## Supplementary Tables

**Supplementary Table 1. Sequence information for crRNAs used in this study.** Direct repeat sequences of the AsCas12a and SpCas9 in guide RNAs are shown in blue.

| target           |    | crRNA Sequence                                                                                                          |    |
|------------------|----|-------------------------------------------------------------------------------------------------------------------------|----|
| AGBL1 on         | 5` | GAAUUUCUACUCUUGUAGAUGAUUGAAGGAAAAGUUACAAAGG                                                                             | 3` |
| RPL32P3 on       | 5` | GAAUUUCUACUCUUGUAGAUGGGUGAUCAGACCCAACAGCAGG                                                                             | 3` |
| RPL32P3 off1     | 5` | GAAUUUCUACUCUUGUAGAUGGGUGAUCAGACCCAACACCAGG                                                                             | 3` |
| RPL32P3 off2     | 5` | GAAUUUCUACUCUUGUAGAUGGGUGAUCAGACCCAACACCAGG                                                                             | 3` |
| RPL32P3 off3     | 5` | GAAUUUCUACUCUUGUAGAUGGGUGAUCAGACCCAACACCAGG                                                                             | 3` |
| RPL32P3 off4     | 5` | GAAUUUCUACUCUUGUAGAUGGGUGAUCAGGCCCAACACCAGG                                                                             | 3` |
| RPL32P3 off5     | 5` | GAAUUUCUACUCUUGUAGAUGGGUGAUCAGACCCAACCCCAGG                                                                             | 3` |
| RPL32P3 off6     | 5` | GAAUUUCUACUCUUGUAGAUGGGUGAUCAGACCUAACACUAGG                                                                             | 3` |
| RPL32P3 off7     | 5` | GAAUUUCUACUCUUGUAGAUGGGUGAUCCAACCCAACACCAGG                                                                             | 3` |
| RPL32P3 off8     | 5` | GAAUUUCUACUCUUGUAGAUGGGUGGCCAGACCCAACACCAGG                                                                             | 3` |
| RPL32P3 off9     | 5` | GAAUUUCUACUCUUGUAGAUGGGUGGACAGACCCAACACCAGG                                                                             | 3` |
| RPL32P3 off10    | 5` | GAAUUUCUACUCUUGUAGAUGGGUGUUCAGGACCAACAACAGG                                                                             | 3` |
| PSMB2 on         | 5` | GAAUUUCUACUCUUGUAGAUCUCUGAGUGUACAAAAGAUGGUG                                                                             | 3` |
| PSMB2 off2       | 5` | GAAUUUCUACUCUUGUAGAUCAAGUAUAUACCCAGUGCUGAGC                                                                             | 3` |
| PSMB2 off3       | 5` | GAAUUUCUACUCUUGUAGAUCAGGUCACUAAAAAAUUAAAUGA                                                                             | 3` |
| PSMB2 off4       | 5` | GAAUUUCUACUCUUGUAGAUCAUGUUUACACAUUAUUUAACUC                                                                             | 3` |
| FAT3 on          | 5` | GAAUUUCUACUCUUGUAGAUAAGGGAAGAAACCCUGAAACUCU                                                                             | 3` |
| FAT3 off3        | 5` | GAAUUUCUACUCUUGUAGAUAAGGGGACAGCCACUACUGAGGC                                                                             | 3` |
| DNMT1 site3 on   | 5` | GAAUUUCUACUCUUGUAGAUCUGAUGGUCCAUGUCUGUUACUC                                                                             | 3` |
| DNMT1 site3 off1 | 5` | GAAUUUCUACUCUUGUAGAUCUGAUGGUCCACGCCUGUUAACA                                                                             | 3` |
| DNMT1 site3 off2 | 5` | GAAUUUCUACUCUUGUAGAUCUGAUGGUCCAUACCUGUUAACA                                                                             | 3` |
| DNMT1 site3 off3 | 5` | GAAUUUCUACUCUUGUAGAUCUGAUGGUCCAUGUCUGAAUUAG                                                                             | 3` |
| HEK site4 on     | 5  | GGCACUGCGGCUGGAGGUGGGUUUUAG AGC UAG AAA UAG CAA G<br>UUAAA AUAAG GCUAG UCCGU UAUCA ACUUG AAAAA GUGGC ACCGA<br>GUCGG UGC | 3  |
| HEK site4 off1   | 5  | UGCACUGCGGCCGGAGGAGGGUUUUAG AGC UAG AAA UAG CAA G<br>UUAAA AUAAG GCUAG UCCGU UAUCA ACUUG AAAAA GUGGC ACCGA<br>GUCGG UGC | 3  |
| HEK site4 off2   | 5  | GGCAUCACGGCUGGAGGUGGGUUUUAG AGC UAG AAA UAG CAA G<br>UUAAA AUAAG GCUAG UCCGU UAUCA ACUUG AAAAA GUGGC ACCGA<br>GUCGG UGC | 3  |

| 3 |
|---|
| l |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
|   |

Supplementary Table 2. Sequence information for DNA targets amplified in this study. PAM sequences (TTTN for AsCas12a and NGG for SpCas9 effector) are shown in blue color and mismatched sequence to each on-target sites are shown in red color respectively.

