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In this Supplementary Notes we describe the experimental details (Supplementary Note 1), and
the microscopic theory for exciton-polaritons (Supplementary Note 2) and trion-polaritons (Supple-
mentary Note 3) which were used for the theoretical modelling. In Supplementary Note we discuss
possible quantum effect with trion-polaritons in transition metal dichalcogenides materials.
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Supplementary Note 1

Experimental details

1. Parameters characterising strong coupling between photons and exciton and trion

To describe the polariton system where the photonic mode is strongly coupled to both excitons and trions we
employ a model of three coupled oscillators, which can be described in a compact way by the matrix equationEC(L) 1

2~ΩX
1
2~ΩT

1
2~ΩX EX 0
1
2~ΩT 0 ET

ψ = Eψ, (1)

where EC(L), EX, ET are the cavity photon, exciton, and trion energies; ~ΩX and ~ΩT are the cavity mode-exciton
and the cavity mode-trion coupling strength. ψ is a three-component basis vector. In our system we can tune EC by
changing the cavity length L. Eigenvalues of the matrix in the left-hand side of Supplementary Equation (1) give the
polariton mode resonances of upper, middle, and lower polariton branches (UPB, MPB, and LPB, respectively). Their
eigenvectors provide the Hopfield coefficients. We start by fitting this model to the experimental data in Fig. 1b (main
text), and obtained the following values for the ground LG00 mode: EX = 1646.0± 0.5 meV, ET = 1621.2± 0.5 meV,
~ΩX = 17.2 ± 0.5 meV, and ~ΩT = 5.8 ± 0.5 meV. Using these parameters we can plot polariton resonances and
Hopfield coefficients for different values of cavity resonance energies EC (cavity lengths, L) expressed as a cavity-exciton
detuning, δC−X, in Supplementary Figure 1. We summarise Hopfield coefficients obtained for the four experimental
cavity-exciton detunings used here in Supplementary Table I. Note, that these are the values for the low-density
case. In the high density regime, as we discuss in the main text and the theory section, the nonlinearity quenches
photon-trion coupling, and the polariton system can be described by the two-oscillator model.

δC−X = −15.4 meV −2.4 meV +2.0 meV +8.8 meV

UPB MPB LPB UPB MPB LPB UPB MPB LPB UPB MPB LPB

|C|2 0.169 0.710 0.121 0.435 0.545 0.019 0.561 0.426 0.013 0.730 0.262 0.008

|X|2 0.830 0.157 0.014 0.561 0.436 0.002 0.435 0.563 0.002 0.266 0.733 0.001

|T |2 0.002 0.133 0.866 0.003 0.018 0.979 0.004 0.011 0.985 0.004 0.005 0.991

Supplementary Table I: Hopfield coefficients data. Fitted values of the Hopfield coefficients for UPB, MPB, and LPB
branches for the four experimental values of cavity-exciton detunings.

2. Deduction of the total reservoir density in the case of nonlinear trion-polaritons

The scattering of polaritons with the excitonic disorder potential (which we estimate in the order of 10-15 meV from
the inhomogeneous linewidths of exciton/trion emission) effectively populates the reservoir states1–4 with a scattering
rate of the order of polariton linewidth γpol ∼ 3− 5 meV. The polariton nonlinearity is driven by the total density of
excitons and trions ntot excited in the system with a single pulse, i.e excitons and trions due to polariton density and
due to reservoir. By measuring the total number of photons transmitted through the microcavity (MC) in a single
pulse nphot (normalised to the cavity mode area) we can deduce this density as

ntot = nphot

(
|X|2 + |T |2 +

γpol

γc |C|2

)
. (2)

Here |X|2, |T |2, |C|2 are exciton, trion and photon fractions of polariton. The bare cavity mode linewidth γc ≈ 0.4 meV
corresponds to the photon lifetime of τc ≈ 4 ps. The third term in the above formula is dominant. It describes the
ratio of absorbed to radiatively escaped polaritons as follows from a rate equation model, assuming that the lifetime
of the reservoir is much longer than cavity photon lifetime and that there is no backscattering from the reservoir to
polariton states. Indeed, suppose the density of polaritons excited with a short 100 fs pulse in the cavity is equal to
N . This density may decay in the system by absorption due to scattering into the reservoir or by escape through the
Bragg mirrors. The absorption rate into reservoir is given by dnr/dt = N/tr , where the scattering rate 1/tr = γpol/h
since γpol � γc and nr is the density of polaritons absorbed into the reservoir. The escape rate into free space through
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Supplementary Figure 1: Polariton energies and Hopfield coefficients. a Theoretical polariton energies vs the detuning
between bare cavity mode and exciton (solid lines) obtained from the fit of the experimental polariton energies in Fig. 1d of
the main text. Bare cavity mode, exciton, and trion levels are shown by dashed lines. b,c |C|2 , |X|2 , |T |2 Hopfield coefficients
of the middle (MPB) and lower (LPB) polariton branches, respectively.
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Supplementary Figure 2: Energy splitting. LG00 peak positions as function of ~ΩC/T at a fixed cavity detuning, δC−X =
−15.4 meV.
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Supplementary Figure 3: Photonic fraction. Hopfield coefficient, |C|2, showing the photonic fraction of the MPB and LPB
as function of ~ΩC/T at a fixed cavity detuning, δC−X = −15.4 meV.

Bragg mirrors is given by dnphot/dt = N/tc, where 1/tc = γc|C|2/h, and C is the photon fraction and nphot is the
detected number of photons normalised to the cavity mode area A. Dividing the two equations above we obtain
dnr/dnphot = tc/tr = γpol/(γc|C|2) or dnr =

γpol

γc|C|2 dnphot. Integrating this equation over the duration of a single pulse

we obtain the population of the reservoir with respect to the total number of the emitted photons within a single
pulse nr =

γpol

γc|C|2nphot, which corresponds to the third term in Supplementary Equation (2).

There is a possibility that we may slightly overestimate the total excited exciton/trion density and hence under-
estimate polariton nonlineairity if there are backscattering processes from reservoir to polariton mode. On the other
hand, since the absorption rate of the resonantly excited polaritons cannot occur at a rate larger than that given by
the measured polariton linewidth γpol we exclude an experimental underestimation of ntot and hence overestimation
of polariton nonlinearity. For the case of resonantly driven trion-polaritons the reservoir and hence ntot consists of
mostly trions, since the peak of exciton density of states is blue detuned by several ten’s of meV from the trion.

Finally, we note some uncertainty of ∼ 20 % in the deduction of the total excited exciton/trion density may arise
from the deduction of polariton linewidths of the transmission spectra. While trion-polariton spectra in Fig. 3 of
the main text can be well fitted with Gaussian profile, the fitting of neutral exciton-polariton spectra Fig. 4a [main
text] is not perfect, where the tails of the polariton spectra cannot be accounted for by a simple Gaussian form. This
uncertainty in γpol could lead to the ∼ 20 % uncertainty of the absolute values of the polariton nonlinear coefficients.

To deduce ntot, one has to measure the number of photons nphot emitted by the cavity in a single pulse after the
resonant excitation with the 100-fs pulsed laser. To do that we shifted the position of the photon mode to the very
negative detuning about 10 nm below the trion level and ramped up the power of the laser so that the power of the
light transmitted through the microcavity is about 50 nW. The corresponding photon counts of the transmitted light
on the CCD were measured as a reference value. By relating the measured photon counts of light emitted by polariton
microcavity to this reference value it is possible to deduce the average power of the polariton emission in W, Ipol.

The density of photons emitted by microcavity in a single pulse is then calculated as nphot =
Ipol

f~ωA , where ~ω is the

polariton energy, f = 103 Hz is the repetition rate of our pulsed laser and A ≈ 3 µm2 is the mode area. Importantly,
the very low repetition rate of our laser prevents the effect of dark exciton/trion reservoir excited in previous pulses.

The Hopfield coefficients used in Supplementary Equation (2) for the total reservoir density also have to be de-
termined for each pump power, since the change of either cavity-trion or cavity-exciton Rabi-splitting would change
these values. To illustrate this we fix the cavity-exciton Rabi-splitting and plot theoretical peak positions of LPB
and MPB modes as a function of cavity-trion Rabi-splitting, which is shown in Supplementary Figure 2 for the cavity
mode-exciton detuning used in Fig. 3 [main text]. The theoretical dependence of the photonic fraction of the polariton
branches on the cavity-trion Rabi-splitting is shown in Supplementary Figure 3. Combining these two sets of data
one can produce the “calibration” dependencies of the Hopfield coefficients. The photonic fractions |C|2 vs MPB
and LPB energies are shown in Supplementary Figure 4. This can be used to infer the values of the actual Hopfield
coefficients of MPB branch in Fig. 3 of the main text for each pump power.

This method is valid since in the experiment cavity-trion Rabi-splitting is completely quenched before any effect
is seen on the cavity-exciton Rabi-splitting, as discussed in the main text. Thus, to deduce total reservoir density
we, first, determined the peak position of MPB mode by fitting each measured spectra, and then using this value we
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Supplementary Figure 4: Calibration curves. Combined ELG00 vs |C|2 calibration curves for MPB and LPB for a fixed
cavity detuning, δC−X = −15.4 meV.

δC−X = −15.4 meV −2.4 meV +2.0 meV +8.8 meV

UPB MPB UPB MPB UPB MPB UPB MPB

|C|2 0.166 0.834 0.430 0.570 0.557 0.443 0.729 0.271

|X|2 0.834 0.166 0.570 0.430 0.443 0.557 0.271 0.729

Supplementary Table II: Hopfield coefficients data. Fitted values of the Hopfield coefficients for UPB and MPB branches
for the four experimental values of cavity-exciton detunings assuming ΩT = 0.

determined effective photon, exciton, and trion fractions of the MPB mode from the calibration curves. Finally, the
total reservoir density for each pump power was calculated using Supplementary Equation (2).

3. Deduction of the total reservoir density in the case of nonlinear neutral exciton-polaritons

Since the neutral exciton-polariton nonlinearities are weak in comparison to trion-polaritons they are studied at
high pump when the strong coupling between photons and trions is quenched. In this case the polariton system can
now be described by a simpler two-oscillator model,[

EC(L) 1
2~ΩX

1
2~ΩX EX

]
ψ = Eψ, (3)

which results in two polariton branches UPB and LPB. ψ is a two-component basis vector. Separate MPB and LPB
do not longer exist, since they recombine into a single MPB. This model is applicable for all polariton densities
> 200 µm−2, which is the case for all data shown in Fig. 4 [main text] and portion (above 200 µm−2) in Fig. 3
[main text]. The polariton mode positions and the corresponding Hopfield coefficients for the MPB are shown in
Supplementary Figure 5. Supplementary Table II shows the values of the Hopfield coefficients for the same cavity
mode-exciton detunings as in Supplementary Table I but now assuming that there is no trion-cavity mode coupling.

