SUPPLEMENTAL MATERIAL

Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression

Monika Sharma¹, Martin Schlegel¹, Milessa S. Afonso¹, Emily J. Brown¹, Karishma Rahman¹, Ada Weinstock¹, Brian E. Sansbury², Emma M. Corr¹, Coen van Solingen¹, Graeme J. Koelwyn¹, Lianne C. Shanley¹, Lauren Beckett¹, Daniel Peled¹, Juan J. Lafaille³, Matthew Spite², P'ng Loke⁴, Edward A. Fisher^{1,5}, Kathryn J. Moore^{1,5}

¹Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA.

²Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115, USA.

³Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA.

⁴Department of Microbiology (Parasitology), New York University School of Medicine, New York, NY, 10016, USA.

⁵Department of Cell Biology, New York University Grossman School of Medicine, New York, 10016, USA.

Online Figure I

Online Figure I. Quantification of total cholesterol, lesion area and immunohistochemical staining for the macrophage marker, CD68 in cross-sections of the, **A**) aortic root of atherosclerotic C57BL/J6 mice at baseline (AAV-PCSK9 and western diet for 20 weeks) and 3 weeks after lipid lowering using apoB-ASO (regression), n=8-9 mice/group. **B**) aortic root of atherosclerotic REVERSA mice at baseline (16 weeks WD) and 4 weeks after lipid lowering by MTP deletion (regression), n=12-14 mice/group. **C**) aortic arch of atherosclerotic *Apoe^{-/-}* mice (16 weeks WD) after transplant to WT (regression), n=8-10/group for cholesterol assays; n=18-20/group for lesion area and immunostaining. **D**) aortic root of atherosclerotic C57BL/J6 mice at baseline (AAV-PCSK9 and western diet for 20 weeks) and 3 weeks after switching to chow diet to halt the plaque progression. n=20-24/group for cholesterol assays; n=10-14/group for lesion area and immunostaining. D values were determined by a Student's t-test.

Online Figure II

Online Figure II. A) Body weight, **B)** Quantification of lesion area of the aortic arch by *en face* analysis, and **C-G)** Quantification of CD4⁺ T cell subsets as a % of CD45+ cells in aortic arch plaques by flow cytometric analysis in mice at baseline and after regression + IgG or anti-CD25 treatment (n=9-12 mice/group). **C)** CD4+ cells, **D)** FoxP3⁺, **E)** Tbet+, **F)** Gata3+ and **G)** ROR $\gamma\delta$ +. **H)** Flow cytometric quantification of FoxP3⁺ T cells in the spleen of mice at baseline and after regression + IgG or anti-CD25 treatment (n=4-6 mice/group). Data are mean ±SEM. P values were determined by a one-way ANOVA with post-hoc Sidak's test.

Online Figure III

Online Figure III. A) Heatmap showing the 5 most highly expressed genes (ordered by decreasing p value) in each cluster (n=17) and top 2 selected enriched genes used for the biological identification of each cluster (scale: log2 fold change) identified from single-cell RNA-sequencing of CD45+ cells from aortic arches from baseline, IgG regression and anti-CD25 regression mice groups. Data was analyzed by Seurat. B) Gene expression patterns projected onto t-SNE plots of *Trem2, Lef1, Fscn1, Naa, Klra7, Cd8b1, Gata3, II1b, Stmn1, Cxcr6, Cebpb, Cd209a, Klrb1c, Isg15, Siglech, Cd163I1* and *Izumo1r* (scale: log-transformed gene expression).

Online Figure IV

Online Figure IV. A) Flow cytometric quantification of CD11b⁺ cells as a % of CD45+ cells in aortic arch plaques in mice at baseline and after regression + IgG or anti-CD25 treatment (n=11-16 mice/group). **B**) Quantification of immunohistochemical staining for the macrophage marker Mac2 in aortic root plaques of mice at baseline and after regression + IgG or anti-CD25 treatment (n=5-7 mice/group). **C**) Representative images of Edu-labeled Ly6C^{hi} monocyte-derived macrophages and bead-labeled Ly6C^{lo} monocyte-derived macrophages in aortic root plaques 21 days after pulse-labeling. **D**) Signaling pathway and molecular function analysis of activated macrophages, Trem2-hi macrophages, and inflammatory macrophages clusters from single-cell RNA-sequencing of CD45+ cells from digested aortic arches from baseline, IgG regression and anti-CD25 regression mice groups, analyzed using IPA. **E**) Plasma IL-1 β and TNF- α levels as measured by CBA assay, in mice at baseline and after regression + IgG or anti-CD25 treatment, n= 6-7 mice per group. Data are mean ±SEM. P values were determined by a one-way ANOVA with post-hoc Sidak's test).

Online Figure V

Online Figure V. A) Representative images of atherosclerotic plaques used for quantification of necrotic area. **B-C)** Quantification of **B)** Gpr18, **C)** Fpr2 and **D)** ChemR23 receptor expression in Ly6C+ monocytes in the digested aortic arches of baseline, IgG regression and anti-CD25 regression mice by flow cytometric analysis. Data are mean ±SEM. P values were determined by a one-way ANOVA with post-hoc Sidak's test.

