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SUPPLEMENTARY NOTE 1: VISUALIZING THE
RAYS OF PROPAGATION INVARIANT

CAUSTICS

We assume that the beams with propagation-invariant
caustics propagate in linear, homogeneous, and isotropic
media, so that their rays are straight lines. Caustics are
defined as the envelopes of these rays [1, 2]. Each ray
is described by its transverse coordinate Q = (Qx, Qy)
in the initial plane z = 0 and its transverse momentum
P = (Px, Py). The momentum is determined from the
derivative of the 1D phase function Φ(φ) mapped onto
the Fourier ring in cylindrical coordinates. The evolution
in z of one ray is given by Q + zP [3].

For Bessel beams with topological charge l 6= 0 the en-
velope of the rays describes a circular caustic, as shown
in Fig. 1(a) in the main part of this paper [3]. The rays
of the astroid beam form an envelope that is character-
ized by four cusps, shown in Fig. 1 & 2 in the main
manuscript. The left site of Supplementary Figure 1
shows the same subset of rays from several viewpoints,
in order to show that the rays in the transverse plane
emerge as a mapping from the three-dimensional rays to
the plane. Recall that the full ray family is composed
of a continuum of versions of the rays shown here dis-
placed in the z-direction. This is demonstrated on the
right site of Supplementary Figure 1, where we add for
illustration purposes 5 z-shifted subsets of rays (blue),
forming an invariant caustic (red). In each iteration,
the additional subset is highlighted by bold lines. The
5 discrete sets should give an impression of the contin-
uous ray picture. An animation of the rotation through
the 3D subset ray volume can be downloaded here (Sup-
plementary Movie 1), as well as the visualization of the
assembly of the full ray picture and its caustic (Supple-
mentary Movie 2).

∗ a.zannotti@uni-muenster.de

SUPPLEMENTARY NOTE 2: ESTIMATION OF
THE INVARIANT PROPAGATION LENGTH

Theoretically, beams that obey Eq. (1) of the main
manuscript do not change their transverse intensity dis-
tribution, independently of any propagation distance z.
However, experimental limitations like finite transverse
sizes of the beams corresponding to the SLM dimen-
sions and their imaging lenses naturally lead to finite
but still comparatively long longitudinal distances (sev-
eral Rayleigh lengths) in which the beams can be consid-
ered as being propagation invariant, by keeping, in good
approximation, the original transverse intensity distribu-
tion I0(r⊥) at z = 0 mm [4].

This concept is visualized schematically in Supplemen-
tary Figure 2(a) at the example of two finite plane waves
with wave vectors k1 = k⊥ and k2 = −k⊥, located on the
Fourier space ring, that interfere in the far field (the real
space) and form intensity fringes I(y) ∝ cos2(k⊥y). The
volume in which invariant fringes occur is finite, and as
shown here it has a rhombus cross-section. Its dimensions
depend on the transverse size g of the finite wave con-
tributions (due to apertures in the experimental setup)
and the angle θ = sin−1 (k⊥/k0) = sin−1 (λ0/a) ≈ 2◦

(cf. Sec. Caustics in propagation-invariant beams), thus
in turn on the light’s wavelength λ0 = 532 nm and the
characteristic real space structure size a = 2π/k⊥ =
15µm.

In order to estimate the quality of our beams in terms
of the length in which such beams can be considered to
have an invariant transverse intensity profile, we inves-
tigate the propagation of a Bessel-lattice beam as an
example. Note that the quality depends in parts on
the individual experimental realization and the partic-
ular setup. Supplementary Figure 2(b) shows a yz cross-
section through the intensity volume, obtained by mea-
suring 397 transverse intensity distributions over a range
of 40 mm, symmetrically around the origin at z = 0 mm.
As one Rayleigh length of this beam is ze = 2k0a

2 =
5.31 mm, the length of 40 mm corresponds to 7.5 Rayleigh
lengths. The five transverse intensity distributions be-
low are obtained at the longitudinal positions indicated
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Supplementary Figure 1. Left: One subset of the ray picture of a tailored propagation-invariant astroid caustic. Color
corresponds to phase. Shown are different angles of view to illustrate how this subset of the family of rays forms the caustic.
Right: Assembly of the whole ray picture (total) by adding a continuum (five of them shown here) of z-shifted subsets of rays
together. Rays are blue, caustics are red.

in the yz cross-section by red lines. They show the tran-
sition from the best experimentally realizable state at
z = 0 mm, to which we refer as I0(r⊥), to states that
propagated so far that the pattern is beyond the invari-
ant area (|z| > 11.5 mm). In order to highlight the darker
areas in the yz cross-sections, for visual convenience we
show the square root of the (normalized) intensity. This
visualization allows to recognize the rhombus shape of
the diffracting beam.

