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Global translation during early development depends on the 
essential transcription factor PRDM10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 1
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E7.5 23 (28.8%) 37 (46.3%) 0 (0%) 20 (25.0%) 80 0.0002 ***

E12.5 10 (33.3%) 13 (43.3%) 0 (0%) 7 (23.3%) 30 0.0299 *

n.d., only empty deciduomas detected, embryo genotype not determined.
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Supplementary Figure 1. PRDM10 deletion in vivo results in pre-implantation 

embryonic lethality. 

(a) Schematic depicting the N-terminal PR domain, C2H2 zinc fingers and C-terminal 

Gln-rich domain of PRDM10 (top); prematurely truncated protein generated by out-

of-frame deletion of exon 5 (bottom). Numbers indicate amino acid position.  

(b) Mouse model for Prdm10 deletion. A Prdm10 'knockout-first’ gene-trap allele 

(Prdm10lacZ) was converted to a conditional (Prdm10F) allele by FLPe-mediated 

recombination, which was then used to generate a null (Prdm10Δ) allele by Cre-

mediated recombination.  

(c) Summary of embryo numbers for each genotype from Prdm10Δ/+ intercrosses. 

Resorptions detected at E7.5 and E12.5 are indicated as n.d. Chi-square test for 

significant deviation from expected Mendelian distribution; *P < 0.05, ***P < 0.001.  

(d) Summary of embryo numbers for each genotype from Prdm10Δ/+ intercrosses, 

isolated at E3.5 and scored by morphology into 3 phenotypic categories. 

(e) Representative images of control (Prdm10+/+, Prdm10Δ/+) and mutant (Prdm10Δ/Δ) 

embryos isolated at E1.5 (2-cell stage) and cultured ex vivo. n = 36 (control), n = 14 

(Prdm10Δ/Δ). Scale bar: 100 μm.  

 

 

 

 



Supplementary Figure 2
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Supplementary Figure 2. Expression of ICM and TE lineage markers in 

Prdm10Δ/Δ embryos. 

(a) Representative confocal images of control (Prdm10+/+, Prdm10Δ/+) and mutant 

(Prdm10Δ/Δ) E3.5 embryos stained for OCT4 and CDX2. Nuclei are visualized by 

DAPI staining. Blastocoel (yellow dashed line) and inner cell mass (red dashed line) 

are outlined. White arrowheads identify cells co-expressing OCT4 and CDX2. 

Asterisks label pyknotic, fragmented nuclei indicative of apoptotic cells. n = 24 

(control), n = 10 (Prdm10Δ/Δ). Scale bar: 50 μm. 

(b) Representative confocal images of control and mutant E3.5 embryos stained for 

NANOG. Nuclei are visualized by DAPI staining. Scale bar: 50 μm.  

(c) Heatmap depicting expression of selected inner cell mass (ICM) and 

trophectoderm (TE) markers in control (CTL) vs. Prdm10Δ/Δ (KO) 8-cell stage 

embryos. Expression values shown as log2(TPM + 1). 

 

 

 

 

 

 

 



Supplementary Figure 3
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Supplementary Figure 3. Molecular validation and phenotypic characterization 

of PRDM10 deletion in mESCs. 

(a) PCR analysis of genomic DNA from Prdm10F/F; CreERT2 and Prdm10F/+; CreERT2 

mESCs show efficient Cre-mediated recombination after 24 h induction with 50 nM 

4-OHT. No recombination is observed in vehicle (EtOH)-treated cells or CreERT2-

negative cells.  

(b) Sashimi plot of aligned RNA-seq reads from Prdm10F/F and Prdm10Δ/Δ mESCs at 

Day 2 post-deletion. The complete excision of exon 5 is accompanied by aberrant 

splicing of exon 4 to 6, resulting in a frameshifted Prdm10Δexon5 transcript.  

(c) Western blot analysis of PRDM10 protein levels in wild-type (F/+ CreER-), 

heterozygous (F/+ CreER+) and homozygous mutant (F/F CreER+) mESCs. Cells 

were collected at 3 days post-treatment with EtOH (E) or 4-OHT (O). Loading 

control: α-tubulin.  

(d) qRT-PCR analysis of Prdm10 exon 5 expression in Prdm10F/F; CreERT2 mESCs 

overexpressing full-length Prdm10 (P10 OE) or empty vector, at 4 days after EtOH 

treatment (F/F) or OHT-induced recombination (Δ/Δ). Expression shown normalized 

to Ubb. 