Using the same approach as discussed above, one can obtain the calibration curves (EMPB vs |C|2) for different
cavity mode-exciton detunings by using this two-oscillator model and varying cavity-exciton Rabi-splitting. The data
for the detunings used in the experiment are summarised in Supplementary Figure 6. Finally, the total exciton density
for each exciton-photon detuning is deduced using formula (2) from Supplementary Note 1.2 (there we assume that
trion fraction T = 0, since at high excitation density the trion-photon strong coupling is quenched).

4. The strength of trion-polariton nonlinearity

For a given energy of MPB the value of the Rabi-splitting ΩT at each power density can be deduced using the
calibration dependencies in Supplementary Figure 2. The effective strength of trion nonlinearity responsible for the
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Supplementary Figure 5: Polariton energies and Hopfield coefficients. a Polariton dispersions (solid lines) and bare
cavity, exciton, and trion (dashed lines) from Fig. 1d [main text] assuming no coupling with trions. b |C|2 , |X|2 Hopfield
coefficients of the middle polariton branch.

Supplementary Figure 6: Calibration curves. ELG00 vs |C|2 for the MPB with a two coupled oscillator model, obtained
by varying the cavity-exciton Rabi-splitting from 0 to 19 meV for the four experimental cavity-exciton detunings. Bold solid
sections of the curves correspond to the experimentally observed ranges of MPB peak positions for the corresponding detunings.

quenching of strong coupling is defined as a rate of decrease of the Rabi-splitting ~ΩT with ntot
5:

βeff
T = −δ~ΩT/δntot. (4)

Alternatively, in the first order approximation βeff
T can related directly to the redshift of the MPB branch in Fig. 3b

of the main text as follows

βeff
T = −ηTδEMPB/δntot, (5)

where ηT =
√
δ2
P−T + (~ΩT)2/(~ΩT/2) and δP−T = +5.3 meV is the energy detuning between the trion energy

level and the lower polariton branch arising from coupling between photon and neutral exciton only (see above)
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Supplementary Figure 7: Nonlinear coefficient for trions. βeff
T as a function of ntot. The error bars are 95% CI deduced

taking into account the random error in the determination of the trion-polariton peak position at each power from the fitting
procedure.

for ntot < 2 · 102 µm−2. In Supplementary Equation (5) the minus sign explicitly accounts that Rabi frequency is
decreasing function of density.

In the first order approximation our theory predicts a constant value of βeff
T with density, or, in other words, a

linear reduction of the trion-polariton Rabi-splitting with density (see Supplementary Note 3). As it is seen in Fig. 3c
of the main text there is a good qualitative agreement between the dependence of the trion Rabi splitting and the
theoretical prediction as a function of trion density: the experimental average value of βeff

T = 37 ± 3 µeVµm2 is in
quantitative agreement with the theoretical estimate of 30 µeVµm2. Nevertheless, it is seen that the experimental
points in Fig. 3c of the main text are not precisely positioned on the straight theoretical line. This is reflected by
the fact that the experimental values of βeff

T (deduced from the experimental data in Fig. 3c of the main text) vary
from 120 to 20 µeV·µm2 over the density range ntot from 0 to 200 µm−2, which is shown in Supplementary Figure 7.
We believe this variation of βeff

T with ntot observed in the experiment may arise from the higher order effects due to
composite nature of trions, not included in the theoretical treatment (see Supplementary Note 3).

5. Parameters characterising neutral exciton-polariton nonlinearity

The energy blueshift of the neutral exciton polariton arises from two mechanism: (1) the reduction of exciton-photon
Rabi-splitting ~ΩX, and/or (2) blueshift of the neutral exciton level EX due to Coulomb exchange interactions.

Mechanism (1) is characterized by the rate of reduction of Rabi-splitting ~ΩX with exciton density5:

βeff
X = −δ~ΩX/δntot. (6)

It can be deduced from the MPB polariton energy blueshift assuming that only mechanism (1) is dominant:

βeff
X = ηXδEMPB/δntot, (7)

where ηX =
√
δ2
C−X + (~ΩX)2/(~ΩX/2) and δC−X is the detuning between bare photon mode and exciton level for a

given data set.
Mechanism (2) is characterised by the rate of the blueshift of the exciton level with exciton density5:

geff
X = δEX/δntot. (8)

Similarly, assuming that only mechanism (2) contributes to polariton blueshift geff
X can be related to the polariton

energy shift5:

geff
X = ξXδEMPB/δntot, (9)

where ξX = [1/2 + δC−X/(2
√
δ2
C−X + (~ΩX)2)]−1 is the inverse of an excitonic fraction.
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Supplementary Figure 8: Nonlinear coefficient for excitons. The experimental upper limit of the effective interaction
constant βeff

X as a function of the estimated exciton density, ntot. The data correspond to four different cavity-exciton detunings
(δ): +8.8 meV (olive), +2.0 meV (purple), −2.4 meV (orange), and −15.4 meV (blue). The error bars (95% CI) are deduced
taking into account errors in determining the MPB peak positions at each pump power (exciton density). The red solid curve
corresponds to the theoretical values.

In the experiment we can measure only the nonlinear behaviour (blueshift) of MPB. The UPB cannot be measured
due to tunability of our laser. Therefore, experimentally we cannot separate the contributions to the neutral exciton-
polariton optical nonlinearity from mechanisms (1) and (2). However, assuming that either only mechanism (1) or (2)
is responsible for the blueshift of MPB, we can deduce the dependencies of the upper limits of βeff

X = −d(~ΩX)/dntot

and geff
X = dEX/dntot factors on exciton density5, respectively. In the main text (Fig. 5) we show that the theoretical

gth
X parameter is in semi-quantitative agreement with the experimental values of the upper limit of geff

X in the range
of exciton densities 3 · 103 < ntot < 3 · 104 µm−2.

Now let us assume instead that the mechanism (1) is the only dominant mechanism over the whole density range.
In this case we can observe that the theoretical βth

X -factor is well below the experimental values of the upper limit of
βeff

X at ntot < 104 µm−2 as shown in Supplementary Figure 8. βth
X approaches the experimental values only at higher

densities ntot > 3 · 104 µm−2. Such a discrepancy between the experiment and theory indicates that our assumption
is incorrect; phase space filling for neutral exciton-polaritons [mechanism (1)] becomes important only at very high
exciton densities ntot > 3 · 104 µm−2, when the average distance between excited excitons is less than 5-6 nm and
becomes comparable to the exciton Bohr radius aB ∼ 1 nm. By contrast, mechanism (2) is the dominant mechanism
at intermediate exciton densities ntot < 3 · 104 µm−2.

6. Measurement of the cavity mode decay rate (photon lifetime)

The bare cavity mode decay rate (γc) was deduced from the temporal decay of emission intensity of the bare
LG00 mode (without flake in the cavity) excited resonantly with 100-fs pulse. The measurements were performed
using streak-camera with the resolution time of 2 ps (see Supplementary Figure 9). We obtained the experimental
cavity lifetime of approximately 4 ps, which corresponds to the FWHM of bare cavity mode ∼ 400 µeV, the value we
measured on the spectrometer.

7. Nonlinear refractive index n2 due to trion-polaritons. Comparison with other systems.

a. Nonlinear refractive index n2 of hybrid microcavity-MoSe2 polariton system. We note that applications of
2D materials imply that they would be integrated into photonic structures made of bulk semiconductors/dielectrics.
Therefore, when characterising nonlinear optical properties of 2D materials it is useful to consider the nonlinearity of
the whole hybrid 2D materials-semiconductor/dielectric photonic system and compare it with that of bulk photonic
materials.

In order to compare trion-polariton nonlinearity with Kerr-like optical nonlinearity observed in bulk materials we can
treat our open-access microcavity system with embedded MoSe2 as a microcavity filled with a bulk of some nonlinear
optical material, characterised by the effective nonlinear refractive coefficient n2(MC). The n2(MC) coefficient due to
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Supplementary Figure 9: Microcavity lifetime measured using a streak camera. Blue response measured with resonant
transmission of a 100-fs pump pulse, when the cavity was on the flake. Orange curve corresponds to the bare cavity, off the
flake, with no active region. Note that the detected signal profile is limited by the streak camera resolution of 1-2 ps and
possible laser pulse jitter.

trion-polariton nonlinearity can be estimated taking into account the effective optical path covered by a photon during
the round trip between the two mirrors of the microcavity, which must be equal to an integer number of polariton
wavelengths,

2

(
neff + n2(MC)

Npolhc
2

Lλ

)
L = m(λ+ δλ). (10)

Here neff is the effective refractive index of the microcavity, Npol is the total number of polaritons excited inside the
MC with a single pulse, L is the effective cavity length, λ is the wavelength of the trion-polariton emission in free
space, δλ is the nonlinear shift of trion-polariton resonance, m is the order of the longitudinal cavity mode coupled

with the trion. 2n2(MC)
Npolhc

2

Lλ L is the nonlinear optical path acquired by photon during the round trip between the
two mirrors. Given absorption is the dominant process in our system Npol ≈ ntot.

Using Eqs. (5) and (10) we get the following expression

n2(MC) =
neffLβ

eff
T λ2

h2c3ηT
(11)

where ηT =
√
δ2
P−T + (~ΩT)2/(~ΩT/2), and δP−T is the energy detuning between the trion energy level and the lower

polariton branch arising from coupling between photon and neutral exciton only (see above). Taking into account
the effective cavity refractive index neff ≈ 1 (since most of the cavity electromagnetic field is confined in the gap
between the two mirror), the wavelength of trion-polariton resonance λ ≈ 760 nm, the effective cavity size L ≈ 1
µm, βeff

T = 37 µeVµm2 and ηT = 2 (δP−T = 0) we estimate n2(MC) ∼ 1.4 · 10−13 m2 W−1. This n2(MC) is about

four to five orders of magnitude larger than 1.82 · 10−17 m2 W−1 in planar AlGaAs waveguides in the weak coupling
regime6 and 6 ·1018 m2 W−1 in silicon7 and InGaP8, which have been used in a suspended membrane photonic crystal
geometry. Kerr nonlinear effects (optical bistability) have been investigated in slab photonic crystal Si microcavities
with embedded graphene layer9. The effective n2 of hybrid graphene-Si microcavity system has been derived to be
of the order n2 ≈ 7.7 · 10−17 m2 W−1, which is ∼ 3 − 4 orders of magnitude less than n2(MC) due to trion-polariton

nonlinearity. Finally, we note that the value n2(MC) ∼ 1.4 · 10−13 m2 W−1 due to trion polariton nonlinearity is

an order of magnitude higher than n2 ∼ 1 · 10−14 m2 W−1 reported by us in neutral exciton-polariton GaAs-based
system10.

b. Effective nonlinear refractive index n2(MoSe2) per single TMDC monolayer arising from trion-polariton non-
linearity. To the best of our knowledge no Kerr-like nonlinear optical effects were studied in microcavities with
embedded TMDC materials in the weak light-matter coupling regime. However, there were several studies of the
effects associated with Kerr-like optical nonlinearity of bare layers of TMDCs (MoSe2, MoS2, MoTe2) and graphene
in the weak light-matter coupling regime on a picosecond timescale11. The values of n2 coefficients for TMDCs layers
were measured in the range 10−16-10−17 m2 W−1 depending on the excitation energy (above or below band gap).
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The reference [12] reports the n2 coefficient for WS2 monolayer to be about 1.1 · 10−15 m2 W−1. The value of n2

coefficient for pure graphene flakes was measured about 2 · 10−15 m2 W−1.11 In Ref. [9] authors studied nonlinear
hybrid Si-graphene microcavity, and deduced n2 coefficient for a single graphene to be of the order 10−13 m2 W−1.