The rhombus shape is estimated and indicated with
red dashed lines in Supplementary Figure 2(c). The
aim of this evaluation is to get a qualitative explana-
tion for the finite length of the area with invariant inten-
sity. From this sketch, we estimate that the lengths of
the two diagonals of the rhombus are A = (23 ± 5) mm
and B = (820 ± 25)µm, hence its height can be calcu-

lated to be g = AB/
√
A2 +B2 = (819.5±24.9)µm. The

size g corresponds to the dimension of the contributing
(theoretically infinitely) extended plane waves that form
the Bessel-lattice beam. From our estimation, we calcu-
late an opening angle of θ = sin−1(2AB/(A2 +B2))/2 ≈
(2.0 ± 0.4)◦, which is in agreement with the previously
stated opening angle.

As a consequence of a finite wave expansion g, the
Fourier ring is not infinitesimal thin, but has a size

of 2π/g. Supplementary Figure 2(d) compares, true
to scale, the radius of the Fourier ring 2π/a, where
a = 15µm, to the thickness of the ring. The image
shows the calculated Fourier space intensity distribution.
From this, we see that the ring still is comparatively thin
and thus ensures several Rayleigh lengths in which the
beam can be considered as propagation invariant. Fur-
ther, taking into account the physical size of the SLM
LSLM = 15.36 mm, imaged by the telescope L1-L2 with
a demagnification of M = 9.4, gives a corresponding fea-
ture size of g = LSLM/2/M ≈ 820µm.

A good measure for the similarity of the original trans-
verse intensity distribution I0(r⊥) at z = 0 mm with
transverse intensity distributions I(r⊥, z) at any longitu-
dinal position z is the normalized cross-correlation func-
tion (denoted by ?)

γ (r⊥) =
[I0 ? I(z)] (r⊥)

σI0σIz
, (1)

where σI0 and σIz are standard deviations of the respec-
tive intensities [5].

For the experimentally obtained 400 transverse inten-
sity distributions, we calculate the z-dependent normal-
ized cross-correlation γ (r⊥) and show its respective max-
imum value in Supplementary Figure 2(e). Around the
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Supplementary Figure 2. Quality of the intensity invariance during propagation at the example of the Bessel-lattice beam. (a)
Sketch of the formation of an rhomboid area in which the intensity is invariant. (b,c) Experimentally measured yz cross-section
through the intensity volume and estimation of the dimensions of the rhomboid area. (d) True to scale presentation of the
Fourier space intensity ring with particular emphasis on the ratio of its radius to its thickness. (e) Maximum of the normalized
cross-correlation γ in dependence of the propagation distance z. The reference is the plane at z = 0 mm. Source data are
provided as a Source Data file.
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Supplementary Figure 3. Cross-correlations as a demonstration of the invariance of the astroid, deltoid, and cardioid. The
transverse intensity and phase distributions represent simulations in order to be compared with the experimentally obtained
distributions ins Fig. 2. The cross-correlation graphs are obtained from experimental data. Source data are provided as a
Source Data file.

origin at z = 0 mm, the cross-correlation achieves its
maximal value of unity. Around the origin, a plateau
is apparent, with correlation values of more than 80%,
symmetrically extended over more than 20 mm. In this
area, the realized Bessel-lattice beam has, in very good
approximation, an invariant transverse intensity pattern.
Beyond these distances, diffraction influences the beam
center and the degree of the cross-correlation decreases.

Similar results are existing for all presented
propagation-invariant beams, as they obey the same con-
struction rules and are realized in the same experimental
system. The beams of Fig. 2 are shown as simulated
intensity and phase distributions in Supplementary
Figure 3(with a very good agreement). They have
comparable, experimentally obtained cross-correlation
signatures. The extended plateaus around z = 0 mm
prove that these beams propagate invariantly for several
Rayleigh lengths. Further examples of propagation-
invariant beams and the evaluation of their invariance
are shown also in Supplementary Figure 6.

The analysis presented in this section shows that the
length of the invariant volume can be further enhanced
using a larger SLM, a smaller wavelength λ0, or a larger

characteristic structure size a. The implementation of
these enhancements is important for advanced imaging
applications with a range of distances typically used in
microscopy with ultra-long focal depths.

