momenta within the wave-packet and, vg, is the group velocity of the 
propagating mode. The length scale where reduced propagation length should be 
observed from these interference effects is given by vg/Dk.  
 
By varying the bandwidth of our probe channel, we experimentally investigate the theory 
described above. In Supplementary Fig. 12 we display line-profiles of the near-field 
amplitude as a function of the distance to the edge of the WSe2 flake. A bandpass filter 
with full width at half maximum of about 15 meV (= 4 THz) was inserted to the beamline 
to narrow the bandwidth of the probe beam before it was delivered to the AFM 
microscope. With the latter, narrowband, illumination we recorded the red curve. When 
the bandpass filter was removed and the full bandwidth of the probe channel, 80 meV 
(= 20 THz) was employed we measured the line profile displayed with the black curve in 
Supplementary Fig. 12. It is apparent that the observed propagation length of the 
waveguide mode is dependent on the bandwidth of the probe beam. The quantity vg/Dk 
defines the length scale where destructive interference within the wave-packet 
dominates the propagation length. In the former case of narrowband, 15 meV, 
illumination vg/Dk=25 µm and the bandwidth of the wavepacket has a negligible impact 
on the experimentally measured line-profile within the 12 µm field of view we 
investigated. In the latter case of the broadband, 80 meV, illumination the anticipated 
propagation length is vg/Dk=5 µm, which is in agreement with our observations. 
 

 
Supplementary Figure 12| Line profiles of the near-field amplitude obtained on a 210 nm thick WS2 crystal on an SiO2 
substrate. A probe channel with energy of E=1.46 eV was used in this study. The black curve was recorded with the full spectral 
bandwidth of the laser, approximately 80 meV. The red curve was recorded with a spectrally filtered 15 meV bandwidth probe 
beam. The curves were vertically offset for clarity. 

Supplementary Note 13: “Pump-probe dynamics in a WS2 waveguide” 
 



We observed substantial photo-induced optical modulation in a closely related 
dichalcogenide material WS2 (Supplementary Fig. 13); the gross features of these latter 
pump-probe data are similar to our observations for WSe2. At a fixed probe energy 
E=1.46 eV we recorded line-profiles of the near-field amplitude for a 210 nm thick WS2 
flake on the SiO2 substrate. The oscillations that are observed in the line-profiles are 
dominated by the TM0 waveguide mode, which propagates within WS2. We repeated the 
measurement with photoexcitation at a fixed pump energy, Ep=1.88 eV at a series of 
pump powers (Supplementary Fig. 13a). We observed that the periodicity of the 
waveguide mode was significantly increased on photoexcitation. Pump induced 
changes of the decay length are, however, insignificant and remain below our detection 
limits at all pump powers. The pump-induced change in the periodicity, described by 
dq1, increases linearly with the applied pump power with no apparent sign of saturation 
(Supplementary Fig. 13b).  
 

 
Supplementary Figure 13| Power dependence of the photo-excitation response for WS2. A WS2 crystal with thickness of 210 
nm was investigated with a 1.46 eV probe pulse under photo-excitation with a 1.88 eV pump pulse at the time delay Dt = 0.1 ps in 
this study. a, Line-profiles of the near-field amplitude under photoexcitation (red) are shown together with a reference (blue) at a 
series of pump powers. The curves are vertically offset for clarity. b, The pump-induced change in the periodicity of the waveguide 
mode as a function of the pump power. 
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