In our trion-polariton microcavity system we can derive the effective nonlinear refractive index n2(MoSe2) per single
TMDC monolayer taking into account that in reality the nonlinear optical phase is acquired by light only on the
passage of the monolayer during the round trip between the mirrors. Therefore, n2(MoSe2) can be simply obtained by

normalising n2(MC) to dMoSe2/L, where dMoSe2 ∼ 1 nm is the MoSe2 thickness, yielding n2(MoSe2) ∼ 1.4·10−10 m2 W−1.
This value is at least five (three) orders of magnitude larger than in TMDC 2D materials (graphene) studied in the
weak light-matter coupling regime without formation of polaritons.

Supplementary Note 2

Nonlinear neutral exciton-polaritons: theory

In the first section we describe the exciton-photon coupled system, accounting for the composite electron-hole (e-h)
nature of neutral exciton. The case of a trion mode coupled to the optical mode is considered in the next section.

1. Exciton-polariton Rabi-splitting

To start, we consider an optical cavity described by the bosonic annihilation and creation operators ĉ and ĉ†,
such that their commutation relations are [ĉ, ĉ†] = 1, [ĉ†, ĉ†] = [ĉ, ĉ] = 0. Coupled to a semiconducting medium, an
optical photon creates an exciton, corresponding to the bound electron-hole pair. The creation of an electron with

the momentum q is described by the fermionic operator â†q, and hole creation is described by the operator b̂†q. Their

corresponding anti-commutation relations read {âq, â†q′} = âqâ
†
q′ + â†q′ âq = δq,q′ , {âq, âq′} = {â†q, â

†
q′} = 0, where

δq,q′ is Kronecker delta function (and the same holds for b̂q). Accounting for the attractive Coulomb interaction

between an electron and a hole, the excitonic operator can be written as a composite boson X̂ν , where ν is a general
index which denotes the center-of-mass (CM) and internal degrees of freedom. The transition between electron-hole

and composite exciton picture follows as X̂†ν =
∑

kα,kβ
〈kβ ,kα|ν〉â†kα b̂

†
kβ

. Here, kα,β correspond to electron and hole

momenta, and 〈kβ ,kα|ν〉 is an exciton wave function written in the momentum space. The reversed transformation for

describing an electron-hole pair in bosonic language can be written as â†kα b̂
†
kβ

=
∑
ν〈ν|kβ ,kα〉X̂†ν , where summation

goes over possible states of composite excitons ν in the appropriate orthonormal basis, such that
∑
ν |ν〉〈ν| = 1.

In the following we are interested in the system with strong light-matter coupling, where a composite exciton of
certain CM momentum is coupled to the cavity mode. The Hamiltonian for the considered system reads

Ĥ = Ĥcav + ĤX + Ĥcoupl, (12)

where the first and second terms describe the free energy for the cavity photon mode, Ĥcav =
∑

q ωcav,qĉ
†
qĉq (~ = 1

hereafter), and composite exciton ĤX (i.e. coupled electron-hole) Hamiltonians. ωcav,q denotes the two-dimensional
dispersion for the planar cavity mode, with typically ultralow mass, such that only small q’s are considered. The third
term describes the coupling between light and matter excitations. It can be written as a creation of an electron-hole
pair by the cavity field with a coupling constant g,

Ĥcoupl =
∑

kα,kβ ,q

(gâ†kα+qb̂
†
kβ
ĉq + h.c.) =

∑
kα,kβ ,q

∑
i

(g〈i|kβ ,kα〉X̂†i ĉ+ h.c.), (13)

where in the second equality we have exploited excitonic form for the electron-hole pair, and considered dipolar
transition with negligible transferred cavity momentum, ĉq→0 ≡ ĉ, being a usual assumption for description of strong

coupling. Here, g = epcv
m

√
~2

2εε0ωcavLcavA
, where pcv is a matrix element for valence-to-conduction band transition, m

is a free electron mass, Lcav is a cavity length, A is an area of the system. We consider an exciton mode at the fixed
center-of-mass momentum, which for brevity is set to zero, X̂0, and derive the corresponding Heisenberg equations of
motion. It reads

i
dX̂0

dt
= [X̂0, ĤX] + [X̂0, Ĥcoupl] = [X̂0, ĤX] + g

∑
kα,kβ

∑
i

〈i|kβ ,kα〉
[
X̂0, X̂

†
i

]
ĉ. (14)
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The first term generally describes the energy ωX at which the excitonic mode oscillates. The second, be-
ing proportional to ĉ operator, provides the coupling to photonic mode, which we generally denote as G =

g
∑

kα,kβ

∑
i〈i|kβ ,kα〉

[
X̂0, X̂

†
i

]
. If exciton corresponds to an ideal boson, i.e. [X̂, X̂†] = 1, the coupling term re-

duces to G = g
∑

kα,kβ
〈i|kβ ,kα〉 ≡ g

∑
k φ
∗
k =: ΩX(0)/2, where we introduced the relative electron-hole momentum

k and the Fourier transform of the exciton wave function φk. This energy corresponds directly to the Rabi energy
for the light-matter coupled system. Performing the diagonalization of the system at zero detuning (ωcav = ωX), the
Rabi-splitting between normal modes of the system is equal to ΩX(0).

We proceed by considering the composite structure of exciton, which is formed by two fermions. This comes from
the fact that creation of a (correlated) electron-hole pair is not equivalent to a boson creation, as long as number of
created pairs grows. It originates from the Pauli exclusion principle, which does not allow certain pair configurations
in the full fermionic treatment, while disregarded in the purely bosonic picture13,14. The details for the difference
between two cases were worked out by Monique Combescot and co-workers, and summarized in the so-called coboson
approach to excitonic systems13. In the following, we apply use the coboson formalism to find corrections to Rabi
and exciton energy appearing due to effects of non-bosonicity.

The main consequence of the composite nature of exciton is its peculiar statistics, which resembles bosonic one for
small e-h pair concentration n ≡ N/A, but changes once it becomes comparable to the inverse of the effective exciton
area. The generic commutation relations between composite bosons can be formulated as (see Ref. [13], eq. [4.16])

[X̂m, X̂
†
i ] ≡ δm,i − D̂mi, (15)

where an operator D̂mi describes the deviation from bosonicity for excitons due to its composite nature.
In particular, this can be observed when one writes the commutator in Supplementary Equation (15) using the

expression for composite exciton with zero CM momentum and relative momentum k, which is described by X̂†0 =∑
k〈k|0〉âkb̂−k ≡

∑
k φkâkb̂−k. The commutator reads

[X̂0, X̂
†
0 ] =

∑
k1

∑
k2

(φk1
φ∗k2

âk1
b̂−k1

b̂†−k2
â†k2
− φ∗k2

φk1
b̂†−k2

â†k2
âk1

b̂−k1
) =

∑
k1

∑
k2

φk1
φ∗k2

(δk1,k2
− â†k1

âk2
δk1,k2

− b̂†−k1
b̂−k2

δk1,k2
) = 1−

∑
k

|φk|2(â†kâk + b̂†kb̂k). (16)

The explicit form for the deviation operator is D̂00 =
∑

k |φk|2(â†kâk+b̂†kb̂k). Its structure thus hints that the deviation
depends on the electron (or exciton) number N .

To calculate the influence of the non-bosonicity on Rabi energy renormalization we need to estimate the expectation
value of the last term in Supplementary Equation (14) considering the (unnormalized) many-coboson state |N〉 =

(X̂†0)N |ø〉, and singling out the prefactor in front of the cavity photon operator ĉ. Here, |ø〉 denotes coboson vacuum

state, and corresponding norm reads
√
〈N |N〉 = 〈ø|X̂N

0 (X̂†0)N |ø〉1/2. Note that in the case of composite bosons it
was shown to differ exponentially from an ideal boson normalization for large N ,13 though for physical observables
the difference appears as higher order terms in small N expansion.

The expectation value for the commutator can be written as

G(N) :=
〈N |g

∑
kα,kβ

∑
i〈i|kβ ,kα〉

[
X̂0, X̂

†
i

]
|N〉

〈N |N〉
= g
〈N |

∑
k φ
∗
k|N〉

〈N |N〉
− g
〈N |

∑
kα,kβ

∑
i〈i|kβ ,kα〉D̂0i|N〉
〈N |N〉

. (17)

The first term in Supplementary Equation (17) yields g
∑

k φ
∗
k and is simply a Rabi frequency in the dilute system

limit. The second term, however, involves the non-bosonicity operator. Accounting for the many-coboson state
explicitly, it can be rewritten as

g
〈ø|X̂N

0

∑
kα,β

∑
i〈i|kβ ,kα〉D̂0i(X̂

†
0)N |ø〉

〈N |N〉
= g
〈ø|
∑

kα,β

∑
i〈i|kβ ,kα〉X̂N

0

[
D̂0i, (X̂

†
0)N

]
|ø〉

〈N |N〉
, (18)

where we have accounted for the fact that the action of the deviation operator on the ground state gives 0, i.e.
D̂0i|ø〉 = 0 · |ø〉. Thus, its estimation relies on the commutator of the deviation operator with an exciton creation
operator to the power N . For the first power, this can be derived as13

[
D̂mi, X̂

†
j

]
=
∑
n

[
λ

(
n j

m i

)
+ λ

(
m j

n i

)]
X̂†n, (19)
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where λ denotes the Pauli scattering element for input indices (i, j) and output (n,m). It reads explicitly

λ

(
n j

m i

)
=

∫
drα1

drα2
drβ1

drβ2
φ∗m(rα1

, rβ2
)φ∗n(rα2

, rβ1
)φi(rα1

, rβ1
)φj(rα2

, rβ2
), (20)

where φi(rα1
, rβ1

) is a generic coboson wavefunction written in the real space representation. It can be rewritten

as a product of CM and relative motion component, φi(rα, rβ) = (eiQi·Rαβ/
√
A)〈rαβ |i〉, where Rαβ and rαβ are

CM and relative coordinates for an e-h pair, which correspond to coboson with CM momentum Qi and relative
motion quantum number i. The relative motion wavefunction can be also rewritten in the momentum space as
〈r|i〉 =

∑
k〈r|k〉〈k|i〉 =

∑
k(eik·r/

√
A)〈k|i〉, which we will use in future.