(e) Western blot showing PRDM10 protein expression in Prdm10F/F and Prdm10Δ/Δ 

cells stably transfected with empty vector (EV) or Prdm10 (P10 OE). Loading control, 

α-tubulin.  

(f) Rescue of growth defect in Prdm10Δ/Δ mESCs by exogenous PRDM10 

expression (red dashed line) compared to vector control (black dashed line). Y-axis: 



cumulative population doublings; n = 3 samples, representative data shown from one 

out of three independent experiments. 

(g) Growth analysis of PRDM10-deficient mESCs cultured in serum-free 2i/LIF 

conditions. Cells were counted and passaged at constant density every two days up 

to Day 8 post-induction. Representative brightfield images of Prdm10F/F and 

Prdm10Δ/Δ mESC colonies at Day 8 (left); cumulative population doublings over time 

(right); n = 3 samples, representative data shown from one of two independent 

experiments. 

(h) Cell cycle distribution of Prdm10F/F or Prdm10Δ/Δ mESCs, assessed by flow 

cytometry at Day 5 post-induction. Data from 6–7 biological replicates pooled across 

three independent experiments. 

Data are presented as mean ± s.d. (d, f, g and h). *P < 0.05, **P < 0.01, ***P < 

0.001; two-tailed unpaired Student’s t-test (d, g and h), two-way ANOVA with 

Tukey’s multiple comparisons test (f). 

 

 

 

 

 

 

 



Supplementary Figure 4
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Supplementary Figure 4. PRDM10 is dispensable for mESC pluripotency. 

(a) Heatmap visualization of genes associated with stem cell pluripotency in 

Prdm10F/F and Prdm10Δ/Δ mESCs, as measured by RNA-seq at Day 2 and Day 4 

post-induction. Scale: row-normalized Z-score. 

(b) qRT-PCR analysis of Prdm10Δ/Δ mESCs compared to Prdm10F/F controls at Day 

4 to Day 8 post-deletion reveals no significant decrease in expression of ESC 

pluripotency markers Nanog, Pou5f1 (Oct4), Klf2, Klf4 and Esrrb. Expression data 

normalized to Ubb and reported relative to control cells. Data shown as mean ± s.d. 

of 2–3 biological replicates, each the mean of two technical qPCR replicates. 

(c) Flow cytometric analysis of SSEA-1 surface expression on Prdm10Δ/Δ mESCs 

compared to Prdm10F/F controls at Day 4 (n = 5) and Day 6 (n = 6) post-deletion. 

MFI: geometric mean fluorescence intensity, normalized to controls within each 

experiment. Data combined from two independent experiments and presented as 

mean ± s.d. ***P < 0.001, ****P < 0.0001, two-tailed unpaired Student’s t-test. 

(d) Representative images of Prdm10F/F and Prdm10Δ/Δ mESC colonies stained for 

alkaline phosphatase (AP) activity at Day 7 post-induction, with examples of AP+ 

(solid arrowhead) and AP– (open arrowhead) colonies highlighted (top). Percentage 

of AP+ colonies in Prdm10F/F vs. Prdm10Δ/Δ cultures quantified across two 

independent experiments (bottom). n.s., not significant, two-tailed unpaired Student’s 

t-test. Scale bar: 100 μm. 

(e) Heatmap depicting expression of selected differentiation markers for endoderm, 

mesoderm and ectoderm lineages in Prdm10F/F and Prdm10Δ/Δ mESCs, as 



measured by RNA-seq at Day 2 and Day 4 post-induction. Scale: row-normalized Z-

score. 
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Supplementary Figure 5. PRDM10 is not required for mESC differentiation. 

(a) Experimental set-up for embryoid body (EB) differentiation and analysis. 

Undifferentiated mESCs were dissociated to single-cell suspension by trypsinization, 

diluted in ES culture medium without mLIF and seeded in 25 μl hanging drops at a 

density of 100 or 400 cells per drop for analysis at Day 4 or Day 6 post-induction 

respectively.  

(b) Representative brightfield images of embryoid bodies derived from Prdm10F/F 

and Prdm10Δ/Δ mESCs. Prdm10Δ/Δ cells form EBs that initially appear 

indistinguishable from controls (Day 2), but later on begin to disintegrate, showing 

morphological features of cell death (Day 4). Scale bar: 100 μm. 

