
SUPPLEMENTARY METHODS 

Subjects and samples 

Following pathology review, 27 ductal carcinoma in situ (DCIS) lesions synchronously diagnosed 

with invasive ductal carcinoma of no special type (IDC-NST; n=26), including two cases of 

multifocal/ multicentric DCIS, and 7 DCIS not associated with invasion (i.e., pure DCIS) were 

included in this study (Table 1). IDC-NSTs were graded according to the Nottingham grading 

system (1) and the nuclear grading of DCIS was performed following the recommendations by 

the College of American Pathologists (2). Estrogen receptor (ER) and HER2 status were 

evaluated by immunohistochemistry and/or fluorescence in situ hybridization (FISH) by five 

pathologists (FGP, RB, FCG and MV and HYW ) according to the American Society of Clinical 

Oncology (ASCO)/ College of American Pathologists (CAP) guidelines (3,4), as previously 

described (5). 

 

Whole exome sequencing and MSK-IMPACT sequencing  

In brief, after aligning reads to the reference human genome GRCh37, somatic mutations were 

detected using state-of-the-art bioinformatics algorithms and filters were subsequently applied. In 

addition to the identification of single nucleotide variants (SNVs) and insertions and deletions 

(indels), mutations identified in at least one sample were subsequently interrogated in all related 

samples of a given patient using SAMtools mpileup (version 1.2 htslib 1.2.1) (6). The potential 

functional effect of somatic mutations was defined using a combination of predictors with a high 

negative predictive value (7), as previously described (8), and genes were annotated according 

to their presence in three cancer gene datasets, Bailey et al. (9), the Cancer Gene Census (10) 

and Lawrence et al. (11). Mutations affecting hotspot codons were annotated according to Chang 

et al (12), as previously described (13,14). Allele-specific copy number alterations (CNAs) and 

loss of heterozygosity (LOH) for specific genes were defined using FACETS (15), as previously 

described (8,14,16), and purity and ploidy estimations were calculated using ABSOLUTE (17).  



 

Targeted amplicon re-sequencing validation of somatic mutations  

Validation of the mutations detected by whole exome sequencing (WES) was performed for cases 

with sufficient DNA (n=10), using a custom designed AmpliSeq panel. Out of 3,694 somatic 

mutations identified by WES or MSK-IMPACT, 652 were investigated in 12 DCIS and 10 IDCs 

from cases 2, 4-10, 12, and 13. Of the mutations tested, 617 (95%) mutations were successfully 

validated. Mutations that had sufficient coverage in the validation experiment (minimum of 50 

reads) but were not validated (allele frequency <1%) were excluded from downstream analyses, 

as previously described (8). Given the high accuracy of the mutation detection based on the 

pipeline employed for WES and MSK-IMPACT analysis, the mutations not subjected to validation 

were included in the downstream analyses. 

 

Clonal frequencies 

The mutant allelic fraction measurements were transformed into estimates of clonal frequencies 

jointly for all lesions from a given patient using a Dirichlet clustering model, which simultaneously 

estimates the genotype and clonal frequency given a list of somatic mutations and their local copy 

number. Purity and ploidy estimates, as well as modal copy number from ABSOLUTE (17) were 

employed as the input data for PyClone. 

 

Truncal and branch mutations 

For all cases of clonally-related DCIS and IDC-NSTs, mutations were categorized as truncal or 

branch using PyClone (18). Truncal mutations were defined as those concurrently present in the 

modal populations of all DCIS lesions and IDC-NSTs from a given patient. All non-truncal 

mutations were defined as branch mutations. 

 

Measures of diversity 



The Shannon index is borrowed from information theory and summarizes the diversity of a 

population in a number. It is defined as H =− 𝑝#x	ln(𝑝#)*
#+, , where H is the Shannon index metric, 

pi is the percentage of a subpopulation in the overall population and n is the number of 

subpopulations. The Gini-Simpson index is defined as the probability that two entities taken 

randomly from the dataset of interest represent different types and is defined as D = 1 − 𝑝#.*
#+,  

where D is the Gini-Simpson index metric, pi is the percentage of a subpopulation in the overall 

population and n is the number of subpopulations. In this study, for both the Shannon and Gini-

Simpson indices, pi and n were defined as the percentage of a genetically distinct subclone within 

a lesion and the number of subclones, respectively, derived from the tumor clone structure 

inferred using Pyclone (18), as previously described (19). 

 

Phylogenetic tree construction  

Maximum parsimony trees were inferred using binary presence/absence matrices built from 

somatic genetic alterations, including synonymous and non-synonymous SNVs, indels, within the 

clonally-related lesions from each patient as described in Murugaesu et al. (8,20). For the 

construction of phylogenetic trees based on CNAs, major and minor copy numbers computed by 

FACETS (15) were modeled using transducer-based pairwise comparison functions using the 

program MEDICC (21) assuming a diploid outgroup with no CNAs to root the phylogenies. Only 

regions with a total copy number ≤8 were included in this analysis to increase the accuracy of 

phasing into parental copy number states. Support values for the phylogenetic trees were 

obtained by resampling the pairwise distance matrix 100 times with added Gaussian noise and 

by counting similar bipartitions between the resulting trees and the original phylogeny. 

 

Comparisons with invasive breast cancers from The Cancer Genome Atlas (TCGA)  

For comparisons with the TCGA dataset, clinicopathologic data were retrieved from Riaz et al 

(22). The publicly available MC3 dataset was retrieved from the TCGA Pan-Cancer Analysis (23) 



at https://gdc.cancer.gov/about-data/publications/mc3-2017. Previous studies have 

demonstrated the equivalence between the TCGA MC3 dataset and the pipeline employed in this 

study for mutation detection (14,19). 
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