| Target name   | Mismatch | Sequence Position            |       | osition   | Direction |
|---------------|----------|------------------------------|-------|-----------|-----------|
| AGBL1 on      | -        | TTTA GATTGAAGGAAAAGTTACAAAGG | chr15 | 86124495  | -         |
| RPL32P3 on    | -        | TTTG GGGTGATCAGACCCAACAGCAGG | chr3  | 129389649 | -         |
| RPL32P3 off1  | 1        | TTTG GGGTGATCAGACCCAACAcCAGG | chr8  | 108739813 | +         |
| RPL32P3 off2  | 1        | TTTG GGGTGATCAGACCCAACAcCAGG | chr2  | 88944272  | -         |
| RPL32P3 off3  | 1        | TTTG GGGTGATCAGACCCAACAcCAGG | chr6  | 33355560  | -         |
| RPL32P3 off4  | 2        | TTTG GGGTGATCAGgCCCAACAcCAGG | chr1  | 205858150 | -         |
| RPL32P3 off5  | 2        | TTTG GGGTGATCAGACCCAACccCAGG | chr15 | 78621826  | +         |
| RPL32P3 off6  | 3        | TTTG GGGTGATCAGACCtAACActAGG | chr3  | 109693289 | -         |
| RPL32P3 off7  | 3        | TTTG GGGTGATCcaACCCAACAcCAGG | chr4  | 43472802  | -         |
| RPL32P3 off8  | 3        | TTTG GGGTGgcCAGACCCAACAcCAGG | chr19 | 53480825  | +         |
| RPL32P3 off9  | 3        | TTTG GGGTGgaCAGACCCAACAcCAGG | chr20 | 42901255  | -         |
| RPL32P3 off10 | 4        | TTTT GGGTGtTCAGgaCCAACAaCAGG | chr12 | 133092583 | +         |

| PSMB2 on                     | - | GTAAACAAAGCATAGACTGA GGG     | chr1  | 35631454   | + |
|------------------------------|---|------------------------------|-------|------------|---|
| PSMB2 off2                   | 3 | GCAAACAAAaCAgAGACTGA AGG     | chr3  | 77072677   | - |
| PSMB2 off3                   | 3 | GTAAACAAcaCAgAGACTGA AGG     | chr7  | 112493828  | - |
| PSMB2 off4                   | 3 | GgAAACAgAGCATAGAaTGA TGG     | chr1  | 208960762  | + |
| FAT3 on                      | - | GAGCTGCTTAAGCATTTCAA GGG     | chr11 | 92532744   | - |
| FAT3 off3                    | 3 | GAGaTGCagAAGCATTTCAA GGG     | chr18 | 25854400   | + |
| DNMT1 site3 on               | - | TTTC CTGATGGTCCATGTCTGTTACTC | chr19 | 10,133,766 | - |
| DNMT1 site3 off1             | 5 | TTTC CTGATGGTCCAcGcCTGTTAaca | chrX  | 98291178   | - |
| DNMT1 site3 off2             | 5 | TTTC CTGATGGTCCATacCTGTTAaca | chrX  | 93421364   | - |
| DNMT1 site3 off3             | 6 | TTTC CTGATGGTCCATGTCTGaattag | chr1  | 213204013  | + |
| HEK site4 on                 | - | GGCACTGCGGCTGGAGGTGG GGG     | chr20 | 32761949   | + |
| HEK site4 off1               | 3 | tGCACTGCGGCcGGAGGaGG TGG     | chr20 | 61435489   | + |
| HEK site4 off2               | 3 | GGCAtcaCGGCTGGAGGTGG AGG     | chr10 | 75343344   | + |
| HEK site4 off3               | 3 | aGCAgTGCGGCTaGAGGTGG TGG     | chr13 | 38688774   | + |
| HEK site4 off4               | 4 | GGCACTGaGaaaGGAGGTGG AGG     | chr12 | 55034151   | + |
| HEK site4 off5               | 4 | GGgcaTGCGGCTGGAaGTGG TGG     | chr22 | 41224051   | + |
| HEK site4 off6               | 2 | GGCACaGgGGCTGGAGGTGG GGC     | chr3  | 195823597  | - |
| RNF2 on                      | - | GTCATCTTAGTCATTACCTG AGG     | chr1  | 185087634  | - |
| RNF2 off1                    | 3 | GgtATCTaAGTCATTACCTG TGG     | chr5  | 92701252   | - |
| RNF2 off2                    | 3 | GTaATCTgAGTCATTtCCTG GGG     | chr10 | 129047186  | + |
| RNF2 off3                    | 3 | GTCATCcTAGTgcTTACCTG AGG     | chr8  | 755959     | + |
| ZNF609 (Spacer 8A)           | - | CCCCCACCAAAGCCCATGTA AGG     | chr15 | 64593305   | + |
| RP11-77I22.4<br>(Spacer 15A) | - | GGCAGTGCAGATGAAAAACT GGG     | chr12 | 30862020   | - |

