Supplementary information

Supplementary Note 1

Nucleic acid recovery

Viral vaccine crude harvest

The nucleic acids recovered were 60–137 pg $\mu L^{\text{-1}}$ and the library concentration range was 2.8–4.5 ng

mL⁻¹.

Cell substrate matrix

Nucleic acid recovery was 4.5–6.6 ng μL^{-1} and the Library concentration range was 2.4–3.0 ng μL^{-1} .

1 Supplementary Table 1: The World Health Organization and European pharmacopeia

Reference Recommendation WHO TRS 978 Annex 3 - Cell substrates:¹ "New and sensitive molecular methods with broad detection capabilities are being developed. These are not yet in routine use but, as they become widely available and validated, they will play an increasing role in the evaluation of cell substrates. The sensitivity of these methods, as well as their breadth of detection, should be considered when evaluating their applicability." WHO TRS 978 Annex 5: Live Attenuated Yellow Fever:¹ "New molecular methods with broad detection capabilities are being developed for the detection of adventitious agents. These methods include: degenerate NAT for whole virus families with analysis of the amplicons by hybridisation, sequencing or mass spectrometry; NAT with random primers followed by analysis of the amplicons on large oligonucleotide microarrays of conserved viral sequencing or digital subtraction of expressed sequences; and high-throughput sequencing. These methods may be used in the future to supplement existing methods, or as alternative methods to both in vivo and in vitro tests, after appropriate validation and approval by the NRA. " same paragraph in WHO TRS 979 Annex 2 (Live attenuated Dengue Vaccine) "New molecular methods with broad detection capabilities are Ph. Eur 5.2.3: "Cell Substrates for the production of vaccines for human use", version 9:0 and updated version being developed for the detection of adventitious agents. These methods include: degenerate NAT for whole virus 9.3 in July 2017, revision² families with analysis of the amplicons by hybridisation, sequencing or mass spectrometry; NAT with random primers followed by analysis of the amplicons on large oligonucleotide microarrays of conserved viral sequencing or digital subtraction of expressed sequences; and high-throughput sequencing. These methods may be used in the future to supplement existing methods, or as alternative methods to both in vivo and in vitro tests, after appropriate validation and approval by the NRA." Detection of viral extraneous agents by novel molecular Ph. Eur. 5.2.14: "Substitution of in vivo method(s) by in methods: Detection of viral extraneous agents in cell banks, vitro method(s) for the quality control of vaccines", seed lots and cell culture harvests is currently conducted using version 9.3 published in July 2017, creation³ a panel of in vivo and in vitro methods at different stages of the manufacturing process. Novel, sensitive molecular techniques with broad detection capabilities are available, including deep sequencing or high throughput sequencing methods, degenerate PCR for whole virus families or randompriming methods (associated or not with sequencing), hybridisation to oligonucleotide arrays and mass spectrometry. The use of these new broad molecular methods has highlighted the gaps with the existing testing strategy by identifying previously undetected viral contaminants in final product, the cell banks from which it was produced and intermediate manufacturing stages. These new broad molecular methods (e.g. deep sequencing or high throughput

sequencing) detect genomes while the existing in vivo

2 recommendations for new methods to detect adventitious agents

	methods are based on observations of the effects viruses have
	on experimental animals. <u>The implementation of such new</u>
	broad molecular methods as substitutes for <i>in vivo</i> methods
	requires a comparison of the specificity (breadth of detection)
	and the sensitivity of the new and existing methods. For this
	purpose, an appropriate panel of representative well-
	characterised model viruses should be used to assess the
	ability of the new method to detect viruses that are (or are
	not) detected by the <i>in vivo</i> methods and, to determine if the
	sensitivity is at least equivalent to the sensitivity of the <i>in vivo</i>
	<u>methods.</u> This last element is particularly complex since these
	new molecular methods do not detect the same characteristic
	of the viral contaminant (genome for molecular methods
	versus infectious virus for <i>in vivo</i> methods)_and also the fact
	that no or limited validation data exist for the <i>in vivo</i> methods.
	It should be also emphasised that the outcome of the broad
	molecular methods is not the final result since the detection
	of a genome or fragments of a genome does not necessarily
	indicate the presence of an infectious virus."
Ph . Eur . 2.6.16: "Tests for extraneous agents in viral	"New molecular methods with broad detection capabilities
vaccines for human use", version 9.3 published in July	are being developed for the detection of adventitious agents.
2017, revision. Corrected version in Supplement 9.4^4	These methods include: degenerate NAT for whole virus
2017, revision, conceled version in Supplement 3.4	families with analysis of the amplicons by hybridisation,
	sequencing or mass spectrometry; NAT with random primers
	followed by analysis of the amplicons on large oligonucleotide
	microarrays of conserved viral sequencing or digital
	subtraction of expressed sequences; and high-throughput
	sequencing. These methods may be used in the future to
	supplement existing methods, or as alternative methods to
	both in vivo and in vitro tests, after appropriate validation and
	approval by the NRA."
Dh. Eur. The European Dharmacanaeia general ch	

