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Supplementary Table S1: 

Table S1: Information and reference on eight ancient DNA profiles. 

Individual 
ID 

Geography Time (years cal BP) Reference 

Anzick-1 North 
America 

12,707–12,556 Rasmussen et al. (2014)1 

baa001 Southern 
Africa 

1,986–1,831 Schlebush et al. (2017)2 

Kotias Caucasus 9,529–9,895 Jones et al.(2015)3 

LBK Europe 7,450-6,750 Lazaridis et al. (2014)4 

Loschbour Europe 8,170-7,940 Lazaridis et al. (2014)4 

ne1 Europe 7,020–7,290 Gamba et al. (2014)5 

SF12 Northern 
Europe 

9,033–8,757 Günther et al. (2018)6 

Ust_Ishim Western 
Siberia 

46,880–43,210 Fu et al. (2014)7 

 

 



 

Supplementary Table S2: 

Table S2: SNP filtering and LD-pruning information. 1KGP, 1000 genome project. PSU, The Pennsylvania State University, MAF, minor 

allele frequency, HWE, Hardy-Weinberg Equilibrium, LD, Linkage Disequilibrium, SNP, single nucleotide polymorphism, HGDP, Human 

Genome Diversity Project, IBS Identity-by-state, KING8 (0.044 is the threshold for 3rd degree of relatives) 

Paper Context Dataset Experiment Missing 

Genotypes 

Related 

Individuals 

MAF-

Filtering 

HWE-

Filtering 

LD-Pruning #SNPs COMMENTS 

Outlier 

robustness 

HapMap 3 Figure 1 >10% KING>.044 No No No 892,338 We did not perform 

either minor allele 

frequency (MAF) 

filtering or HWE 

filtering on the 

SNPs since many 

rare SNPs and SNPs 

violating HWE are 

due to the outliers 

and therefore 

useful in testing for 

robustness. 

  

Laboratory 

artefacts 

HGDP & 1KGP Figure 2, 3 >10% KING>.044 

on 1KGP 

No 

relative 

removal 

on HGDP 

No No window size:50 step size:5 

threshold:0.2 

154,199 We perform the LD-

pruning here 

mainly to reduce 

the number of SNPs 

for computational 

reasons only, 

because the 

simulations run for 

100 times. 

Revealing 

population 

structure 

Simulated 

Admixture 

Figure 4 No No No No No 3,200 Galinsky et al.9   

Adjusting 

population 

structure 

Simulated 

GWAS 

Table 1 No No No No No 1,000,000 Price et al.10   

Imaging 3D 

Facial Variations 

Ancient DNA, 

PSU cohort, 

and 1KGP 

Figure 5,6, 

S1-S5 

>10% KING>.044 .01 1.00E-06 window size:50 step size:5 

threshold:0.2 

69,194     

 



Supplementary Figure S1: 

 

Figure S1: Top eight SUGIBS axes of 1KGP and projections of the PSU cohort. Populations of the African 

super population in the 1KGP are coloured. The projected PSU cohort are represented by grey dots. ACB, 

African Caribbeans in Barbados, ASW, Americans of African Ancestry in SW USA, ESN, Esan in Nigeria, 

GWD, Gambian in Western Divisions in the Gambia, LWK, Luhya in Webuye Kenya, MSL, Mende in Sierra 

Leone, YRI, Yoruba in Igadan Nigeria. (a) SUGIBS axis 1 (Horizontal) and axis 2 (Vertical). (b) SUGIBS axis 3 

(Horizontal) and axis 4 (Vertical). (c) SUGIBS axis 5 (Horizontal) and axis 6 (Vertical). (d) SUGIBS axis 7 

(Horizontal) and axis 8 (Vertical). 

  



Supplementary Figure S2: 

 

Figure S2: Top eight SUGIBS axes of 1KGP and projections of the PSU cohort. Populations of the admixed 

American super population in the 1KGP are coloured. The projected PSU cohort are represented by grey 

dots. CLM, Colombians from Medellin Columbia, MXL, Mexican ancestry from Los Angeles USA, PEL, 

Peruvians from Lima, Peru, PUR, Puerto Ricans from Puerto Rico. (a) SUGIBS axis 1 (Horizontal) and axis 2 

(Vertical). (b) SUGIBS axis 3 (Horizontal) and axis 4 (Vertical). (c) SUGIBS axis 5 (Horizontal) and axis 6 

(Vertical). (d) SUGIBS axis 7 (Horizontal) and axis 8 (Vertical).  