SUPPLEMENTARY NOTE 3: GENERALIZED
MOMENTUM TRANSFER IN PROPAGATION

INVARIANT CAUSTIC BEAMS

We discuss how a propagation-invariant beam can be
made to morph into another by making it pass through
a transparent mask with the appropriate azimuthally-
dependent phase. Consider first the example of
a propagation-invariant Bessel-lattice beam ψBL

`,q (x, y)
shown in Fig. 2. As shown there, by modifying its phase
with a vortex mask of charge m = 2, the field acquires an
intensity pattern that changes under propagation until it
settles (for z > ze) into the propagation-invariant field
(at least in the center) of a corresponding Bessel-lattice
beam with changed topological charge ψBL

`+m,q(x, y). This



5

as
tr

oi
d 

to
 c

ar
di

oi
d

experiment

50µmx

y

ca
ra

di
oi

d 
to

 d
el

to
id

de
lto

id
 to

 a
st

ro
id

simulation

z = 0 z = 2zez = ze z = 0 z = 2zez = ze

0 max

Supplementary Figure 4. Momentum transfers of an initial caustic to a final caustic by tailoring the initial phase. Compared
are simulations with experiments. During propagation, an astroid transforms to a cardioid caustic (top), a cardioid transforms
to a deltoid caustic (middle), and a deltoid transforms back to an astroid caustic (bottom). The propagation distances are 1
and 2 Rayleigh lengths ze.

process is represented symbolically as

lim
z→∞

ψBL
`,q (x, y, z) · exp [imθ]→ ψBL

`+m,q(x, y), (2)

where θ is the azimuthal angle.
We generalize this behaviour to any initial and final

propagation-invariant beams, ψi and ψf , whose phase
functions are given by Φi(θ) and Φf (θ), respectively. The
transition can be then implemented by using a transpar-
ent mask whose phase is Φf (θ)− Φi(θ), namely

lim
z→∞

ψi · exp
[
i
(
Φf − Φi

)]
→ ψf . (3)

We demonstrate this effect by transferring the three
fundamental caustic shapes from Fig. 2, the astroid, the
cardioid and the deltoid, into each other during prop-
agation, shown in Supplementary Figure 4. The very
left columns show simulated initial transverse intensity
distributions of the corresponding electric fields, whose
individual phases are manipulated. During propagation,
the transverse intensity distributions change. After one
Rayleigh length ze the final shapes are apparent as shown
in the second column of Supplementary Figure 4, and
fully developed after two Rayleigh lengths, as shown
in the third column. The experimental results on the
right half of Supplementary Figure 4 agree with the sim-
ulations. Only the initial intensity distributions show
deviations from the simulations since the spatial light
modulator is not capable to realize all of the (spatial)

high-frequencies of the phase distribution that fluctuates
strongly and interferes destructively. A video that shows
the propagation of these three beams in simulation and
experiment can be found here (Supplementary Movie 3).

SUPPLEMENTARY NOTE 4: BESSEL PENCIL
FOR COMPLEX HIGH-INTENSITY FEATURES

IN PROPAGATION-INVARIANT LIGHT

This section provides more experimental results and
shows sophisticated high-intensity distributions realized
with the Bessel pencil method. We show the spectra of
the beams in Fig. 3, present several further examples
whose high intensity curves describe both fundamental
and rather complex shapes, and demonstrate their in-
variant propagation.

In order to create desired propagation-invariant high-
intensity curves in the transverse plane, we integrate 0th-
order Bessel beams, whose caustics are points [3], coher-
ently along these paths. We modulate both the ampli-
tude and phase of the spectrum, which is confined on a
ring. Supplementary Figure 5 shows the calculated in-
tensity and phase distributions of the spectra and the
corresponding propagation-invariant experimentally ob-
tained transverse intensity and phase distributions.

All images in Supplementary Figure 6 are obtained ex-
perimentally. The initial transverse intensity distribu-
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Supplementary Figure 6. A collection of experimentally-realized propagation-invariant beams realized with the Bessel pencil
method, whose profiles trace the following shapes: deltoid, astroid, hypocycloid with 5 cusps, cardioid, nephroid, parabola,
cusp, and letters forming the word LIGHT. The initial transverse intensity and phase distributions are shown in columns 1 &
2, respectively. Column 3 shows the (largely unchanged) transverse intensity after propagating one Rayleigh length. Column 4
shows the experimentally obtained 3D intensity volume. Column 5 shows the maximum values of the cross-correlation of the
intensity at the imaging plane with the plane at varying z positions. Source data are provided as a Source Data file.