Supplementary Table 3. Sequence information for DNA primers used in this study. Primer sequence information to amplify the target gene was indicated. The base sequences of the forward and reverse adapter primers used in the next generation sequencing are shown in green and blue, respectively.

| Target gene         | DNA sequence (5' to 3')   |
|---------------------|---------------------------|
| (primer direction)  |                           |
| AGBL1 on-target F1  | TGCCCTGCCATTATATAGACTGTT  |
| AGBL1 on-target R1  | AAAATACAAAATGTAGCGGGGCA   |
| AGBL1 on-target F2  | CATTACAACCTTCTTCTGTTTGTC  |
| AGBL1 on-target R2  | ACCAGAGTGAGACTCTGTCT      |
| FAT3 on-target F1   | AGGAGTTTGAAGCTGTAGTAAG    |
| FAT3 on-target F2   | CGGGAGACTCTGTCTCTTAA      |
| FAT3 on-target R1   | AACCCGCCTTTTGTTACAAGTT    |
| FAT3 on-target R2   | CAAAACTTCAAACAGAATACATGTG |
| FAT3 off-target3 F1 | GAGAATACTGTGCAGCCAGAG     |

| FAT3 off-target3 F2     | AGAAGTTGAGAGACCCTCAGAA    |
|-------------------------|---------------------------|
| FAT3 off-target3 R1     | CCAGCACACCTTGGTAATCTG     |
| FAT3 off-target3 R2     | GTAACCTCTCCTAACCAGCACA    |
| RPL32P3 on-target F1    | ACCATGTCGTCCTGTATGATC     |
| RPL32P3 on-target F2    | CTTCCTGAAGACACCGATTCT     |
| RPL32P3 on-target R1    | AGAGACCAACAATGACCTGTTT    |
| RPL32P3 on-target R2    | AGAACCTTGCACATGAAATGTG    |
| RPL32P3 off-target1 F1  | CAGCAATTGCTATCTGTTGTAGTT  |
| RPL32P3 off-target1 F2  | TCTGTTGTAGTTCTTGTGGGTT    |
| RPL32P3 off-target1 R1  | AGTGTTGGGAAGAAAGCTGAG     |
| RPL32P3 off-target1 R2  | TCCTCTGGAATGTGTCTAGACT    |
| RPL32P3 off-target2 F1  | AGTCTCCATTCTGTTCATGCC     |
| RPL32P3 off-target2 F2  | TTCATGCCCACAATGGTGATAT    |
| RPL32P3 off-target2 R1  | CTCTCCAAGGATCGATTGTATCT   |
| RPL32P3 off-target2 R2  | CTGCTCTCCATTATCTCAAGTA    |
| RPL32P3 off-target3 F1  | GTAAGGGTGCACCCTTCTATA     |
| RPL32P3 off-target3 F2  | GTACCTAGCCTTGCTGAGAA      |
| RPL32P3 off-target3 R1  | CCTTTGGAATGTGTCCAGAC      |
| RPL32P3 off-target3 R2  | TGCTGGCTTCTTGCTTCTAG      |
| RPL32P3 off-target4 F1  | GCAAAACTGCTCCACTGTACT     |
| RPL32P3 off-target4 F2  | ACCTTGGTTCTTCAGAGTGC      |
| RPL32P3 off-target4 R1  | TGTTGGTTCCTTGCTTCTTACTT   |
| RPL32P3 off-target4 R2  | CCTCCATTATCTCAAGCAGCA     |
| RPL32P3 off-target5 F1  | GTGACAGAGTGAGACTTCATCT    |
| RPL32P3 off-target5 F2  | GGTGGGTGGAAGTTAGTTGA      |
| RPL32P3 off-target5 R1  | ACATTCTTGGGGTTGCAGATG     |
| RPL32P3 off-target5 R2  | CTCTCAGATTGCTCCATCAGAA    |
| RPL32P3 off-target6 F1  | GTAGAGAACTGAAGAAAGATCTGC  |
| RPL32P3 off-target6 F2  | AGAGCAGAGGTCTCCATTCTTA    |
| RPL32P3 off-target6 R1  | CACTATTATTGCGTCTAAGTCCTT  |
| RPL32P3 off-target6 R2  | CTGGGGTCTAAGGTCTAAAAC     |
| RPL32P3 off-target7 F1  | CTATGGGATACAGCCAAAACAGT   |
| RPL32P3 off-target7 F2  |                           |
| RPL32P3 off-target7 R1  | TGATAGCTGTGGTGGTGTTTTACAA |
| RPL32P3 off-target/ R2  |                           |
| RPL32P3 off-target8 F1  |                           |
| RPL32P3 off-target8 F2  | GTCATCTGTGGACATCTTGAG     |
| RPL32P3 off-target8 R1  |                           |
| RPL32P3 off-target8 R2  |                           |
| RPL32P3 off-target9 F1  |                           |
| RPL32P3 off-target9 F2  |                           |
|                         |                           |
| RPL32P3 OII-TAIGETS K2  |                           |
| RELOZEO OII-LAIGELTUET  |                           |
| RELOZES OII-LAIGETTU EZ |                           |
| RPL32P3 OTT-target10 R1 |                           |
| RPL32P3 off-target10 R2 | TTCACAGGCTCCATCTCTCT      |