3 Ph. Eur., The European Pharmacopoeia general chapters; WHO, the World Health Organization

Supplementary Table 2: NIH Model Viruses 4

Viral Family and virus	Strain Enveloped		Viral genome	Genome	Production	
				Size (Kb)	Cell Line	
Adenoviridae						
Adenovirus 5	Adenoid 75	No	dsDNA	36	A549	
Adenovirus 41	N/A	No	dsDNA	34	HEK293	
Flaviviridae						
Bovine Viral Diarrhea Virus	NY-1	Yes	ssRNA (+ve)	12.4	BT	
Herpesviridae						
Herpes Simplex Virus Type 1	MacIntyre	Yes	dsDNA	150	Vero	
Simian Cytomegalovirus	CS6	Yes	dsDNA	221	MRC-5	
Orthomyxoviridae						
Influenza A Virus	A/PR/8/34 (H1N1)	Yes	ssRNA (-ve)	12.5	MDCK	
Paramyxoviridae						
Bovine Parainfluenza Virus Type 3	N/A	Yes	ssRNA (-ve)	15.5	Vero	
Measles Morbillivirus	Edmonston	Yes	ssRNA (-ve)	15.9	Vero	
Mumps Virus	Enders	Yes	ssRNA (-ve)	15.4	Vero	
Picornaviridae						
Coxsackie virus A16	N/A	No	ssRNA (+ve)	7.4	Vero	
Coxsackie virus B3	N/A	No	ssRNA (+ve)	7.4	LLC-MK2	
Echovirus 11	Gregory	No	ssRNA (+ve)	7.4	LLC-MK2	
Rhinovirus 2	HGP	No	ssRNA (+ve)	7.1	HeLa	
Polyomaviridae						
Simian Virus 40	Pa-57	No	dsDNA	5.2	Vero	
Rhabdoviridae						
Vesicular Stomatitis Virus	Indiana	Yes	ssRNA(-ve)	11.2	Vero	
Togaviridae						
Rubella Virus	M-33	Yes	ssRNA (+ve)	9.7	BSC-1	

5 ds, double stranded; NIH, National Institutes of Health; ss, single stranded.