  



Supplementary Figure S3: 

 

Figure S3: Top eight SUGIBS axes of 1KGP and projections of the PSU cohort. Populations of the East Asian 

super population in the 1KGP are coloured. The projected PSU cohort are represented by grey dots. CDX, 

Chinese Dai in Xishuangbanna China, CHB, Han Chinese in Beijing China, CHS, Southern Han Chinese, JPT, 

Japanese in Tokyo Japan, KHV, Kinh in Ho Chi Minh City Vietnam. (a) SUGIBS axis 1 (Horizontal) and axis 2 

(Vertical). (b) SUGIBS axis 3 (Horizontal) and axis 4 (Vertical). (c) SUGIBS axis 5 (Horizontal) and axis 6 

(Vertical). (d) SUGIBS axis 7 (Horizontal) and axis 8 (Vertical). 

  



Supplementary Figure S4: 

 

Figure S4: Top eight SUGIBS axes of 1KGP and projections of the PSU cohort. Populations of the European 

super population in the 1KGP are coloured. The projected PSU cohort are represented by grey dots. CEU, 

Utah Residents (CEPH) with Northern and Western European ancestry, FIN, Finnish in Finland, GBR, British 

in England and Scotland, IBS, Iberian population in Spain, TSI, Toscani in Italia. (a) SUGIBS axis 1 

(Horizontal) and axis 2 (Vertical). (b) SUGIBS axis 3 (Horizontal) and axis 4 (Vertical). (c) SUGIBS axis 5 

(Horizontal) and axis 6 (Vertical). (d) SUGIBS axis 7 (Horizontal) and axis 8 (Vertical).  

  



Supplementary Figure S5: 

 

Figure S5: Top eight SUGIBS axes of 1KGP and projections of the PSU cohort. Populations of the South Asian 

super population in the 1KGP are coloured. The projected PSU cohort are represented by grey dots. BEB, 

Bengali from Bangladesh, GIH, Gujarati Indian from Houston Texas, ITU, Indian Telugu from the UK, PJL, 

Punjabi from Lahore Pakistan, STU, Sri Lankan Tamil from the UK. (a) SUGIBS axis 1 (Horizontal) and axis 

2 (Vertical). (b) SUGIBS axis 3 (Horizontal) and axis 4 (Vertical). (c) SUGIBS axis 5 (Horizontal) and axis 6 

(Vertical). (d) SUGIBS axis 7 (Horizontal) and axis 8 (Vertical). 

 

  



Supplementary Note S1: Determination of the number of relevant SUGIBS components 

A key question for any lower dimensional embedding of data into a latent-space is the determination of 

the number of relevant latent components. In previous work 11, we used PCA to obtain lower dimensional 

facial shape presentations in combination with a technique referred to as Parallel Analysis 12,13. A Parallel 

Analysis determines the amount of eigenvalues (and thus the number of principal components (PCs)) from 

the observed data that are significantly different from eigenvalues computed from permuted versions of 

the original data. By running multiple permutations, a null distribution of noisy eigenvalues is obtained, 

against which significance of the original eigenvalues can be tested (whilst taking the properties of the 

data itself into account). Similar to a Parallel Analysis in PCA12, our preliminary method or suggestion to 

select the number of components for SUGIBS is by comparing the spectrum of eigenvalues from an 

observed potentially heterogeneous dataset (HED) with that of simulated homogeneous datasets (HOD). 

This is done using the same number of SNPs and samples as in the observed dataset.  

For the HODs, we generate the genotypes of each SNP independently according to the allele frequency 

calculated from the observed data. This implies that each SNP is in HWE but is not in LD with any other 

SNP. For each simulated HOD and the HED, we calculate the eigenvalues of 𝑫−
1

2𝑮𝑫−
1

2, where the 

unnormalized genomic relationship matrix is defined as 𝑮 and 𝑫 is a similarity degree matrix defined by 

the IBS similarity. By comparing the eigenvalues of the HEDs with the eigenvalues from the simulated 

HODs, an indication whether the observed dataset deviates from a single homogeneous population is 

provided. However, we observed that the LD between the SNPs in a sample does affect the sloop of the 

eigenvalue spectrum. To illustrate this, we simulated three datasets each with 10,000 SNPs and 1,000 

samples assuming homogeneity, but with different levels of LD between SNPs (no LD, 𝑟2 ≤ 0.2 and 𝑟2 ≤

0.8). The results in Figure S3 show that the higher the LD level, the steeper the eigenvalue spectrum 

becomes. In other words, the first eigenvalues explain more of the total variance due to correlation in the 

data, which is expected given the increased levels of LD. 

 

Figure S3: Spectrum in descending order in function of LD level. Y-axis represents the values of eigenvalues. 



In order to adjust for the different slopes of the eigenvalue spectrum caused by different levels of LD, we fit a 

robust regression (robustfit in MATLAB) between the observed eigenvalue spectrum and the simulated 

eigenvalue spectrum. A robust regression, was chosen since it is not influenced by the first few large 

eigenvalues, which are expected for highly heterogeneous population samples. In practice, we run the 

simulation 100 times and robustly fit the observed eigenvalue spectrum with the median of the 100 simulated 

eigenvalue spectrums. Subsequently, we plot the observed eigenvalue spectrum against the adjusted 

simulated eigenvalue spectrums.  