| PSMB2 on-target F1         | CTTCATATTGGTGTGTCCCAAC   |
|----------------------------|--------------------------|
| PSMB2 on-target F2         | AATGAACAAGTAGCAACAGGAGG  |
| PSMB2 on-target R1         | AGCTGGGATTACAGGCATGTAC   |
| PSMB2 on-target R2         | TCCCAAAGCTCTAGGATTACAG   |
| PSMB2 off-target2 F1       | GCCTAGCAGATTTATTTTCTGTTC |
| PSMB2 off-target2 F2       | TTCTGACTTCTGCTACTCATTGC  |
| PSMB2 off-target2 R1       | ACAAACTCAAGACTGTCACTGATT |
| PSMB2 off-target2 R2       | GGTGGGGAACTTGTGATCTAG    |
| PSMB2 off-target3 F1       | ACCCGAGCAGCACTACTTTTC    |
| PSMB2 off-target3 F2       | TGCTTGCTCAAACCTGCTATC    |
| PSMB2 off-target3 R1       | CTACAAAGGGTGTCAGAGGCA    |
| PSMB2 off-target3 R2       | GGTGGGACTAGGAATTCCTG     |
| PSMB2 off-target4 F1       | CCAAAGGAAGATACAGCAGTGT   |
| PSMB2 off-target4 F2       | GTAGTCAACCTCAGTGTCCAT    |
| PSMB2 off-target4 R1       | AATGCATTTCTGGTTACCCTGTT  |
| PSMB2 off-target4 R2       | GTGTGAAGTGGTCAACTACAAG   |
| DNMT1-site3 on-target F1   | CAAAGCCATTGGCTTGGAGAT    |
| DNMT1-site3 on-target F2   | AGATCAAGCTTTGTATGTTGGCC  |
| DNMT1-site3 on-target R1   | AGAAGTCCCGTGCAAATCAC     |
| DNMT1-site3 on-target R2   | GCAAATCACGAATACCCACCC    |
| DNMT1-site3 off-target1 F1 | TGTTGCAAGTCCCATGAGGA     |
| DNMT1-site3 off-target1 F2 | CAGGGAACTCTAATCTCACAAT   |
| DNMT1-site3 off-target1 R1 | GAACAGGAAAGAAAGGAAAATGAG |
| DNMT1-site3 off-target1 R2 | CCTCTTTCCCATGATTCTTCC    |
| DNMT1-site3 off-target2 F1 | AGCAGGTCATTGGCAATGATAC   |
| DNMT1-site3 off-target2 F2 | CAAATGTTTGTGCAGGTTGATGTT |
| DNMT1-site3 off-target2 R1 | GGTTTAGAGCAGGAGTGAAAGT   |
| DNMT1-site3 off-target2 R2 | AAGAAAGGAAAGTTCACTTGGAAG |
| DNMT1-site3 off-target3 F1 | AACCCTGCTACCTACTGAGAAT   |
| DNMT1-site3 off-target3 F2 | CATTAGCCTGTGTTTTCACATAAG |
| DNMT1-site3 off-target3 R1 | TTAATAGCATCAAAGGCAAACCAT |
| DNMT1-site3 off-target3 R2 | ATGATGGGAAAGTGTGCAAATAG  |
| HEK site4 on-target F1     | GCTTACAGGCGATATAAATCATTC |
| HEK site4 on-target F2     | CCACAAGCAGGTAAACAAGCA    |
| HEK site4 on-target R1     | TGGGGGATCAGAAGCCCTAA     |
| HEK site4 on-target R2     | GACGTCCAAAACCAGACTCC     |
| HEK site4 off-target1 F1   | GTCCTGCAGCCTTCATTCCT     |
| HEK site4 off-target1 F2   | GGATTGTGAGATTGTGTAGGCA   |
| HEK site4 off-target1 R1   | TGGAAGGTCACAGAACACATGT   |
| HEK site4 off-target1 R2   |                          |
| HEK site4 off-target2 F1   | GACAAACGGTCACTTAAATGCG   |
| HEK site4 off-target2 F2   | GAGACUCAAGGACIGGGIAA     |
| HEK site4 off-target2 R1   | GCAGCITTTTCCCAACCTCT     |
| HEK site4 off-target2 R2   |                          |
| HEK site4 off-target3 F1   |                          |
| HEK site4 off-target3 F2   |                          |
| HEK site4 off-target3 R1   | CTTCCTCCAAAGGCCTCTGA     |