8

0 2 4 6
0

1

2

3

4

5

6

dphi = 0.1848 | R
2
 = 0.591

0 2 4 6
0

1

2

3

4

5

6

dphi = 0.08886 | R
2
 = 0.8668

0 2 4 6
0

1

2

3

4

5

6

dphi = 0.0309 | R
2
 = 0.9835

0 2 4 6
0

1

2

3

4

5

6

dphi = 0.024 | R
2
 = 0.99

0 2 4 6
0

1

2

3

4

5

6

dphi = 0.03767 | R
2
 = 0.9757

m
ea

su
re

d 
ph

as
e 

[ra
d]

m
ea

su
re

d 
ph

as
e 

[ra
d]

desired phase [rad]

100 µs

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

exposure time [ms]

∆φ
 [r

ad
]

a

5 msd 9 mse

500 µsb 1 msc

f

∆φ = 0.185 ∆φ = 0.089 ∆φ = 0.031

∆φ = 0.038 ∆φ = 0.024
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given in the insets. (b) Measured uncertainties of the phases ∆φ as a function of the exposure time. Source data are provided
as a Source Data file.

tions can be seen in column 1, while column 2 shows the
corresponding phases. The transverse intensity distribu-
tions after propagating one Rayleigh length ze = 5.32 mm
are shown in column 3. Column 4 shows 3D inten-
sity volumes created from taking 50 transverse inten-
sity distributions in equidistant steps from z = 0 mm
to z = ze = 5.32 mm.

We demonstrate a deltoid (row 1), and astroid (row 2),
which are hypocycloids with 3 or 4 cusps, respectively.
They are followed by a hypocycloid with 5 cusps (row 3).
From the class of epicycloids, we realized the cardioid
(row 4) and the nephroid (row 5). Further, a parabola
(row 6) and a cusp (row 7) may act as building blocks
for rather complex shapes, such as words. For example,
we create the letters LIGHT in a propagation invariant
light field, demonstrating the potential of our approach
(row 8).

SUPPLEMENTARY NOTE 5: ACCURACY OF
THE (PHASE) MEASUREMENTS

In this section we provide some details regarding the
uncertainties in the experimental results. The dynamic
range of the camera corresponds to 12 bits. Experimen-
tally, we verified the linearity of the detected intensity
(gray values) of the camera. The goodness of the linear
fit is characterized by a value of R2 = 0.99962. The dis-
cretization of the generated intensity values is limited by
the 256 gray values that can be imprinted by the SLM.

Using a digital holographic method [6], we perform a
phase measurement by superimposing the signal beam
with a slightly tilted plane wave. The Fourier transform
of the recorded fringe pattern shows the 0th, 1st and -1st
diffraction order. Both higher orders contain the full in-
formation of the complex field, so that a bandpass filter is
applied followed by an inverse Fourier transform of one
of these higher orders. We correct all measured trans-
verse spatial phase distributions with a reference phase,
obtained by interfering a plane wave as signal beam with
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the tilted plane wave.
In order to characterize the accuracy of the phase mea-

surement in our system, we measure the phase difference
of a reference area on the SLM with respect to a sec-
ond area where we increase the phase value gradually
and compare the result to the desired phase, as shown
in Supplementary Figure 7. This is done for a constant
laser power as a function of the exposure time of the
camera, as the error increases for low intensities, which
is related to the decrease of the detectability of the inter-
ference fringes and their declining contrast. Therefore,
we obtain the mean (blue values) and the corresponding
standard deviation (error bars) of the measured (spatial)
phase value distribution over the 256 steps. The ratio
of the desired phase to the measured phase should ide-
ally be 1 and is shown in purple. Each set of measured
values is fitted with a line. The goodness of the fit is
stated in each sub-image and summarized in image (b),
which shows the phase uncertainty ∆φ as a function of
the exposure time. We indicate the trend of the distri-
bution of these uncertainties with the dashed red line,
which follows a hyperbolic trajectory. The deviation of

the measured values from a line reduces with increasing
exposure time and converges asymptotically to the min-
imum uncertainty of our measurement system given by
∆φ ≈ 0.024 rad. For the cases presented in our work,
where we use typical exposure times of 5-10 ms at the
same constant laser power as for these measurements
shown here, we can assume an error of the phase mea-
surement in the order of ∆φ ≤ 0.05 rad.
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