Online Figure VI. Gating strategy for flow cytometer as shown for CD45, CD4, Foxp3, T-bet, Gata3, RORgd, CD11b+ F4/80+ and CD11b+ Ly6C+ populations performed by Flowjo analysis.

Gating Strategy for flow cytometer

L aolo 2	1.01	1.055.02	lunk	2.40	2.925.15
Gzma	0.97	7.49E-01	Dusp1	-2.40	6.64E-10
Ccl4 C1qc	0.86	2.13E-01 7.07E-02	Fos Rgs1	-1.88 -1.31	1.61E-05 1.69E-03
C1qb Ms4a7	0.74	8.67E-01 2.63E-02	Ppp1r15a Jund	-1.28	2.04E-04 1.60E-07
Rpl12	0.68	1.39E-05	Jun	-1.17	8.38E-04 7.00E-04
Cd40lg	0.60	4.21E-03	Kif6	-1.13	1.82E-03
Tyrobp Lef1	0.58	1.15E-01 4.74E-03	Nfkbia Rgs2	-1.12 -1.06	3.56E-03 1.92E-02
H2-Eb1 Ctsl	0.57	5.79E-01 4.82E-01	Btg2 Pim1	-1.02	3.91E-04 4.49E-03
Rpl39	0.56	8.98E-05	Penk	-0.87	1.46E-01
Sibp Kira3	0.54	6.94E-02 1.58E-02	Socs3 Socs1	-0.86	4.44E-03
Hmgn1 C1qa	0.53	2.81E-02 3.04E-01	Ccr7 Ctla4	-0.80 -0.78	5.45E-03 4.10E-02
Cbx3	0.52	2.17E-02	Dapl1	-0.77	2.54E-02
Gm10116	0.50	2.62E-02	Tmcc1	-0.72	2.66E-02
Gm9844 Gm10076	0.49	4.33E-05	Prdx5	-0.70	2.14E-02 7.96E-03
Drosha Dynll1	0.48	6.36E-01 8.04E-04	Rasgrp1 Igtp	-0.69 -0.69	8.84E-03 2.43E-02
Rplp2	0.48	3.95E-05	Atp11b Cd83	-0.64	4.09E-02
Rpl38	0.46	8.38E-05	Serpina3g	-0.62	9.27E-02
Ptma Vif	0.46	6.79E-02	Cd28	-0.62	4.19E-03 6.03E-03
Rps26 5100a4	0.46	3.37E-03 1.44E-02	Ctsd Gsr	-0.60 -0.58	3.17E-02 7.58E-02
Npm1 Ros12	0.44	2.38E-03 2.77E-02	Cd27 Gadd450	-0.58	1.01E-02 1.46E-01
Rps28	0.44	2.38E-06	Lag3	-0.54	3.95E-02
Rpl36	0.44	8.14E-02 2.45E-04	B4gaInt1	-0.54 -0.54	1.85E-02 2.82E-02
Ran Ichain	0.42	4.80E-03 1.24E-02	Zfp36l2 Bhlhe40	-0.53 -0.53	1.54E-02 2.84E-01
Fchsd2	0.42	7.95E-02	Itgb1	-0.52	7.61E-02
FagIn2	0.41	5.78E-02	Ptpn6	-0.52	4.40E-02
Bst2	0.41	2.28E-01 3.99E-02	Pmaip1 Sod2	-0.51 -0.51	8.39E-02 2.14E-01
Ly6a Rps23	0.41	4.38E-02 3.35E-05	Neat1 Sdc4	-0.51 -0.50	7.43E-02 2.39E-01
l7r Mmp12	0.40	1.73E-01	ll2rb Som1	-0.50	1.38E-01
Cd14	0.39	2.60E-02 5.04E-02	Ptpn22	-0.49 -0.49	1.99E-01
Rpl15 Hbb-bt	0.38	9.56E-04 1.58E-02	Kirg1 2310001H17Rik	-0.49 -0.49	6.80E-01 8.76E-02
Gm9493 Rps10	0.38	7.26E-03 3.16E-02	Phida1 Ccl6	-0.48	1.70E-01 1.29E-01
Rpl35	0.38	2.56E-03	Pou2f2	-0.47	1.61E-01
rcer1g tm2a	0.37	8.80E-01 7.52E-01	Btg1	-0.47	1.48E-01 8.39E-04
lfi30 Nebl	0.37	6.15E-03 5.09E-03	Batf Klf2	-0.47 -0.47	3.25E-01 5.98E-03
ld2 Ros15a	0.37	3.03E-01 3.56E-03	Erdr1 Ptger2	-0.46	1.35E-01
Aif1	0.36	5.04E-02	Capg	-0.46	2.55E-01
Edem2 Rpl41	0.36	8.07E-02 8.18E-05	Malat1	-0.45	3.60E-02 5.81E-06
Rps4x Rps20	0.36	4.38E-03 1.27E-02	Bambi Rgs16	-0.45 -0.44	3.12E-01 1.69E-01
Cd247 Paro1	0.35	7.94E-02 7.95E-02	Cxcr6	-0.44	7.06E-01
Rpl27a	0.35	1.17E-03	Cd37	-0.43	2.73E-02
Qpct	0.35	4.29E-01 2.99E-02	Ralgps2	-0.43	3.60E-02