| HEK site4 off-target3 R2     | AGAATCATCTGAATCCATGTCAGT           |
|------------------------------|------------------------------------|
| HEK site4 off-target4 F1     | ATGTCAGCTGACATGTTTCTAATTT          |
| HEK site4 off-target4 F2     | CAGTACATGTTGAATACATACACAT          |
| HEK site4 off-target4 R1     | TTGGAGAGAGAGGTTTCAGGA              |
| HEK site4 off-target4 R2     | AGCCTGGCCTATTGCTCCTA               |
| HEK site4 off-target5 F1     | CAGCTCTGGCACAAATGAGT               |
| HEK site4 off-target5 F2     | TTGGTGGCAAGAAGTGGCAT               |
| HEK site4 off-target5 R1     | TGGTAGCATCTGGGTTCAAATC             |
| HEK site4 off-target5 R2     | CCTGCTGTGACGAGTAGGAA               |
| HEK site4 off-target6 F1     | CTTCTGGAGCTGCCATCTAC               |
| HEK site4 off-target6 F2     | TCCAACCTCTACATTTGTTCAG             |
| HEK site4 off-target6 R1     | CAAAATGCTGGGATTACAGGCA             |
| HEK site4 off-target6 R2     | AAACATTCATAAGCCGTTATTGCC           |
| RNF2 on-target F1            | ATCCAGTGTTAAGCATGTTTGTTG           |
| RNF2 on-target F2            | CTGTTTTATTCACCACTGTTCAC            |
| RNF2 on-target R1            | TTATAGCTGCTTCTCTGTGTCA             |
| RNF2 on-target R2            | CAAAAGTTTCCATCAAGCCTCTT            |
| RNF2 off-target1 F1          | AATTTAGCCCACATCACTGGAG             |
| RNF2 off-target1 F2          | GGAGTGAGATGCCATCTTATCA             |
| RNF2 off-target1 R1          | AAAAGTCAACATCTGAAACGTGCT           |
| RNF2 off-target1 R2          | CTAGATGCTTACCTTTGTGACC             |
| RNF2 off-target2 F1          | TCCTCCTGGATACTGATATACTT            |
| RNF2 off-target2 F2          | TCTAATGTCCTGGGATGCTTCT             |
| RNF2 off-target2 R1          | ATAGGTGCACATGCTACGTTATTA           |
| RNF2 off-target2 R2          | TCCGGCTCCAACCAAGTTAA               |
| RNF2 off-target3 F1          | GGAGCTCTTTGTGAATCTGAG              |
| RNF2 off-target3 F2          | TTGAAAGAGCAAAGTGCTGGG              |
| RNF2 off-target3 R1          | TCCCACAACGACATCGTCTTT              |
| RNF2 off-target3 R2          | CTAAACAGCATGAGCCCATCA              |
| ZNF609 (Spacer 8A) F1        | GCAGGAGAATTGCTTGAATCTA             |
| ZNF609 (Spacer 8A) F2        | TATTCGCTGCACTAACTGTGC              |
| ZNF609 (Spacer 8A) R1        | TCACTTGAGTCTAGGAGTTTGA             |
| ZNF609 (Spacer 8A) R2        | GACCCTGTCTCAAAAACAAACAA            |
| RP11-77I22.4 (Spacer 15A) F1 | TAAGTGTTAAGCTGGAAGGCCA             |
| RP11-77I22.4 (Spacer 15A) F2 | AAACATGGAACCCAAAGGAATTG            |
| RP11-77I22.4 (Spacer 15A) R1 | TCACTGTTCTGGAGGCTGAGAA             |
| RP11-77I22.4 (Spacer 15A) R2 | TGGTGCCTTCTAACTGTGTTC              |
| AGBL1_on_Adaptor_F           | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                              | CTTAAGGAAACAGAAGAGAAATCTGCGTG      |
| AGBL1_on_Adaptor_R           | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                              | ATTATAAGATGTTGACAATAACACAACAGG     |
| FAT3_on_Adaptor_F            |                                    |
|                              | GTGGATTGTTTCATTCCAATGATGAAACAA     |
| FAT3_on_Adaptor_R            | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                              |                                    |
| FAT3_off3_Adaptor_F          |                                    |
|                              | GGAAAATGAGCACTTAGCAATCAATTTG       |