Proceeding with the estimation for the influence of the deviation in the many-coboson state, the commutator with
N -exciton creation operator reads[

D̂0i, (X̂
†
j )N

]
= N(X̂†0)N−1

∑
n

[
λ

(
n i

0 0

)
+ λ

(
0 i

n 0

)]
X̂†n. (21)

Using this, Supplementary Equation (17) can be rewritten as

G(N) = g
∑
k

φ∗k − gN
∑
kα,β

∑
i,n

〈i|kβ ,kα〉

{
λ

(
n i

0 0

)
+ λ

(
0 i

n 0

)}
〈ø|X̂N

0 X̂
†
n(X̂†0)N−1|ø〉/〈N |N〉. (22)

One can immediately see in the second term on the RHS that the Rabi frequency depends on exciton concentration
N , times the prefactors coming from Pauli scattering elements.

First, let us consider the intuitively easy case where the internal coboson index i coincides with the mode of interest,
labeled as 0. Later, we show that this corresponds to the lower-order-in-N correction. In this case the expectation

value 〈ø|X̂N
0 X̂

†
n(X̂†0)N−1|ø〉/〈N |N〉|n=0 = 1. Considering the first Pauli scattering term λ(0, i; 0, 0), the summation

over internal coboson index is performed as

∑
k

∑
i

λ

(
0 i

0 0

)
〈i|k〉 =

1

A2

∑
k

∫
drα1

drα2
drβ1

drβ2
〈0|rα1

− rβ2
〉〈0|rα2

− rβ1
〉〈rα1

− rβ1
|0〉
∑
i

〈rα2
− rβ2

|i〉〈i|k〉

=
∑

k,k1,k2,k3

1

A4

∫
drα1

drα2
drβ1

drβ2
e−ik1·(rα1

−rβ2 )e−ik2·(rα2
−rβ1 )eik3·(rα1

−rβ1 )eik·(rα2
−rβ2 )×

× 〈0|k1〉〈0|k2〉〈k3|0〉 =
∑
k

|φk|2φk. (23)

Here, for passing through the first equation sign we used that: 1) coboson states form a full orthonormal basis,∑
i |i〉〈i| = 1; 2) transition element between between real and momentum space reads 〈rα2

−rβ2
|k〉 = eik·(rα2

−rβ2 )/
√
A.

For the second equality we exploited Dirac delta function definition in 2D, being
∫
dreik·r = Aδk,0, which reduces

summation to a single index, and recall our definition 〈k|0〉 ≡ φk. The second Pauli scattering term gives the same
contribution.

In the case of 1s neutral exciton in a two-dimensional material the relation motion part of wavefunction in real
space can be written as φ(r) =

√
2/πa2

B exp(−r/aB), with r being the relative (e-h) coordinate. The momentum
space version then reads

φk =

√
8πa2

B

A
(1 + a2

Bk
2)−3/2, (24)

where aB corresponds to the 2D variational parameter.
Collecting everything together and performing summation as

∑
k →

A
(2π)2

∫
dk, the renormalized Rabi frequency

as a function of concentration (in lowest order of na2
B) reads

G(n) = G(0)

(
1− 2N

∑
k |φk|2φk∑

k′ φ∗k′
+O[N2]

)
= G(0)

(
1− 16πna2

B

7
+O[n2a4

B]

)
, (25)

where G(0) = g
√

2A/πa2
B = epcv

maB

√
~2

πεε0ωcavLcav
. Finally, we need to account for the fact that G(n) is a derived term

in the equations of motion, which includes ∝ n correction. Thus it originates from the effective nonlinear Hamiltonian
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Ĥ
(nonlin)
coupl which contains three excitonic operators and a photonic one, and on the contrary to the linear case provides

extra factor of 2 in the equations of motion. The modified Hamiltonian with exciton density-dependent Rabi frequency
then reads (at fixed momentum)

Ĥcoupl =
ΩX(nX)

2
(X̂†ĉ+ ĉ†X̂), (26)

where renormalized Rabi frequency is

ΩX(nX)

2
=

Ω
(0)
X

2

(
1− 8πnXa

2
B

7
+O[n2

Xa
4
B]

)
, (27)

and we denoted the exciton concentration as nX. The result above coincides with the estimates by Tassone and
Yamamoto,15 and Rochat et al.,16 although derived in a different way, without involving Usui transformation.

We can proceed to calculate the terms being higher order in (na2
B). This relies on the exact calculation of average

as13

〈ø|X̂N
0 X̂

†
j (X̂†0)N−1|ø〉/〈N |N〉 = δ0,j

FN−1

FN
− (N − 1)λ

(
0 0

0 j

)
FN−2

FN
+O[n3a6

B], (28)

where FN is a coefficient which defines the deviation of statistics through 〈N |N〉 ≡ N !FN , with FN being 1 for purely
bosonic states. Exploiting coboson theory, the ratio reads

FN−1

FN
= 1 +N

∑
k

|φk|4, (29)

and FN−2/FN ≈ (FN−1/FN )2. The first term in Supplementary Equation (29) corresponds to the previously obtained
case with ∼ na2

B scaling. Performing the same procedure as before, we extend the results to include n2a4
B contribution.

After some algebra, we obtain

G(n) = G(0)

{
1− 2N

∑
k |φk|2φk∑

k′ φ∗k′
− 2N2 (

∑
k |φk|4)(

∑
k′′ |φk′′ |2φk′′)∑

k′ φ∗k′
+ 2N2 (

∑
k |φk|4φk)∑

k′ φ∗k′
+O[N3]

}
(30)

= G(0)

{
1− 16πna2

B

7
+

1152π2n2a4
B

455
+O[n3a6

B]

}
,

where the derivation was performed up to ∼ n3a6
B terms. The corresponding modified Rabi frequency then reads

ΩX(nX)

2
=

Ω
(0)
X

2

{
1− 8πnXa

2
B

7
+

384π2n2
Xa

4
B

455
+O[n3

Xa
6
B]

}
. (31)

Interestingly, we observe that the light-matter coupling strength is a monotonically decreasing function of density,
and its expansion has a sign-changing pattern. Thus, going in higher orders of nonlinearity shall help to obtain
monotonically decreasing function.

2. Nonlinear exciton energy shift

In the previous section, we have considered the renormalization of the light-matter coupling term, which gains
n-dependence. Now, let us consider similar effects which provide nonlinear energy term for composite excitons. To
do so, we write the exciton Hamiltonian in terms of basic constituents, being electrons and holes. This is given by

ĤX = Ĥ(0)
e + Ĥ

(0)
h + Ĥe−h + Ĥe−e + Ĥh−h, (32)

where the first two terms correspond to energies of the electrons and holes, and read Ĥ
(0)
e =

∑
kα
ε
(e)
kα
â†kα âkα and

Ĥ
(0)
h =

∑
kβ
ε
(h)
kβ
b̂†kβ b̂kβ . The dispersions can be written in the quadratic form, being ε

(e)
kα

= Ec + k2
α/2me and

ε
(h)
kβ

= Ev + k2
β/2mh. (Ec − Ev) := Eg corresponds to the bandgap energy, and me,h are effective electron and hole

masses, respectively, measured in units of the free electron mass. The third term in Supplementary Equation (32)
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corresponds to the electron-hole Coulomb interaction, which ultimately leads to the formation of the bound state. It

reads Ĥe−h = −
∑

p,p′,q Vqâ
†
p+qb̂

†
p′−qb̂p′ âp, where Vq = 2πe2/(AqSq) is the standard Fourier transform for Coulomb

interaction in 2D, Sq denotes the screening function (so far unspecified), and we accounted explicitly for attraction

between an electron and a hole. Finally, the terms Ĥe−e and Ĥh−h correspond to Coulomb interaction with only
electrons and only holes. When accounting for the excitonic structure of e-h complexes, these lead to Kerr-type
exciton-exciton interaction.

To account for the non-bosonicity and exchange-based Coulomb scattering between the cobosons on the equal
footing, we can derive the total energy of the system, EX = 〈ĤX〉, where expectation value is taken over N -exciton
state. Following Ref. [13], the nonlinear (quadratic and higher) contribution to the energy of N excitons reads

〈ĤX〉N =N

[
E

(0)
X +

N

2

FN−2

FN

{
ξ

(
0 0

0 0

)
− ξin

(
0 0

0 0

)}
+
N2

4

FN−3

FN

{
− 2

∑
n

λ

(
0 n

0 0

)
ξ

(
n 0

0 0

)
(33)

+
∑
mn

λ

 0 0

0 n

0 m

 ξ

(
n 0

m 0

)}]
,

where E
(0)
X = Eg − Eb is a density independent exciton energy, and nonbosonicity factor reads FN−3/FN ≈

(FN−1/FN )3. Here,

ξ

(
n j

m i

)
=

∫
drα1drα2drβ1drβ2φ

∗
m(rα1 , rβ1)φ∗n(rα2 , rβ2)φi(rα1 , rβ1)φj(rα2 , rβ2) (34)

× [Vαα(rα1
, rα2

) + Vββ(rβ1
, rβ2

) + Vαβ(rα1
, rβ2

) + Vαβ(rα2
, rβ1

)] ,

is a direct Coulomb scattering term between excitons [see Supplementary Equation (20) for comparison], and
Vff ′(rf1 , rf ′

2
) corresponds to the real space Coulomb potential between carriers f, f ′. The ξin term denotes exchange

Coulomb scatterings, where either electron or hole is swapped between two composite excitons,

ξin

(
n j

m i

)
=

∫
drα1

drα2
drβ1

drβ2
φ∗m(rα1

, rβ2
)φ∗n(rα2

, rβ1
)φi(rα1

, rβ1
)φj(rα2

, rβ2
) (35)

× [Vαα(rα1 , rα2) + Vββ(rβ1 , rβ2) + Vαβ(rα1 , rβ2) + Vαβ(rα2 , rβ1)] ,

which combines Pauli scattering and Coulomb interaction. Finally, the exchange term between three composite
excitons (where carriers are swapped but no Coulomb vertex is included) yields

λ

 p k

n j

m i

 =

∫
drα1

drα2
drα3

drβ1
drβ2

drβ3
φ∗m(rα1

, rβ2
)φ∗n(rα3

, rβ1
)φ∗p(rα2

, rβ3
)φi(rα1

, rβ1
)φj(rα2

, rβ2
)φk(rα3

, rβ3
).