Rps7 Sostdc1	0.35	2.11E-02 4.64E-01	Ubc H2-K1	-0.43 -0.42	3.93E-03 2.11E-03
Rpl37a Rpl23	0.35	1.20E-04 4.01E-03	Gzmk	-0.41	7.21E-02 4.96E-02
C5ar1	0.34	2.99E-02	Pdcd4	-0.40	5.28E-02
Csf1r	0.34	5.06E-01	Tsc22d3	-0.40	4.62E-02
Cst3 Rpl26	0.34	7.56E-01 4.94E-03	Ms4a4c Epcam	-0.39 -0.38	2.17E-01 1.03E-01
Slc25a5 Ttc39c	0.34	7.96E-02 1.54E-02	Plk3 Tnfsf11	-0.38	8.15E-01 7.26E-02
Rps2	0.33	2.17E-02	Gbp6.1	-0.38	1.03E-01
Dek	0.33	1.54E-01	Cd79a	-0.38	3.39E-01
Rpl37 Rpl36a	0.33	3.99E-03 3.70E-02	Sfi1 Gstm1	-0.37 -0.37	1.03E-01 3.39E-01
Gm43352 Ust	0.33	5.04E-02 1.71E-01	Dusp2 Polr2g	-0.36	7.14E-01 1.39E-01
Rpl10	0.32	3.28E-02	Msrb1	-0.36	4.07E-01
Tmem176b	0.32	2.30E-02 1.68E-01	Scit1	-0.35	4.90E-01
Gusb Rbm3	0.32	6.93E-02 3.68E-01	Sat1 II1r2	-0.35 -0.34	4.29E-01 5.66E-01
Lgmn Rps27	0.32	4.74E-01 1.16E-03	Apoc4 Izumo1r	-0.34 -0.34	1.46E-01 3.16E-02
Gm11808	0.31	1.24E-01	Nt5e	-0.34	3.91E-01
Rpl23a	0.31	4.86E-03 4.81E-03	Gimap3	-0.34 -0.34	2.45E-01 6.74E-02
Kpl27 Cd74	0.31	6.44E-03 7.12E-02	Fam101b Angptl2	-0.34 -0.34	2.25E-01 2.51E-01
Gm2000 vsmd1	0.31	5.16E-02 2.07E-01	H1f0 Hba-a1	-0.34	1.88E-01 7.21E-02
Lyz2	0.31	7.75E-01	Gem	-0.33	1.91E-01
Cyb5a	0.30	5.51E-01 7.43E-01	Gm12216	-0.33	5.54E-03 1.03E-01
Kplp0 Ctsc	0.30	5.19E-02 4.29E-01	Rgs10 Ngp	-0.32 -0.32	6.04E-01 2.39E-01
Pla2g7 Lrrc20	0.30	1.58E-02 1.71E-01	Limd2 Mnda	-0.32	1.91E-02 1.03E-01
Cyb5r3	0.30	2.43E-01	Nfkbid	-0.32	5.47E-01
Pycard	0.30	5.15E-01 1.02E-01	BC021614	-0.31 -0.31	3.03E-01
kps3a1 Anp32e	0.30	2.18E-03 8.90E-02	Ctp Tmpo	-0.31 -0.31	7.21E-02 2.38E-01
Tmem123 Sh3rf1	0.30	6.55E-02 1.71E-01	Sepp1 Sh2d2a	-0.31	3.47E-01 5.14E-01
Ccl7	0.29	5.04E-02	Serpinb9	-0.30	1.46E-01
опр2 Тох	0.29	0.14E-02 2.00E-01	Ccnd2	-0.30	3.74E-01 2.22E-01
Cd24a Ly86	0.28	5.04E-02 5.04E-02	Tnfrsf4 Tuba1b	-0.29 -0.29	7.72E-01 6.82E-01
Capn3	0.28	4.05E-01	Trp53inp1	-0.28	5.22E-01
Tmsb10	0.28	1.41E-02	Atp1b1	-0.28	1.86E-01
Rps8 Ly6k	0.28	2.51E-02 3.12E-02	Mdfic Ctsz	-0.28 -0.28	2.15E-01 4.71E-01
H2-Ab1 Rol17	0.28	3.72E-01	Tnfsf8	-0.27	2.62E-01
Retnla	0.27	9.44E-02			
1sp90ab1 Rpsa	0.27	9.62E-02 2.87E-02			
Vfatc1	0.27	3.57E-01	_		
Gmta	14.4.4	MICH I I			

Online Table I. Differential gene expression of aortic Tregs isolated from progressing and regressing plaques. Genes with induced expression in regressing compared to progressing plaques are shown under the red header; genes with reduced expression are shown under the blue header. Data are expressed as average log fold change (FC) of regression plaques versus progressing plaques. Non-adjusted P values were calculated using the Wilcoxon rank-sum test.