(c) Expression of lineage markers for all three germ layers in EBs harvested at 

indicated time-points, normalized to Ubb and presented as fold-change relative to 

undifferentiated mESCs (Day 0).  

(d) Expression of ESC pluripotency markers in Prdm10Δ/Δ EBs, presented as mean ± 

s.d. fold-change relative to Prdm10F/F controls at indicated time-points. 

Each point in (c–d) represents a biological replicate comprising approximately 30 

pooled EBs, measured as the mean of two technical qPCR replicates. RNA was 

extracted using the Arcturus PicoPure RNA Isolation Kit (Applied Biosystems) and 

converted to cDNA using the High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems). 

 

 



Supplementary Figure 6
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Supplementary Figure 6. ChIP-seq analysis of PRDM10 binding sites in 

mESCs. 

(a) Heatmap representation of PRDM10 binding signal within ±2 kb of peak centers 

for control (EtOH) vs. PRDM10-depleted (OHT) mESCs. Data shown from three 

independent ChIP-seq datasets generated using different PRDM10 antibodies, 

denoted here as PRDM10 #1, #2 and #3.  

(b) Clustering analysis of chromatin features associated with PRDM10-bound 

regions in mESCs reveals a majority of peaks overlapping actively transcribed gene 

promoters marked by H3K4me3 and H3K4me1, with H3K36me3 signals over 

adjacent gene bodies (clusters C1, C2, C4, C5). PRDM10-bound regions are largely 

depleted of repressive marks such as H3K27me3 and H3K9me3. Heatmaps were 

generated using publicly available mESC histone ChIP-seq data from ENCODE. 

 

 

 

 

 

 

 

 



Supplementary Figure 7
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Supplementary Figure 7. Differential gene expression in Prdm10Δ/Δ mESCs and 

embryos compared to controls. 

(a) Schematic outlining experimental workflow for RNA-seq analysis of Prdm10-

deficient mESCs (left). Global differential gene expression in Prdm10Δ/Δ mESCs 

compared to Prdm10F/F controls (Padj < 0.05), at Day 2 and Day 4 post-induction 

(right). 

(b) GO analysis of all genes significantly up- or downregulated (Padj < 0.05) in 

Prdm10Δ/Δ mESCs shows enrichment of terms related to ribosomal function and 

protein synthesis.  

(c) Summary of differential gene expression (Padj < 0.05) in Prdm10Δ/Δ vs. control 8-

cell stage embryos. 

(d) Eif3b, Eef1d and Rpl19 transcript levels in 8-cell stage embryos from RNA-seq 

analysis, quantified as TPM (transcripts per million) values. Embryo genotypes were 

determined based on the presence (Prdm10+/+ or Prdm10Δ/+ = CTL) or absence 

(Prdm10Δ/Δ = KO) of Prdm10 exon 5 expression. 

(e) Eif3b, Eef1d and Rpl19 transcript levels in Prdm10Δ/Δ and control mESCs, 

analyzed by RNA-seq at Day 4 post-induction.  
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Supplementary Figure 8. Investigation of other PRDM10 target genes involved 

in translation. 

(a) Analysis of gene essentiality in mESCs for the set of PRDM10 target genes 

defined in Fig 3c–d. For each gene, log-transformed negative selection P-value 

scores reported in two independent studies (Tzelepis et al.1, Shohat et al.2) are 

plotted. Eif3b (yellow triangle) was scored highly as an essential gene in both 

screens, whereas Eef1d (blue circle) scored as non-essential.  

(b) Candidate target genes were depleted in E14 mESCs by siRNA transfection, and 

viable cells measured 72 h post-transfection by CellTiterGlo assay. Data presented 

as mean ± s.d, *P < 0.05, n.s., not significant; two-tailed unpaired Student’s t-test. 

Each point represents 1 replicate sample, representative data shown from 1 out of 2 

independent experiments.  

(c) E14 mESCs were transduced with an shRNA construct targeting Eef1d (Eef1d-

194), or non-targeting (SCR) control. After 2 days’ culture under puromycin selection, 

cells were seeded in technical triplicate at constant density and cell counts measured 

at indicated time-points. 

(d) qRT-PCR analysis showing efficient Eef1d knockdown in Eef1d-194 shRNA-

transduced cells analyzed at day 5.  

(e) Growth curves for E14 mESCs transduced with shRNA targeting Rpl19 (Rpl19-

391, Rpl19-393), vs. non-targeting (SCR) control.  