(36)

For composite excitons with Vαβ(r) = −Vαα(r), which is true for the electron-hole potential, the direct term vanishes,

ξ

(
0 0

0 0

)
= 0. This can be seen as well-known absence of direct contribution at zero exchanged momentum, valid

both for III-V semiconductors and TMDs. Similarly,
∑
n λ

(
0 n

0 0

)
ξ

(
n 0

0 0

)
= 0, and only exchange terms shall

be accounted. They can be calculated as

ξin

(
n j

m i

)
= 2

∑
k,k′

Vk−k′

{
|φk|2|φk′ |2 − |φk|2φ∗kφk′

}
(37)

and

∑
mn

λ

 0 0

0 n

0 m

 ξ

(
n 0

m 0

)
= 2

∑
k,k′

Vk−k′ |φk|4
{
|φk′ |2 − φ∗kφk′

}
. (38)
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The sums (37) and (38) can be converted into intergrals, and evaluated numerically for the exciton wavefunction in
the form (24). As an important consequence of the monolayer structure of the TMD, the potential is chosen to be
screened,17–19 and has the form

Vq =
2πe2

(4πε0)κq(1 + r0q/κ)
, (39)

where e is an electron charge, ε0 is a vacuum permittivity (note that SI units are used), r0 is a screening length, and
κ = (εs1 + εs2)/2 is an average dielectric permittivity for substrates from two sides.19 This directly follows from the
well-known Keldysh potential of the form

Vee(r) =
e2

(4πε0)r0

π

2

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (40)

defined with the help of Struve and Bessel functions of the second kind, and shown for the case of two electrons.
Finally, collecting the terms up to N2 order, the nonlinear energy of the excitonic mode (as appearing in the

Hamiltonian) can be written as

EX(nX) = E0 +
8

π

e2

4πε0κaB
I4(r0)nXa

2
B −

128

5

e2

4πε0κaB

[
5I6(r0)− 2I4(r0)

]
n2

Xa
4
B, (41)

where exchange integrals for dimensionless length (x = r/aB) depend on the screening length r0 and read

I4(r0) =

∫ ∞
0

∫ 2π

0

dxdx′dθ2πxx′√
x2 + x′2 − 2xx′ cos θ(1 + r0

κaB

√
x2 + x′2 − 2xx′ cos θ)

(−1)

(1 + x2)3

(
1

(1 + x′2)3
− 1

(1 + x2)3/2

1

(1 + x′2)3/2

)
,

(42)

I6(r0) =

∫ ∞
0

∫ 2π

0

dxdx′dθ2πxx′√
x2 + x′2 − 2xx′ cos θ(1 + r0

κaB

√
x2 + x′2 − 2xx′ cos θ)

(−1)

(1 + x2)6

(
1

(1 + x′2)3
− 1

(1 + x2)3/2

1

(1 + x′2)3/2

)
,

(43)

where in the case of TMDC materials the dimensionless parameter r0/(κaB) enters the integrals. We perform the
calculations considering MoSe2 on hBN, where r0 = 4 nm18, κ = (εs1 + εs2)/2 = 4 for hBN substrates, and leaving
aB as a tuning parameter.

3. Exciton-polaritons at increasing density

Taking our previously derived results for the renormalization of coupling and exciton properties, let us translate
it to the case of polaritons.5 In the cases where trion mode can be excluded out considerations (it is weakly coupled
and/or largely detuning), we use the two coupled modes Hamiltonian, concentrating on the exciton-photon coupling.
This is justified by the experimental data at large detuning, where the trion fraction at X-C anti-crossing is estimated
to be small (< 2%). The normal modes of neutral exciton-polariton system read

E±(nX) =
EC + EX(nX)

2
± 1

2

√
ΩX(nX)2 + [EC − EX(nX)]2, (44)

where E−(nX) ≡ EMPB(nX) corresponds to the middle polariton mode we are interested in.
We proceed with applying the presented theory to explain the nonlinear blueshift of the middle polariton branch

as function of an exciton concentration, for the case where trion resonance is largely detuned. Using the coefficients
derived above, and corresponding density dependences for the coupling ΩX(nX) and exciton energy EX(n) terms, we
plot the nonlinear energy shift as function of concentration. The theoretical results are shown in Fig. 4(b,d) of main
text by red solid curves. Taking the exciton Bohr radius as the only fitting parameter, we set it to be aB = 0.85 nm,
which allows to qualitatively the behavior of the system. Furthermore, we verify the obtained value performing the
variational procedure to obtain exciton properties in MoSe2 covered with hBN. This can be done using the standard
procedure with screened Keldysh potential with r0 = 4 nm, κ = 4, and the effective electron mass me = 0.8m,20

which was measured to be rather large in MoSe2 and similar to the effective mass of the hole, taken mh = 0.84m.

This leads to the reduced mass µ = 0.41m. Performing minimization, we get a
(calc)
B = 0.93 nm and binding energy
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E
(calc)
b = 259 meV. These values lie close to the fitted value and experimentally measured energy, respectively. (As

a bonus, in the next section devoted to trions we explicitly show how the same result can be easily obtained in the
momentum space.)

We note that the ability to reproduce measured energy shift of EMPB is only possible once both Rabi frequency
reduction and nonlinear interactions are considered, while otherwise failing to provide required scaling. Namely,
the inclusion of Coulomb-based exchange can only explain the observed behavior (2 meV shift within at order of
magnitude change for the density) for either largely increased exciton Bohr radius in TMDC, which is unlikely, or
much higher concentration going into ∼ 1013 cm−2 range. At the same time, if only Rabi renormalization is accounted,
the saturation of nonlinear shift cannot be reproduced.

Supplementary Note 3

Nonlinear trion-polaritons: theory

1. Trion-polariton Rabi-splitting

We consider the system with an initial doping, and study the effects of light-matter coupling with a multiparticle
bound state. In the MoSe2 TMD this corresponds to a negatively charged exciton — trion — which is spectroscopically
located 30 meV below the excitonic resonance. We aim to estimate of the Rabi-splitting change for the case of a trion.
In the similar fashion, the deviation from ideal statistics changes the value of the trion-photon coupling. However, we
note that the strong light-matter coupling regime for trion is much less studied, and its treatment requires extra care.

We begin with the interaction between the cavity and the trion mode. The latter can be generally described by

a composite creation operator which creates two electrons and a hole from the vacuum state, â†ke,se â
†
ke′ ,se′

b̂†kh,sh |ø〉.
Here, ke,e′,h are the momenta of the respective individual constituents (so-called carrier coordinates21), and se,e′,h
are the spin indices. We note that the most favorable trion configuration in MoSe2 monolayer is the singlet state with
two electrons having anti-parallel spin.22 The operator corresponding to the creation of a singlet state can be written
as23

T̂ †K,↑ =
∑
k1,k2

φTβeK−k1,βeK−k2

(â†k1,↑â
†
k2,↓ − â

†
k2,↓â

†
k1,↑)√

2
b̂†K−k1−k2,↑, (45)

with wavefunction being separated into a trivial center-of-mass part with momentum K, βe = 1−βX = me/(2me+mh),
and the relative motion part described by trial wavefunction for the relative motion φT

k1,k2
(we consider zero CM

momentum case). The wavefunction is written for the relative electron-hole coordinates r1 and r2, being radius-
vectors between the first electron and the hole, and the second electron and the hole, respectively. In the real space
it corresponds to the two exponentially decaying functions

φT(r1, r2) =
1√
2

1√
1 + χ2

{√
2

πλ2
1

e−r1/λ1

√
2

πλ2
2

e−r2/λ2 +

√
2

πλ2
2

e−r1/λ2

√
2

πλ2
1

e−r2/λ1

}
, (46)

where λ1 and λ2 are the variational parameters corresponding to the distances between electrons and a hole. Note,
that φT(r1, r2) is symmetrized and is normalized to unity, with χ = 4λ1λ2/(λ1 + λ2)2. The momentum space version
then reads

φT
k1,k2

=
1√
2

1√
1 + χ2

{√
8πλ2

1

A
(1 + λ2

1k
2
1)−3/2

√
8πλ2

2

A
(1 + λ2

2k
2
2)−3/2 +

√
8πλ2

2

A
(1 + λ2

2k
2
1)−3/2

√
8πλ2

1

A
(1 + λ2

1k
2
2)−3/2

}
(47)

≡ N
{
φ

(1)
k1
φ

(2)
k2

+ φ
(2)
k1
φ

(1)
k2

}
,

where we defined N = [2(1 +χ2)]−1/2 and φ
(j)
k =

√
8πλ2

j/A(1 + λ2
jk

2)−3/2. Finally, reordering the electron operators

in Supplementary Equation (45), and considering CM momentum much smaller than typical relative momenta, we
can write trion creation operator as

T̂ †K,↑ =
∑
k1,k2

N
{
φ

(1)
k1
φ

(2)
k2

+ φ
(2)
k1
φ

(1)
k2

}
â†k1,↑â

†
k2,↓b̂

†
K−k1−k2,↑. (48)



17

The choice of the wavefunction (47) is of course far from optimal, as to describe quantitatively the shape of trion
solution more complicated ansatzes with hundreds of orbitals shall be used.24 However, in order to get any sensible
result for Rabi frequency renormalization, this is the form we shall adopt.

Once there is a non-zero number of free electrons, the absorption of a circularly polarized photon can then allow a
creation of a trion. The Hamiltonian of the system can be written as the sum ĤT = ĤT

0 + ĤT
coupl of non-interaction

cavity/electron/trion Hamiltonian ĤT
0

ĤT
0 =

∑
q

ωcav,qĉ
†
qĉq +

∑
K

ωT
KT̂
†
KT̂K +

∑
k

εkâ
†
kâk, (49)

and the coupling Hamiltonian for light and matter,

ĤT
coupl =

∑
k,q,k1,k2

gφT
k1,k2

T̂ †k+q,↑âk,↓ĉq,⇑ + h.c., (50)

with g being conduction-to-valence band transition matrix element, previously defined in the exciton case. εk is an
electron dispersion, ωT

K is a trion dispersion, and in Supplementary Equation (49) the summation over spin is assumed.
In Supplementary Equation (50), similarly to the exciton case, the wavefunction of the relative motion appears due to
the fact that out of free electron-hole complex the bound trion state appears. The process in Supplementary Equation
(50) in simple terms can be seen as a creation of the electron-hole pair attached to an electron in the Fermi sea, while
the electron state is (slightly) changed. This can be conveniently described by the quasi-bosonic excitation, defined

by the operator B̂j , which reads

B̂†K|FS〉 =
1√
Ne

∑
k

T̂ †K+kâk|FS〉. (51)

It creates an excitation out of Fermi sea state |FS〉, and Ne is a number of free electrons available for the trion creation,
which can correspond to the selected spin configuration, meaning that the total number of electrons in the system
reads as N tot

e = 2Ne. The combinatorial prefactor 1/
√
Ne comes from the number of different ways the excitation can

be created,25 and we note that (51) holds for low temperatures where electron gas is degenerate. As the excitation

operator B̂†K represents a composite boson, similarly to excitons described in the previous Supplementary Note 2, it is
prone to the phase space filling effects. At the same time, it is not a bound state, and thus exhibits different statistics
deviation behaviour. We will describe this point in details later, when trion-based saturation effects are considered.