| FAT3_off3_Adaptor_R     | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|-------------------------|------------------------------------|
|                         | CTGTTTCTTTTCTTGTTACTGCAGCA         |
| RPL32P3_on_Adaptor_F    | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | TGGGACAGGGTGGGTTACCTTG             |
| RPL32P3_on_Adaptor_R    | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | ATCCTCACCACCTGTTTGTTGCA            |
| RPL32P3_off1_Adaptor_F  | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | TAGCTAGGGTGACTTGGCTAGCTTG          |
| RPL32P3_off1_Adaptor_R  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | GGTCCCACTTCTCTCTCAAATTGT           |
| RPL32P3_off2_Adaptor_F  | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | AAGCCCTGCAAATGTAAAAATCATAACA       |
| RPL32P3_off2_Adaptor_R  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | TGCCCACATTTCTCTCTCAAACTGTC         |
| RPL32P3_off3_Adaptor_F  | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | AAAAATCAAGACCTACCCAGTGCAAG         |
| RPL32P3_off3_Adaptor_R  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | CTTTGCAACCTCCATACTAGTATTGGC        |
| RPL32P3_off4_Adaptor_F  | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | AGCATTTCTTTACCATGGTCTTCATAGC       |
| RPL32P3_off4_Adaptor_R  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | TTCGCAGCCTCCAATCTAGTGTT            |
| RPL32P3_off5_Adaptor_F  | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | GTACCTGGAGGTTTGTTATACTGTTCTCT      |
| RPL32P3_off5_Adaptor_R  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | GCCTGGTCCCGCTTTCTCTCTT             |
| RPL32P3_off6_Adaptor_F  | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | ATGCATCCATGTATATTTTGGAGCATTCA      |
| RPL32P3_off6_Adaptor_R  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | TCTTTTTGCAAAGACCCACCTTATGT         |
| RPL32P3_off7_Adaptor_F  | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | ACAAAACTGAACAAACCTTTAGCCAGA        |
| RPL32P3_off7_Adaptor_R  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | GCAGCCTCCATACTAGCATTGG             |
| RPL32P3_off8_Adaptor_F  | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | GCTATTAAGTGCATGTTTCCCTCAAGG        |
| RPL32P3_off8_Adaptor_R  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | CTGGACCCACCTTATGCATTCTTAACT        |
| RPL32P3_off9_Adaptor_F  | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | AGGCACTGTGCTGTCTTACATGTTATT        |
| RPL32P3_off9_Adaptor_R  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | CCTGGACACACTTTCTCTCTCAAACT         |
| RPL32P3_off10_Adaptor_F | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | TATGGCTTGTGATTTCTTGTTTCCATAACT     |
| RPL32P3_off10_Adaptor_R | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                         | AGACCAGGTTTACAGAAGGCTAGAA          |
| PSMB2_on_Adaptor_F      | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                         | AGTAAAGCAGAAGGAATAACAGTGCCC        |

| PSMB2_on_Adaptor_R         | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|----------------------------|------------------------------------|
|                            | TTCTGTTTGTGGCCAAGAATTGCTGT         |
| PSMB2_off2_Adaptor_F       | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | ACACAAACCAAGGGTGATGAAGTTT          |
| PSMB2_off2_Adaptor_R       | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | CATAATTTCGAAACATATACACAATGGG       |
| PSMB2_off3_Adaptor_F       | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | GACAAGAGATTACTAGTGTTGCCTAAACA      |
| PSMB2_off3_Adaptor_R       | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | TCAGCATTTTCTTCTGTATCATGGGAG        |
| PSMB2_off4_Adaptor_F       | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | GGAGGACATTATCTTAAATGAAACAACTC      |
| PSMB2_off4_Adaptor_R       | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | CCACATTGAACCCAACAAGCAACTT          |
| DNMT1-site3_on_Adaptor_F   | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | GTTGCACGTGTCAAGTGCTTAGAG           |
| DNMT1-site3_on_Adaptor_R   | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | GACTGAACACTCCTCAAACGGTC            |
| DNMT1-site3_off1_Adaptor_F | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | CTACCCCCACCACTAGAAATGCCA           |
| DNMT1-site3_off1_Adaptor_R | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | TTTGTCTCTTAACATGCATGCCTAGGAA       |
| DNMT1-site3_off2_Adaptor_F | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | CCTCAACCACTAAATATGTTATTTAGTGGT     |
| DNMT1-site3_off2_Adaptor_R | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | CCTTTTCCGATGGAGTGTACTCAGAAGAT      |
| DNMT1-site3_off3_Adaptor_F | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | GGTCTCAAATAAGTTTGAGAATGAATGTG      |
| DNMT1-site3_off3_Adaptor_R | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | AGAGCTGAAAGTTTAGCATGGAGG           |
| HEK site4_on_Adaptor_F     | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | AGAGGGTCCAAAGCAGGATGACAG           |
| HEK site4_on_Adaptor_R     | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | CTTTCAACCCGAACGGAGACACACA          |
| HEK site4_off1_Adaptor_F   | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | TTCTGAGACTCATAGCTGGGGCTGAA         |
| HEK site4_off1_Adaptor_R   | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | CCTCGGAGTCCTCAAGTATCACTGTCC        |
| HEK site4_off2_Adaptor_F   | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | TCATTTCCACCAGAACTCAGCCCAG          |
| HEK site4_off2_Adaptor_R   | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | TGTTTCCACCCTCGGTTCCTCCACAA         |
| HEK site4_off3_Adaptor_F   | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | CGGTCTTATTCTCTATGAGGGTCAGTCTC      |
| HEK site4_off3_Adaptor_R   | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                            | CAGCTCAGCCACTGTAAAGCTCTT           |
| HEK site4_off4_Adaptor_F   | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                            | GCAACTCTACAGGCTGAGTTCTTTCTT        |