(f) qRT-PCR analysis of Rpl19 transcript knockdown in shRNA-transduced mESCs, 

analyzed at day 5. 



(g) Representative brightfield images of shRNA-transduced cells, seeded at constant 

density at day 2 and analyzed at day 5.  

Data in (c, e) presented as mean ± s.d, n = 3, ****P < 0.0001, n.s., not significant, 

two-way ANOVA with Tukey’s multiple comparisons test. Expression in (d, f) 

presented relative to SCR controls, n = 2 biological replicates. Representative data 

from 1 of 2 independent experiments shown (c–g).  

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 9

d

a

GCATTGTGCGGGCAGTCATTCTTGTGTGTGTTGGCGGCCCCTGGTTGTCGGCGAGCTCCTCGCG

TAATTTTGGAACCCTTCGTTCTTTTGCCCCGTCAGTGGACCGGTCTAAAATGCAAGACCTTACG

GGGGAGCGAAGCCAGTCATGTCAGTCAAGCAGTCTGTCTGATTAAAAGCAAAGCTTACAAAGAA

TCATGTGTGGAGCTTTCAGTTGTCTTGGCATTATTTTATGGTCACATATTTTGTCTTCATACAG

TTACGCGTGTTAATCATTTGAGAATCCACTTGATGCTCCCCAGATAGTACAGTCCTTCCCCGTA

GCGCCCGCTGGGAGAGGCAAAGGAACTTCTACCATCTTGGACGCAACTATTTCTTAGCTAGAAT

GGGGGAGCCACATATCCTTGTGAATTTATTTGCTACCTTAAAAAACCTTTTGGGCTATAAATAA

ACTTGCATATCTTGAAACTTATTATTTTAATTGTTTCTAGATTTTTATGCATATCTGAGTTTTC

TCGGGCTGATCGTGAGGAATGAGGGCGTGGGTGTCTCCCCCGAGCCACATCTTGGTACGATCCC

ATCGCTGCACGCACATGGCTCCGCGCTAGCGGCGCGCGGTGACTTCTGGGAGTCGGAAGCAGGG

CGGCCGAGCCGGGTGAGAAGCAGCGCGGGCCCATGCAGGACGCTGAGAACGTGGCGGTGCCCGA

GGCGGCCGAGGAGCGGGCTGAGCCCGCGAGGCAGCAGCCGGCCTCCGAGTCGCCGCCGACGGAC

GAGGCGGCAGGGTCTGGGGGGTCCGAAGTGGGGCAGACGGAAGACGCCGAAGA 
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Supplementary Figure 9. Eif3b acts downstream of PRDM10 to mediate mESC 

survival. 

(a) qRT-PCR analysis of Eif3b mRNA in E14 mESCs collected 48 h post-transfection 

with non-targeting control siRNA or Eif3b-specific siRNA. Expression normalized to 

Ubb. Each point represents a biological replicate; data pooled from two independent 

experiments.  

(b) siRNA-mediated Eif3b knockdown results in strong inhibition of cell growth. E14 

mESCs were transfected with siRNA, and cell numbers were measured at 48 h and 

72 h post-transfection. n = 3 replicates.  

(c) Representative brightfield images of E14 mESCs at 72 h after transfection with 

non-targeting control or Eif3b siRNA. Scale bar: 500 μm. 

(d) Eif3b promoter sequence with P1 (red) and P2 (blue) subpeak regions 

highlighted. Closest consensus motif match in each subpeak is underlined. P1 and 

P2 were cloned separately into pGL4.23 for dual luciferase reporter assays.  

(e) Representative images showing partial rescue of cell growth in Prdm10Δ/Δ 

mESCs expressing exogenous Eif3b compared to vector control, observed at Day 6 

after Prdm10 deletion. Scale bar: 500 μm. 

Data shown as mean ± s.d. (a and b), representative of two (a–c) or three (e) 

independent experiments.  

 

 

 



Supplementary Figure 10

Fig 1e: PRDM10 Fig 1e: α-tubulin
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Fig 4c: EIF3B Fig 4c: α-tubulin
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Fig 5d: EIF3B Fig 5d: α-tubulin
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Fig 6a: EIF3B Fig 6a: α-tubulin
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Fig 2j: FLAG Fig 2j: beta-actin
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Supplementary Figure 10. Western blot images with molecular weight markers.

Yellow dashed boxes indicate area cropped for display in main figures.
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