We note that previously the light-matter coupling in MoSe2 TMD material was also considered for the case of

exciton-polarons.26 This corresponds to similar creation operator B̂†j , but different ansatz for the wave function,
which accounts for dressing of photo-created exciton with electrons in the Fermi sea. We stress that both trion-
dominated or polaron-dominated regimes can be possible, as considered in Ref. [27]. Recent predictions for the GaAs
samples estimate the cross-over into exciton-polaron regime to happen for Fermi wave vector to be comparable with
inverse Bohr radius for the system, kcr ∼ 0.8a−1

B .28 As we show later, the experiment is conducted in the kF � a−1
B

limit of small concentration, which corresponds to the trion-dominated regime.
Next, we proceed with the estimation of trion Rabi-splitting, or conversely the free electron density. It is given by

the bare coupling constant g multiplied by the square root of electron density and the wave function part responsible
for absorption renormalization due to the confinement. First, we account for the fact that photon momentum has
typically small values q, being much less than other relevant wavevectors. This also translates into nearly zero center-
of-mass momentum of the generated exciton, where an electron and a hole are located close to each other. Here,
we follow the approach introduced in Refs. [29,30], where the so-called electron-exciton coordinates are used. These
correspond to the electron-hole relative coordinate (seen as an exciton) and the relative coordinate of the CM for
“exciton” to the second electron. They are generally described by length parameters λ and λ′. Due to complex
symmetrization requirements, they do not allow to choose wavefunction in the simple form, thus preventing the
analytical calculation. However, in the limit of large λ2 � λ1 the e-h and e-X coordinates become nearly equivalent,
and we can set λ ≈ λ1 and λ′ ≈ λ2.

Taking the trion wavefunction to be Fourier transformed with respect to an exciton internal motion,

φTk1,k2
=

∫
dr1

eik1·r1
√
A
N
{√

2

πλ2
1

exp(−r1/λ1)

√
8πλ2

2

A
(1 + λ2

2k
2
2)−3/2 +

√
2

πλ2
2

exp(−r1/λ2)

√
8πλ2

1

A
(1 + λ2

1k
2
2)−3/2

}
,

(52)

the coupling then can be estimated setting r1 = 0 (i.e. for the closely located photocreated e-h pair). Simultaneously,
we shall account that Fermi wavevector kF � λ−1

1 , λ−1
2 , and thus the wavefunction in Supplementary Equation (50)
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can be considered as a constant at k2λ2,1 = 0, going in front of the sum. Altogether, the coupling Hamiltonian can
be rewritten as

ĤTcoupl =
ΩT

2

∑
q

(B̂†qĉq + h.c.), (53)

where the trion Rabi frequency reads

ΩT

2
= g
√
Ne4N

(
λ2

λ1
+
λ1

λ2

)
=

ΩX

2

√
8πa2

BN
(
λ2

λ1
+
λ1

λ2

)
√
ne, (54)

where we used the Rabi frequency definition for the neutral exciton case, ΩX/2 = g
√

2A/πa2
B, and ne = Ne/A is a

concentration of free electrons which can form trions. Supplementary Equation (54) then allows to estimate ne using

ne =

(
ΩT

ΩX

)2
1

4πa2
B

[1 + 16λ2
1λ

2
2/(λ1 + λ2)4]

(λ2/λ1 + λ1/λ2)2
, (55)

once the variational parameters are known.

2. Trion binding energy and variation

Next, we proceed to define λ1 and λ2 for trions in TMDC. We follow the approach outlined in Ref. [23], using the
wavefunction (48). The expectation value for the trion Hamiltonian (includes kinetic terms for relative motion and
Coulomb interaction) then can be written as

E(T) =
I1 + 2χI2 + J1 + J2

1 + χ2
, (56)

where we define auxiliary quantities:

I1 =

(
1

λ2
1

+
1

λ2
2

)
(1 + γ)− 4

λ1

∫ ∞
0

dx
1

(1 + 2r0
κλ1

x)

1

[1 + x2]3/2
− 4

λ2

∫ ∞
0

dx
1

(1 + 2r0
κλ2

x)

1

[1 + x2]3/2
, (57)

I2 =
4(1 + γ)

(λ1 + λ2)2
− (λ1 + λ2)χ2

2λ̃2

∫ ∞
0

dx
1

(1 + r0
κλ̃
x)

1

[1 + x2]3/2
, (58)

J1 =
4

λ1

∫ ∞
0

dx
1

(1 + 2r0
κλ1

x)

1

[1 + x2]3/2
1

[1 + (λ2/λ1)2x2]3/2
, (59)

J2 =
2χ2

λ̃

∫ ∞
0

dx
1

(1 + r0
κλ̃
x)

1

[1 + x2]3
, (60)

where γ = me/mh, λ̃ = λ1λ2/(λ1 + λ2), and we remind that r0 is screening parameter, κ is average dielectric
permittivity of the substrate. Here, all length parameters are measured in the units of

a0 =
~2ε04πκ

e2me
, (61)

and energies are measured in units of

E0 =
~2

2mea2
0

. (62)

To obtain the binding energy for the trion complex, we minimize E(T)[λ1, λ2] with respect to variational parameters,
and subtract the exciton binding energy contribution EX

b . The latter is obtained from minimization of

E(X)[λ0] =
(1 + γ)

λ2
0

− 4

λ0

∫ ∞
0

dx
1

(1 + 2r0
κλ0

x)

1

[1 + x2]3/2
, (63)
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which for previously defined parameters of me = 0.8m, mh = 0.84m, r0 = 4 nm, κ = 4, gives λ0 = 0.93 nm and binding
energy of EX

b = −min{E(X)[λ0]} = 259 meV. The variational procedure for the trion then gives the binding energy

of ET
b = −min{E(T)[λ1, λ2]} − EX

b = 26 meV for λ1 = 0.87 nm and λ2 = 2.54 nm. These are the parameters which
will be used in the following. Although we remind that considered variation with two parameters is oversimplistic, it
provides energy estimate to be very close experimentally measured trion binding energy of 30 meV.

Finally, substituting obtained radii λ1,2, aB = 0.93 nm, and experimentally measured Rabi-splittings ΩT = 5.8 meV,
ΩX = 17.2 meV, using Supplementary Equation (55) we estimate the electron concentration available for trion creation
to be ne = 4.05 × 1010 cm−2, with the full concentration corresponding to ntot

e = 8.1 × 1010 cm−2. Note that so far
only variation and parameters obtained from the exciton-polariton case were used, with no fitting involved.

3. Trion Rabi-splitting quench

We continue with the calculation of the modified trion Rabi frequency due to the deviation of statistics. For this,
similarly to excitonic case [Supplementary Equation (14)], we derive the equations of motion for the excitation mode

B̂j using Hamiltonian (53). The nontrivial dynamics part comes from the light-matter coupling term

i
dB̂q′

dt

∣∣∣
coupl

= [B̂q′ , ĤTcoupl] =
ΩT

2

∑
q

ĉq[B̂q′ , B̂†q], (64)

and relies on the calculation of commutator [B̂q′ , B̂†q]. To do so, it is instructive to rewrite the excitation operator in
terms of trion and electron, yielding[

B̂q′ , B̂†q

]
=

1

Ne

[∑
k′

â†k′ T̂q′+k′ ,
∑
k

T̂ †q+kâk

]
=

1

Ne

∑
k,k′

(
â†k′

{
T̂q′+k′ , T̂ †q+k

}
âk − T̂ †q+kT̂q′+k′δk,k′

)
. (65)

In the case of low pumping intensity, the trion anti-commutation relations resemble that of ideal fermions, {T̂i, T̂ †j } =

δi,j , and the number of trions goes to zero. Then, the commutator for q = q′ reduces to integral over distribution
function fk and gives unity, [

B̂q, B̂
†
q

]
=

1

Ne

∑
k

fk = 1, (66)

as it should be for an ideal bosonic mode. However, for the increase of pumping we observe two contributions
which change the commutation relation. First contribution comes from deviation of fermionicity for composite trion

operator, such that {T̂q′+k′ , T̂ †q+k} is not a simple delta function anymore. For equal momenta this starts at the value

of unity, and decreases with powers of nTλ
2.

The second contribution comes from the composite nature of the quasi-bosonic operator B̂q, which ultimately
depends on the ratio between number of trions and available free electrons for their creation. To demonstrate this
point, let us rewrite Supplementary Equation (65) as[

B̂q′ , B̂†q

]
= δq,q′ − D̂q,q′ , (67)

where the deviation operator is formally introduced as

D̂q,q′ = δq,q′ − 1

Ne

∑
k<kF

(
â†k+q−q′ âk − T̂ †q+kT̂q′+k

)
, (68)

where we have considered the limit of nTλ
2 � 1, such that trions can be approximately treated as ideal fermions. We

observe that while conceptually the deviation operator resembles the one used for excitons in the previous section,
the fact that trion-electron excitation is not bound leads to different closure relations and statistics. In this case, it is
reminiscent to intersubband excitations32 with trion being an excitation over the Fermi sea. We proceed by deriving
the commutation relations for the devation operator and excitation operator, which reads[

D̂q,q′ , B̂†q′′

]
=

2

Ne
B̂†q′′+q−q′ , (69)
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and it can be recursively generalized to the case of NT particles as[
D̂q,q′ , (B̂†q′′)

NT

]
=

2NT

Ne
(B̂†q′′)

NT−1B̂†q′′+q−q′ . (70)

The derived commutation relations, which are dependent on NT/Ne ratio, will be later shown to ultimately lead to

the quench of the trion Rabi frequency, where the commutator 〈
[
B̂q′ , B̂†q

]
〉 averaged over highly-excited many-body

state vanishes.
In the following, we proceed with considering the two aforementioned contributions one-by-one.