| HEK site4_off4_Adaptor_R     | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|------------------------------|------------------------------------|
|                              | TTAGATCAAGGAAGAACGTTTTCCATTACC     |
| HEK site4_off5_Adaptor_F     | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                              | CCTGTGTTCTGACGTCGTTTCAGATG         |
| HEK site4_off5_Adaptor_R     | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                              | GTCACTGTCACCATCCTCGTAGAGGA         |
| HEK site4_off6_Adaptor_F     | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                              | AGAGGCTCTAATCAAAGAGCAAGAATTTG      |
| HEK site4_off6_Adaptor_R     | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                              | GGCTCTCCAAAGAAACTTGATGTTG          |
| RNF2_on_Adaptor_F            | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                              | CTAAAAATGTATCCCAGTTTACACGTCTCA     |
| RNF2_on_Adaptor_R            | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                              | AGCACTTCCCAAATACTAAAATTGTT         |
| RNF2_off1_Adaptor_F          | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                              | AGACATCATCATGATAAATCTATTTGGTCT     |
| RNF2_off1_Adaptor_R          | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                              | ATATTTTAAGCTAGAATGTGTTTGTTGACA     |
| RNF2_off2_Adaptor_F          | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                              | GGTTTTTGCATTACTTGGGAAGCTAGTG       |
| RNF2_off2_Adaptor_R          | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                              | AGGGAAAGTTATATGCAGCCATTGTG         |
| RNF2_off3_Adaptor_F          | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
|                              | AGTGTGGGATAATGCTGGGGTG             |
| RNF2_off3_Adaptor_R          | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                              | CAGCGTGTTCTTATGACTATTAGCAC         |
|                              | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
| ZNF609 (Spacer 8A)_Adaptor_F | TGAAGCCCGCAAGGACCGAACA             |
| ZNF609 (Spacer 8A)_Adaptor_R | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
|                              | GCATCGTGAACATTTTGTGTCAATTAGC       |
| RP11-77I22.4 (Spacer         | ACACTCTTTCCCTACACGACGCTCTTCCGATCT  |
| 15A)_Adaptor_F               | CAATATTCATGCCTTCTTTCACCTTGCC       |
| RP11-77I22.4 (Spacer         | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
| 15A)_Adaptor_R               | ACCTTTGGTAGTTTCCATCTATGTCGAG       |

Supplementary Table 4. Comparative analysis of the CRISPR amplification method and a conventional method (GUIDE-seq) for the detection of intracellular off-target mutations induced by CRISPR-Cas12a (Cpf1). PAM sequences(TTTN) of the AsCas12a effector are shown in blue and mismatched sequence to each on-target sites are shown in red respectively. (O) indicates detection, (X) indicates no detection and a question mark (?) indicates an ambiguous detection (indel frequency (%) below or near the detection limit =0.5%) with applied methods. NGS: finally confirmed by next generation sequencing. Yellow mark indicates the mutant DNA

detection with CRISPR amplification methods not by conventional NGS methods.

| Target sequence<br>( <i>RPL32P3</i> )                            | GUIDE-<br>seq <sup>1</sup><br>(Reported<br>data) | Targeted<br>amplicon<br>sequencing<br>(NGS,<br>HEK293FT) | CRISPR<br>enrichment<br>(NGS,<br>HEK293FT) | CRISPR<br>enrichment<br>(NGS,<br>U2OS) |
|------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--------------------------------------------|----------------------------------------|
| <i>RPL32P3-on target</i><br>(TTTGGGGTGATCAGACCCAA<br>CAGCAGG)    | Ο                                                | Ο                                                        | Ο                                          | Ο                                      |
| <i>RPL32P3-off</i> target1<br>(TTTGGGGTGATCAGACCCAA<br>CAcCAGG)  | Ο                                                | Ο                                                        | Ο                                          | Ο                                      |
| <i>RPL32P3-off target2</i><br>(TTTGGGGTGATCAGACCCAA<br>CAcCAGG)  | Ο                                                | Ο                                                        | Ο                                          | Ο                                      |
| <i>RPL32P3-off</i> target3<br>(TTTGGGGTGATCAGACCCAA<br>CAcCAGG)  | Ο                                                | Ο                                                        | Ο                                          | Ο                                      |
| <i>RPL32P3</i> -off target4<br>(TTTGGGGTGATCAGgCCCAA<br>CAcCAGG) | Ο                                                | Ο                                                        | 0                                          | Ο                                      |
| <i>RPL32P3</i> -off target5<br>(TTTGGGGTGATCAGACCCAA<br>CccCAGG) | ο                                                | <mark>?</mark>                                           | O                                          | O                                      |
| <i>RPL32P3-off</i> target6<br>(TTTGGGGTGATCAGACCtAA<br>CActAGG)  | X                                                | x                                                        | x                                          | X                                      |