	Lot #	NIH Stock for Seed			Clean Cells Production	
		NIH Titer TCID ₅₀ mL ⁻¹ *	Clean Cells Titer TCID ₅₀ mL ⁻¹ *	Genome copies per mL	Infectious Titer TCID ₅₀ mL ⁻¹ *	Genome copies per ml
Adenoviridae						
Adenovirus 5	SP-NIH-AD5-01	3.0 x 10 ⁸ (Day 7)	4.27 x 10 ⁷ (Day 7) 2.95 x 10 ⁹ (Day 12)	2.56 x 10 ¹⁰	2.95 x 10 ⁷ (Day 12)	4.83 × 10 ⁸
Adenovirus 41	SP-NIH-AD41-01	2.0×10^{5}	9.33 x 10 ⁵	1.43 x 10 ¹¹	1.74 x 10 ⁵	1.41×10^{10}
Flaviviridae						
Bovine Viral Diarrhea Virus	SP-NIH-BVDV-01	3.0 x 10 ⁷ FAID ₅₀ mL ⁻¹	4.68 x 10 ⁷	3.39 x 10 ⁸	7.76 x 10 ⁷	3.69 x 10 ⁸
Herpesviridae						
Herpes Simplex Virus Type 1	SP-NIH-HSV1-01	9.5 x 10 ⁶ PFU mL ⁻¹	1.82 x 10 ⁶ PFU mL ⁻¹	3.23 x 10 ⁹	5.50 x 10 ⁶ PFU mL ⁻¹	3.88 x 10 ⁸
Simian Cytomegalovirus	SP-NIH-SCMV-05	3.0×10^4	1.35 x 10 ³	3.28 x 10 ⁶	9.33 x 10 ⁵	5.44 x 10 ⁷
Orthomyxoviridae						
Influenza A Virus	SP-NIH-Flu-01	6.3 x 10 ⁷	2.95 x 10 ⁷	3.44 x 10 ⁸	2.57×10^4	6.21 x 10 ⁶
Paramyxoviridae						
Bovine Parainfluenza Virus Type 3	SP-NIH-BPI3-01	6.3 x 10 ⁷	2.00 x 10 ⁷	8.67 x 10 ⁷	8.13 x 10 ⁷	1.57 x 10 ⁸
Measles Morbillivirus	SP-NIH-Mea-01	9.3 x 10 ⁵	2.95 x 10 ⁶	4.00 x 10 ⁸	9.33 x 10 ⁶	3.25 x 10 ⁸
Mumps Virus	SP-NIH-Mum-01	1.3 x 10 ⁶	2.95 x 10 ⁶	1.12 x 10 ⁹	4.90×10^{6}	3.05 x 10 ⁹
Picornaviridae						
Coxsackievirus, A16	SP-NIH-CAV-02	6.3 x 10 ⁶	6.31 x 10 ⁵	1.91 x 10 ¹⁰	1.35 x 10 ³	2.65 x 10 ⁸
Coxsackievirus B3	SP-NIH-CBV-01	3.0 x 10 ⁷	4.27 x 10 ⁷	8.99 x 10 ⁹	4.27 x 10 ⁶	3.96 x 10 ⁸
Echovirus 11	SP-NIH-Echo-01	2.0 x 10 ⁷	9.33 x 10 ⁷	6.92 x 10 ⁹	1.20 x 10 ⁸	3.56 x 10 ⁹
Rhinovirus 2	SP-NIH-Rhin-03	1.3 x 10 ³	2.95 x 10 ⁵	1.09 x 10 ¹⁰	2.24 x 10 ⁶	4.76 x 10 ⁹
Polyomaviridae						
Simian Virus 40	SP-NIH-SV40-01	7.1×10^{7} PFU mL ⁻¹	6.92 x 10 ⁷ PFU mL ⁻¹	4.14 x 10 ¹¹	1.78 x 10 ⁸ PFU mL ⁻¹	3.76 x 10 ¹¹
Rhabdoviridae						
Vesicular Stomatitis Virus	SP-NIH-VSV-02	1.0 x 10 ⁹ PFU mL ⁻¹	3.24 x 10 ⁷	1.28 x 10 ⁹	9.12 x 10 ⁸	3.14 x 10 ⁹
Togaviridae						
Rubella Virus	SP-NIH-Rub-02	1.3 x 10 ⁴	4.27 x 10 ⁴	2.45 x 10 ⁷	8.71 x 10 ⁴	1.72 x 10 ⁷

7 Supplementary Table 3: Genome copy number as determined by Clean Cells[†] for the NIH Stock

- $8 \qquad {}^{*} \text{All titers are expressed as } \mathsf{TCID}_{\mathsf{50}} \, \mathsf{mL}^{-1} \, \mathsf{unless otherwise indicated}$
- 9 [†]Clean Cells (https://clean-cells.com/) is a contract organization for Sanofi Pasteur
- 10 FAID, fluorescent antibody infectious dose; NIH, National Institutes of Health; PFU, plaque forming units; TCID, tissue culture infective dose

11

Supplementary Table 4: Additional Sanofi Pasteur viruses to complement the NIH model viruses 12

Virus	Strain	Enveloped	Viral genome	Genome size	Infectious titer	Genome copies	
				(Kb)	(log CCID50 mL ⁻¹)	per mL	
Bornaviridae							
Human Borna Disease Virus	He/80/FR (BNV)	Yes	ssRNA	8.9	-	8.40 x 10 ⁸	
Coronaviridae							
Bovine Coronavirus	C-197	Yes	ssRNA	31	-	8.10 x 10 ⁶	
Herpesviridae							
Human Cytomegalovirus	Towne	Yes	dsDNA	236	7.85	7.07 x 10 ⁸	
Parvoviridae							
Minute Virus of Mice	Prototype	No	ssDNA	5.1	-	1.59 x 10 ¹²	
Porcine Parvovirus	NADL-2	No	ssDNA	5.1	-	1.24×10^{7}	
Reoviridae							
Reovirus Type 3	Dearing	No	dsRNA	23.5	-	4.89 x 10 ⁹	

CCID₅₀, cell culture infectious dose 50% i.e. the quantity of infectious virus that when inoculated into susceptible cell cultures will infect 50% of

the individual cultures

Viruses were obtained from the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) and were made available by Rebecca Sheets (based on the Gombold et al. publication⁵).