4. Deviation from fermionicity for the composite trion anti-commutator

To account for the deviation of statistics, we use the generalized many-body formalism for composite n-particles31.
This allows to calculate anti-commutator for the composite fermion (trion in our case), which consists of three particles
of different flavor (opposite spin electrons an a hole). In the general form, it reads{

T̂m, T̂
†
i

}
= δm,i − Ξ̂mi, (71)

where deviation from fermionicity operator Ξ̂mi is defined as

[
Ξ̂mi, T̂

†
j

]
=
∑
n

T̂ †n
∑
ρ

(
λρ

(
n j

m i

)
− λρ

(
n i

m j

))
+ Ξ̂†mij , (72)

and the operator Ξ̂†mij is defined through the anticommutator{
Ξ̂†mij , T̂

†
k

}
=
∑
p,n

T̂ †p T̂
†
nΛp,k,n,j,m,i. (73)

Here single exchange integrals λρ(j, i, n,m) are as in Supplementary Equation (20) (though with three particle wave-
function), and ρ denotes the carrier to be exchanged. In total, it provides six contributions, which in the case of
zero exchanged momentum we expect to be the same. The last term in (72) corresponds to three-particle exchanges
Λp,k,n,j,m,i with all permutations. As it typically corresponds to ∼ λ4 scaling, which shall be accompanied by the
quadratic density contribution, we refrain from considering it, and concentrate on lower order terms only. However,
we note that the missing term might still effect the quench of the trion Rabi-splitting, as at increasing concentration
the terms in all orders become important.

The trion exchange is calculated using the trial wavefunction

ΦTp,k =

√
8πλ2

A
(1 + λ2p2)−3/2

√
8πλ′2

A
(1 + λ′2k2)−3/2 (74)

in the electron-exciton basis without symmetrization, which is accounted at latter stage, and we take hole exchange
as an example. In analogy to the case of trion interaction33 it reads

λh

(
0 0

0 0

)
=
∑

k,p,p′

|ΦTp,k|2|ΦTp′,k+αh(p−p′)|
2 =: λT . (75)

To evaluate (75) we use new coordinates p − p′ = δp, (p + p′)/2 = P, make momenta dimensionless multiplying it
by λ, and define ξ = λ′/λ. Finally, following the same procedure as for composite excitons, the anti-commutator

〈NT|{T̂q′ , T̂ †q}|NT〉 is averaged over a state of NT composite particles (now fermions), such that NT contributions is
obtained. This leads to the estimate for the deviation

〈
[
B̂q, B̂

†
q

]
nF
〉 ≡ 1

Ne
〈
∑
k,k′

â†k′Ξ̂q′+k′,q+kâk〉 = −
{

6× 128

π

(
λ′4

λ2

)
NT

A
IT + (λ↔ λ′)

}
=: −∆nF, (76)
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where the dimensionless exchange integral reads

IT =

∫ ∞
0

∫ 2π

0

dxdx′dydθ1dθ2xx
′y

1

(1 + x2 + x′2/4 + xx′ cos θ1)3

1

(1 + ξ2y2)3

1

(1 + x2 + x′2/4− xx′ cos θ1)3
(77)

× 1

(1 + ξ2[y2 + x′2/4− yx′ cos θ2])3
, (78)

and we account for symmetrization between λ and λ′ parameter as a separate term. As in the case of excitons, we
observe that the first order correction in nTλ̃

2 reduces the coupling as a function of the composite particle density
(λ̃ is an effective parameter of length dimensionality).

5. Effects of medium saturation

Next, we find that the increased number of trions as a consequence of increasing pump intensity provides another
contribution for the trion Rabi frequency reduction. To derive the trion-density dependence for ΩT, we employ the
same strategy as previously used for composite excitons in Supplementary Note 2.1. For this, we consider the ground
state of the system as a Fermi sea of free electrons |FS〉 available for the trion creation. The relevant excited states

then correspond to multi-trion states |NT〉 ≡ (B̂†q′′)NT |FS〉. The nonlinear contribution to the trion Rabi frequency

associated to the composite nature of B̂q′′ comes from the average

〈NT|
[
B̂q′ , B̂†q

]
|NT〉 = 〈NT|NT〉 − 〈FS|B̂NT

q′′

[
D̂q,q′ , B̂†NT

q′′

]
|FS〉 ≈ 1− 2NT

Ne
+O[(NT/Ne)2], (79)

where we used Supplementary Equation (70) and the fact that q, q′, q′′ are small. The analysis of Supplementary
Equation (79) shows that modified commutation relations can ultimately leads to the quench of the strong coupling
once the number of trions becomes comparable to half the number of free electrons NT = Ne/2. However, this only
corresponds to the lowest order corrections, and higher terms shall be accounted for increasing NT/Ne ratio to get
the full treatment. In this case, smooth reduction of ΩT is expected up to NT = Ne.

Finally, collecting all contributions together (including the one described in Supplementary Note 4), we can write
the effective commutator at growing trion density nT = NT/A as a function

〈
[
B̂q, B̂

†
q

]
〉 = 1− 2nT

ne
−∆nF + ∆2

nF /2 +O[nTλ̃
2] := fT(nT, ne, λ, λ

′), (80)

where similarly to exciton case we conjectured the appearance of the quadratic term ∆2
nF/2, which appears in the

expansion of the exponent. The function fT(NT, Ne, λ, λ
′) is decreasing from 1 to 0, and we consider it zero after the

quench. The important parameter then is the half of available electron density ne/2, which defines the excitation den-
sity at which quench is observed. The resulting density dependent trion Rabi frequency, defined as in Supplementary
Equation (64), then reads

ΩT(nT)

2
=

ΩT(0)

2

(
1− 2nT

ne
−∆nF + ∆2

nF/2

)
, (81)

and is used later to calculate the density dependence for the polariton modes.
Intuitive explanation. To explain the leading trend of linearly decreased coupling for the number of trion equal

to half the number of free electrons, we note that the coupling of the trion mode to the cavity bares analogy to the
atom-photon coupling25,34 (contrary to the neutral exciton case). This is readily seen in the ∝ √ne dependence for
the coupling constant, similarly to the common square root enhancement for the N two-level emitters.35 Given this
correspondence, we show how the coupling between trion and photon changes for high excitation power. For the trion
case, the state |g〉 corresponds to a free electron, while excited state |e〉 corresponds to the created trion. The total
number of available excitations is thus equal to the number of free electrons ne ≡ N . Using the analogy, we write the
Hamiltonian of the system as

Ĥ = ωcâ
†â+

N∑
j

{
∆|e〉j〈e|+ g(|e〉j〈g|â+ h.c.)

}
, (82)
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where â† (â) is a creation (annihilation) operator for a cavity mode, and j corresponds to the considered two level
system. The coupling term ∝ g thus describes polaritonic physics. For simplicity, we can take ∆ = 0 and measure
cavity mode energy ωc from this value.

The usual way to treat light-matter coupling in (82) is to assume weak excitation conditions and perform effective
bosonization35 (i.e. make Holstein-Primakoff transformation). For this, the excitation creation operator reads

b̂† =
1√
N

∑
j

|e〉j〈g|, (83)

where 1/
√
N corresponds to the normalization condition, and b̂ can be written similarly. The overall meaning of b̂† is

the creation of excitation out available two-level emitters (free electrons) as a superposition. With the new operators
Hamiltonian (82) can be recast in the familiar form

Ĥ = ωcâ
†â+ g

√
N(b̂†â+ h.c.), (84)

where the last term corresponds to the usual polaritonic coupling with the superradiant enhancement, as for coupling
to an ensemble of emitters. To see the influence of the light-matter coupling on the energy of the system (polaritonic
shift), we take the many-body wave function in the form

|ΨG〉 = {|nph, nexc〉, |nph, nexc − 1〉, |nph − 1, nexc〉, |nph − 1, nexc − 1〉, ...}, (85)

where nph corresponds to the number of photons and nexc to the number of excitations (i.e. number of |1〉j atomic
states). Only certain states will be coupled by the off-diagonal light-matter interaction term. The expectation value
for the Hamiltonian (84) yields

〈Ĥ〉 = ωcnph + 〈nph − 1, nexc|g
√
Nb̂†â|nph, nexc − 1〉 = ωcnph + g

√
N〈nph − 1, nexc|

√
nph
√
nexc|nph − 1, nexc〉 (86)

= nph(ωc + g
√
N),

where we considered number of excitations to be equal to number of photons. One observes that the expectation
value contains the same value of coupling g

√
N as before, which is equal to Rabi frequency.

The situation is however different when weak excitation conditions are not met. In this case effective bosonic
picture (and Holstein-Primakoff transform) is not longer valid. To compare the two cases, the full basis in (82) must
be considered. Choosing the wave function with N −m states to excited, and m states be in ground state {0mi }, we
can write it as

|ΨE〉 = {|nph〉 ⊗ |11, 12, .., 0i1 , ..0i2 , .., 1N 〉, ...}. (87)

We note that (87) is of course an approximation, and the full state may contain components with different number of
excited stated. However, as the coherent state distribution is expected, their influence is suppressed.

Taking the expectation value for (82) for (87) one gets

〈Ĥ〉 = ωcnph + 〈ΨE |
N∑
j

g|e〉j〈g|â|ΨE〉 = ωcnph + g
√
nph

√
m = nph(ωc + g

√
m/nph), (88)

where the coupling reduced by the factor
√
m/N . For growing number of excitations nexc (and increasing number of

atom in ground state), this prefactor can be expanded into series, leading to ∝
√
m/N ≈ 1− 2nexc/N +O[nexc/N ]2

dependence. Finally, it is easy to see that for all states being excited (m = 0) the coupling goes to zero, as there are
no states to couple. This leads to the conclusion that for the inverted medium (maximal number of trions), the cavity
becomes decoupled from the matter. Of course, in reality other effects coming from non-fermionicity play the role,
and linear quech to zero is expected to change into a smooth function.

6. Trion polaritons at increasing density

Finally, we describe the process of trion Rabi quench, evidenced by the behavior of the middle polariton branch.
To describe Fig. 3(b) in the main text we perform the diagonalization of the full photon-trion-exciton system, which
can be written as

HT−pol =

 EC
1
2ΩX(nX) 1

2ΩT(nT)
1
2ΩX(nX) EX(nX) 0
1
2ΩT(nT) 0 ET

 . (89)
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Here we consider the nonlinear contributions to both trion and exciton modes, taking experimentally measured values

E
(0)
T = 1621.02 meV, EC = 1630.32 meV, E

(0)
X = 1645.72 meV, ΩT = 5.8 meV, ΩX = 17.2 meV, obtained exciton

Bohr radius aB = 0.85 nm, variation parameters λ1 ≈ λ = 0.87 nm, λ2 ≈ λ′ = 2.54 nm, and using the estimated
electron concentration ne = 4.05× 1010 cm−2. The result is shown in Fig. 3b [main text] by the red solid curve, and
allows to reproduce the initial red shift of EMPB due to quenched trion Rabi-splitting, followed by the weak blue shift
caused by exciton-exciton interactions.