Results for simulated heterogeneous population samples with an admixture from three, six and nine different 

ancestries with different levels of Fst (0.1, 0.01 and 0.001) are shown in Figure S4. It is observed that the 

simulated HOD eigenvalue spectrum is consistently lower than the observed HED eigenvalue spectrum, and 

this for all 30 eigenvalues plotted. Therefore, in contrast to Parallel Analysis, the simulated HOD eigenvalue 

spectrum could not be used as a direct indicator for the number of significant components, since all the 

observed eigenvalues remain larger (and thus significant) compared to the simulated ones. However, an 

indication of the amount of relevant (instead of significant) components that represent admixture is still 

observed. For larger values of Fst (0.1, 0.01), the correct number of relevant components (2 for three ancestries, 

5 for six ancestries and 8 for nine ancestries), are visually distinct in magnitude in comparison to the simulated 

HOD eigenvalue spectrum, and this distinction is larger than the subsequent (non-relevant) components. For 

lower values of Fst (0.001), and an admixture from more than 3 ancestries, this visual distinction is lost. 



 

Figure S4: Indicative evaluation of the number of relevant components for simulated heterogeneous 

population samples. Each simulated heterogeneous population sample is an admixture from A) three 

ancestries with 𝐹𝑠𝑡 = 0.1, B) three ancestries with 𝐹𝑠𝑡 = 0.01, C) three ancestries with 𝐹𝑠𝑡 = 0.001, D) six 

ancestries with 𝐹𝑠𝑡 = 0.1, E) six ancestries with 𝐹𝑠𝑡 = 0.01, F) six ancestries with 𝐹𝑠𝑡 = 0.001, G) nine 

ancestries with 𝐹𝑠𝑡 = 0.1, H) nine ancestries with 𝐹𝑠𝑡 = 0.01, and I) nine ancestries with 𝐹𝑠𝑡 = 0.001. For 

each simulated admixed as well as homogenous population sample was generated using 1,000 samples 

with 10,000 SNPs. 

  



Supplementary Note S2: The use and pitfalls of ancestry facial predictions 

Ancestry facial predictions have good value in a range of applications. In archeology, ancestry faces 
reconstructed from ancient DNA profiles, as done in this work, is of strong interest. Generally, for ancient 
DNA profiles, missing data is abundantly present, making SUGIBS a valuable technique to use. Note that, 
the ancestry faces are limited to modern facial constructs, due to the contemporary facial data used. 
However, they can help to bring ancient DNA profiles into the context of present-day populations for 
which facial images (e.g. open-source facial databases, Google images, etc.) are available but DNA is not. 
Furthermore, there is a good relationship between the face and the skull14,15, such that ancestry faces can 
be used to compare against skeletal remains. In the future, it is of interest to deploy our work on datasets 
of 3D skeletal craniofacial surfaces extracted from Computer Tomography (CT) or Magnetic Resonance 
Imaging (MRI). In medicine, and more particularly in oral and maxillofacial surgery, the surgical 
reconstruction of a patient’s face benefits from a proper notion of normal facial shape16. In the next five 
to 20 years, whole genome sequencing will become the standard of care in clinics and a patient-specific 
ancestry face provides a personalized norm of facial shape towards precision medicine in surgical 
planning.  

In forensics, an ancestry facial prediction circumvents the often legally debated reporting of ancestry 
proportions of a probe DNA profile in a criminal investigation. In France, for example, DNA phenotyping 
of externally visible traits is legally allowed, since such traits are considered to be public. However, and in 
contrast, genomic ancestry proportions, as typically reported in forensic DNA testing, is considered to be 
private information and cannot be used during criminal investigations. We agree that ancestry 
proportions are not an externally visible characteristic of an individual. The construction of ancestry 
proportions is also inherently flawed by labelling the individual into so-called parental populations. 
Furthermore, such numeric information is hard to interpret and use by a forensic investigator. The 
reconstruction of an ancestry face on the other hand, avoids needing to explicitly label a DNA profile in 
function of parental populations and provides a visual feedback to an investigator that is perceptually 
useful, even in admixed cases. However, a strong limitation is that the ancestry projection and face 
creation is only as good as the data used to create it. If your background face data doesn't match the 
ancestry of your test data, then your estimation of the face will remain poor. The challenge in forensics 
also involves the ability to reconstruct ancestry faces using often limited and contaminated DNA material. 
Another strong limitation is of ethical concerns that warrants us of the misuse of DNA and facial 
recognition technology in general beyond the positive implications of solving crime17. 
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