13 14 15 16 17 NIH, National Institutes of Health.

18

Virus	Genome	Amount required	Additional	Final volume in spike (μL)	
	copies per mL	for 10 ⁶ genome	dilutions of the		
		copies per mL	viral stock		
NIH model					
Adenoviridae					
Adenovirus 5	4.79 x 10 ⁵	2.09	NA	2.09	
Adenovirus 41	1.41 x 10 ⁷	0.0709	1/100****	7.09	
Flaviviridae					
Bovine Viral Diarrhea Virus	3.72 x 10 ⁵	2.69	NA	2.69	
Herpesviridae					
Herpes Simplex Virus Type 1	6.14 x 10 ⁵	1.63	NA	1.63	
Simian Cytomegalovirus	5.44 x 10 ⁴	18.38	NA	18.38	
Orthomyxoviridae					
Influenza A virus	2.24 x 10 ³	446.43	NA	446	
Paramyxoviridae					
Mumps Virus	3.02 x 10 ⁶	0.331	1/10	3.31	
Bovine Parainfluenza Virus Type 3	1.58 x 10 ⁵	6.33	NA	6.33	
Measles Morbillivirus	3.24 x 10 ⁵	3.09	NA	3.09	
Picornaviridae					
Coxsackie virus A16	2.65 x 10 ⁵	3.77	NA	3.77	
Coxsackie virus B3	3.96 x 10 ⁵	2.53	NA	2.53	
Echovirus 11	3.55 x 10 ⁶	0.282	1/10	2.82	
Rhinovirus 2	4.76 x 10 ⁶	0.21	1/10	2.1	
Polyomaviridae					
Simian Virus 40	3.80 x 10 ⁸	0.00263	1/1000***	2.63	
Rhabdoviridae					
Vesicular Stomatitis Virus	3.16 x 10 ⁶	0.316	1/10	3.16	
Togaviridae					
Rubella Virus	1.72 x 10 ⁴	58.14	NA	58.1	
SP model					
Herpesviridae					
Human Cytomegalovirus*	7.08 x 10 ⁵	1.41	NA	1.41	
Reoviridae					
Reovirus Type 3	4.89 x 10 ⁶	0.204	1/10	2.04	

19 Supplementary Table 5: Volume of each virus used to create the viral pool

Parvoviridae

Minute Virus of Mice	1.59 x 10 ⁹	0.000629	1/10 000**	6.29
Porcine Parvovirus	1.24×10^4	80.65	NA	80.6
Coronaviridae				
Bovine Coronavirus	8.10 x 10 ³	123.46	NA	123.5
Bornaviridae				
Human Borna Disease Virus	8.40 x 10 ⁵	1.19	NA	1.19

* For human cytomegalovirus, it was estimated that there may be on average 10 times as many genome copies as the

CCID50 value of 7.85 log CCID50 mL⁻¹

** 10 μ L of the viral stock was mixed with 990 μ L of Tris EDTA to create a 1/100 dilution. 10 μ L of the diluted virus

was mixed with 990 μL of Tris EDTA to achieve the final 1/10 000 dilution

*** 1 μ L of the viral stock was mixed with 9 μ L of Tris EDTA to create a 1/10 dilution. 10 μ L of the diluted virus was

mixed with 990 μL of Tris EDTA to achieve the final 1/1000 dilution

**** 10 μL of the viral stock was mixed with 990 μL of Tris EDTA to create a 1/100 dilution.

GC, Genome copy; NA, not applicable; NIH, National Institutes of Health; SP, Sanofi Pasteur.

29

Supplementary references

- WHO TRS 978 Annex. Available at: <u>https://www.who.int/biologicals/vaccines/TRS_978_Annex_3.pdf?ua=1</u>. Last accessed July 2019.
- 2 Ph. Eur. Chapter 5.2.3: "Cell Substrates for the production of vaccines for human use", version 9:0 and updated version 9.3 in July 2017, revision.
- 3 Ph. Eur. Chapter 5.2.14: "Substitution of in vivo method(s) by in vitro method(s) for the quality control of vaccines", version 9.3 published in July 2017, creation.
- 4 Ph. Eur. Chapter 2.6.16: "Tests for extraneous agents in viral vaccines for human use", version 9.3 published in July 2017, revision. Corrected version in Supplement 9.4.
- 5 Gombold, J. *et al.* Systematic evaluation of in vitro and in vivo adventitious virus assays for the detection of viral contamination of cell banks and biological products. *Vaccine* **32**, 2916-2926, doi:10.1016/j.vaccine.2014.02.021 (2014).