Finally, we notice that in experiments the energy blue shift of the MPB at small exciton concentrations (see
Figs. 3b and 5 of the main text) is about one order of magnitude larger than that predicted by the theory. The
missing blueshift contribution, which manifests as a plateau due to competition with ΩT quench and subsequent
linear growth, is identified as a trion-exciton interaction. Indeed, the full trion Rabi quench appears when high order
terms are neglected, with function fT(nT) reaching zero non-smoothly. However, their account shall provide non-
zero ΩT even for nT ≈ ne/2, leading to residual coupling and small trion admixture. This for instance can lead to
several percent fraction of the trion in MPB branch, and contribute as trion-exciton exchange. The interaction can
substantially increase the energy of MPB state even for the trion being weakly coupled to light. As a result, at exciton
densities 5-10 times above the maximum density of the excited trions, the MPB can exhibit substantial blueshift well
above that predicted by the theory, which considers only neutral exciton-exciton interactions.

The full calculation of trion-exciton interaction energy is formidable and is typically limited due to its large depen-
dence on the trion wavefunction ansatz33. Nevertheless, the overall strength of trion-exciton interaction is estimated
to be one-to-two orders of magnitude stronger than that of exciton-exciton exchange. This is because of the following
reasons: 1) Firstly, the number of electron and hole exchange processes is increased compared to the X-X exchange
case; 2) the outer shell of the trion, described by λ2, defines the scattering cross-section, which is larger than for
exciton; 3) the direct Coulomb term is expected to play a role, unlike for the neutral exciton-exciton interaction case.

Supplementary Note 4

Quantum trion-polaritons: theory

We now present a theoretical estimate of how a system analogous to the one considered in the current paper can be
used to observe strong nonlinear response at the quantum level of a few photons. The experimental signature of such
behavior is a pronounced antibunching of the photon emission, which can be monitored by measuring the second order
coherence function. To calculate the latter, we consider a system described by the trion-photon Hamiltonian, where
the coupling is between a single photonic mode of the cavity, described by the bosonic operators ĉ, ĉ†, and a trion

mode with zero in-plane momentum K = 0, characterized by the operators B̂0, B̂
†
0 [see definition in Supplementary

Equation (51)]. The Hamiltonian can be written in the rotating frame as

Ĥ = ωcĉ
†ĉ+ ωTB̂0

†
B̂0 +

ΩT

2
(B̂†0 ĉ+ B̂0ĉ

†) + P (ĉeiωpt + ĉ†e−iωpt), (90)

where P denotes the pump strength for a cw coherent optical drive of frequency ωp. In Supplementary Equation (90)
the first two terms correspond to free cavity photons and trions and the third term describes the photon-trion coupling.
The Rabi splitting ΩT is given by Supplementary Equation (54). The effective polariton energies in the weak excitation

limit read ωL,U = (ωc +ωT)/2∓
√

Ω2
T + (ωc − ωT)2/2. Finally, it is convenient to go to the rotating frame with respect

to the last term in Supplementary Equation (90), such that the system is described by the detuning from the pump
frequency.

The non-bosonic operator B̂†0 is characterized by its matrix elements in the Hilbert space spanned by the Fock
states for trions, |NT〉. The matrix elements read

〈NT − 1|B̂0|NT〉 =
〈Ø|B̂NT−1

0 B̂q→0(B̂†0)NT |Ø〉√
(NT − 1)!FNT−1

√
NT!FNT

, (91)

where FNT
≡ 〈Ø|B̂NT

0 B̂†NT

0 |Ø〉/NT! corresponds to the correction factor accounting for the composite nature of the
trion excitation (in the case of bosonic excitations FNT

= 1). Its explicit form can be derived using the recursive
relation

FNT−n =
(Ne −NT)!Nn

e

(Ne −NT + n)!
FNT

, (92)

which is similar to those reported earlier for Frenkel excitons36 and intersubband excitations32. As for the numerator,
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Supplementary Figure 10: Trion-induced antibunching for photons. Second order coherence at zero delay for the MoSe2

trion-polariton system. (a) g(2)(0) as a function of pump detuning plotted in the vicinity of the cavity resonance (we consider
ωc = ωT), for several values of the nonradiative decay rate γT of the trion mode (Ne = 100). The destructive interference leads

to the appearance of antibunching as γT ∼ gc := ΩT/
√
Ne, corresponding to unconventional photon blockade. (b) g(2)(0) for

pump frequencies close to the lower polariton frequency, ωp ∼ ωL. Conventional photon blockade leads to the appearance of
antibunching at small γc,T. (c) The minimal g(2)(0), minimized over pump detuning, and shown as a function of trion decay
γT for several cavity quality factors. Qualitatively different behaviour is visible for γT � gc = 0.29 meV and γT ∼ gc.

it can be evaluated using the commutation relation

[B̂q, B̂
†N
q′ ] = N(B̂†q′)

N−1(δq,q′ − D̂q,q′)− N(N − 1)

Ne
B̂†2q′−q(B̂†q′)

N−2, (93)

derived iteratively from Supplementary Equation (65). A careful treatment of recursion in arbitrary order gives a
closed expression for the matrix elements

〈NT − 1|B̂0|NT〉 =

√
NT

(
1− NT

Ne + 1

)√
Ne

Ne + 1

[
1− (−1)NT

(Ne −NT)!NT!

Ne!

]
, (94)

and a similar expression can be derived for its complex conjugate. Importantly, Supplementary Equation (94) works
for the relevant case of few trion excitations NT ≤ Ne (contrary to the Holstein-Primakoff approach38–40 which fails
in the limit where NT = 1). This will be important for obtaining correct quantum statistical properties for the cavity
emission.

The dynamics is studied by numerically solving the master equation for the full density matrix of the system in the
truncated trion-photon Hilbert space. It reads

∂ρ̂

∂t
= i[ρ̂, Ĥ] + γc

[
ĉρ̂ĉ† − 1

2

(
ĉ†ĉρ̂+ ρ̂ĉ†ĉ

)]
+ γT

[
B̂0ρ̂B̂

†
0 −

1

2

(
B̂†0B̂0ρ̂+ ρ̂B̂†0B̂0

)]
, (95)

where the first term on the right hand side corresponds to the coherent part of the evolution, the second term describes
photonic dissipation (characterized by the finite broadening of the cavity mode related to the finite lifetime of the
cavity photons), γc = τ−1

c , and the third term describes trion dissipation characterized by nonradiative broadening
γT = τ−1

T .
To characterize the statistics of the cavity output we evaluated the second order coherence function at zero delay

for the cavity photons, defined as

g(2)(0) =
Tr
[
ĉ†ĉ†ĉĉρ̂s

]
Tr [ĉ†ĉρ̂s]

2 , (96)

where ρ̂s denotes the steady state density matrix for the continuously driven dissipative system.
In the current experiment we measured a Rabi frequency ΩT = 5.8 meV and estimated the free electron density

ne = 4 × 1010 cm−2, with the corresponding number of electrons being ∼ 1200 in the cavity of area A = 3 µm2.
These experimental values already imply the expected trion-photon coupling strength for the case of a single electron
in the cavity area, gc = ΩT/

√
Ne = 0.17 meV. In improved devices the photonic mode area can potentially be

reduced to A = 1 µm2 using a curved top mirror with smaller radius of curvature43,44 so that the coupling strength
is enhanced by a factor of

√
3, giving gc = 0.29 meV. Meanwhile, the photon decay rates for an open cavity routinely

reach ∼ 0.1 meV values, and can be as low as γc = 10 µeV (∼ 65 ps lifetime) in the state-of-the-art samples42,43.
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Furthermore, electron concentrations down to ne = 1010 cm−2 can be realised in gated samples. In this case the
expected Rabi splitting will be ∼ 3 meV for an average cavity occupation of 100 electrons, making phase-space filling
effects even more pronounced and going far beyond the electronic confinement regime. Finally, in TMDC samples
of high purity, which are encapsulated between thick hBN-layers, the trion inhomogeneous broadening as well as
non-radiative recombination may become negligible such that the trion nonradiative linewidth γT will be determined
by pure dephasing due to scattering with phonons41. This may result in nonradiative trion linewidths as small as
γT ∼ 10 µeV at a temperature of 1 Kelvin41.

While studying the second-order coherence in the system, we note two possible mechanisms which can reduce the
multi-photon component and facilitate single photon emission. The first mechanism corresponds to the conventional
blockade-type antibunching, where two-photon occupation is suppressed by strong trion-photon coupling at the single
particle level, gc/γc,T � 1. In the following we show that this shall be possible in future high-quality samples. The
second mechanism can be identified as an unconventional-type single photon blockade46,47 due to phase space filling
effects, which does not require strong coupling and works at optimal parameters of gc ∼ γT and ωp ≈ ωc (see45 for
the full analysis). It relies on destructive interference between the direct coherent optical excitation two photons and
the trion-mediated excitation path,47 thus relaxing the requirement for strong energy shift. At the same time, it
causes oscillations of the second-order coherence as a function of delay, and generally has smaller emission probability.
Below, we consider the two regimes as long-term and near-term goals for nonlinear trion-polaritonics with TMDC
materials.

The results of the second-order coherence calculations are shown in Supplementary Figure 10. First, in Supple-
mentary Figure 10(a) we plot g(2)(0) for a range of pump frequencies close to the cavity transition. For this, we
consider cavity linewidth γc = 0.05 meV, ωc = ωT, and gc = 0.29 meV with 100 electrons. Studying the dependence
for different values of the nonradiative trion decay rate γT we observe the appearance of an antibunching window
when gc ≈ γT. At the same time, for narrow linewidths γT � gc the antibunching behaviour disappears from the
ωp ≈ ωc region, signifying the resonant interference-based nature of the effect and the modest coupling requirement.
At the same time, we note the limited efficiency of the single photon emission in this window, as cavity occupation
is typically in 〈ĉ†ĉ〉 ∼ 10−3..10−4. We envisage that in practise the optimal parameters would be tuned using sample
positioning in an open cavity as a tool.

In Supplementary Figure 10(b) we consider a different range of pump detunings, where the coherent drive is
nearly resonant with the lower trion-polariton, ωp ≈ ωL, which corresponds to non-zero ωc − ωp detuning. In the
calculations we assume a high-quality cavity with γc = 10 µeV and improved values of the trion linewidth limited
by thermal effects. The plot for g(2)(0) shows an antibunching for pump frequencies slightly below the transition,
with single photon purity gradually improving as the coupling ratio gc/γc,T increases. The Fano-shape profile of the

g(2)(0) dependence draws the connection to conventional Kerr-based polariton blockade,48 which can be accessed in
structures of larger lateral size and favours the strong binding energy limit for excitons.

Finally, Supplementary Figure 10(c) shows the minimal value of g(2)(0), minimized over a wide range of pump
detunings spanning both regimes, as a function of the trion nonradiative linewidth γT. For trion decay rate comparable
to the light-matter coupling constant gc the unconventional antibunching can be observed (γT > 0.1 meV). For long-
lived trions with small non-radiative decay (0.01 meV) we also observe pronounced antibunching due to conventional
blockade, which is limited by the cavity quality factor. This shows that single photon emission with trion-polaritons
in MoSe2 is possible in high quality samples.
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