| <i>RPL32P3-off target7</i><br>(TTTGGGGTGATCcaACCCAA<br>CAcCAGG)  | X | X | X | X |
|------------------------------------------------------------------|---|---|---|---|
| <i>RPL32P3-off</i> target8<br>(TTTGGGGTGgcCAGACCCAA<br>CAcCAGG)  | x | X | X | X |
| <i>RPL32P3-off</i> target9<br>(TTTGGGGTGgaCAGACCCAA<br>CAcCAGG)  | x | X | X | X |
| <i>RPL32P3-off</i> target10<br>(TTTTGGGTGtTCAGgaCCAAC<br>AaCAGG) | X | X | X | X |

Supplementary Table 5. Comparative analysis of the CRISPR amplification method and a conventional method (targeted amplicon sequencing) for the detection of intracellular off-target mutations induced by CRISPR-Cas12a. PAM sequences (TTTN) of the AsCas12a effector are shown in blue and mismatched sequence to each on-target sites are shown in red respectively. Guide-seq numbers were presented according to the reference paper. (O) indicates detection and (X) indicates no detection with applied methods. NGS: finally confirmed by next generation sequencing.

|                                                                | GUIDE-seq read      |                   |
|----------------------------------------------------------------|---------------------|-------------------|
| Target sequence                                                | counts <sup>1</sup> | CRISPR enrichment |
| (DNMT1-site3)                                                  | (Reported data)     | (NGS, HEK293FT)   |
| <b>DNMT1-site3-on target</b><br>(TTTC CTGATGGTCCATGTCTGTTACTC) | 783                 | ο                 |

| DNMT1-site3-off target1<br>(TTTC CTGATGGTCCAcGcCTGTTAaca) | 0    | x |
|-----------------------------------------------------------|------|---|
| DNMT1-site3-off target2<br>(TTTC CTGATGGTCCATacCTGTTAaca) | 2    | Ο |
| DNMT1-site3-off target3 (TTTC CTGATGGTCCATGTCTGaattag)    | 1174 | Ο |

Supplementary Table 6. Comparative analysis of the CRISPR amplification method and a conventional method (targeted amplicon sequencing) for the detection of intracellular off-target mutations induced by CRISPR-Cas9. PAM sequences (NGG) of the SpCas9 effector are shown in blue and mismatched sequence to each on-target sites are shown in red respectively. (O) indicates detection and (X) indicates no detection with applied methods. NGS: finally confirmed by next generation sequencing. Yellow mark indicates the mutant DNA detection with CRISPR amplification methods not by conventional NGS methods.

| Target sequence<br>( <i>FAT3</i> )                     | Targeted<br>amplicon<br>sequencing<br>(NGS, HEK293FT) | CRISPR enrichment<br>(NGS, HEK293FT) |
|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------|
| <i>FAT3-on target</i><br>(GAGCTGCTTAAGCATTTCAA GGG)    | Ο                                                     | Ο                                    |
| <i>FAT3</i> -off target2<br>(GcAAACAAAaCAgAGACTGA AGG) | x                                                     | x                                    |
| <i>FAT3</i> -off target3<br>(GTAAACAAcaCAgAGACTGA AGG) | X                                                     | O                                    |

| FAT3-off target4           |   |   |
|----------------------------|---|---|
| (GgAAACAgAGCATAGAaTGA TGG) | X | X |

Supplementary Table 7. Comparative analysis of the CRISPR amplification method and a conventional method (targeted amplicon sequencing, NGS) for the detection of intracellular off-target mutations induced by CRISPR-Cas9. PAM sequences (NGG) of the SpCas9 effector are shown in blue and mismatched sequence to each on-target sites are shown in red respectively. Guide-seq numbers were presented according to the reference paper. (O) indicates detection and (X) indicates no detection with applied methods. Question mark (?) indicates an ambiguous detection (indel frequency (%) below or near the detection limit =0.5%). NGS: finally confirmed by next generation sequencing. Yellow mark indicates the mutant DNA detection with CRISPR amplification methods not by conventional NGS methods.

| Target sequence<br>(HEK site4)                       | GUIDE-seq read<br>counts <sup>2</sup><br>(Reported data) | Targeted<br>amplicon<br>sequencing<br>(NGS,<br>HEK293FT) | CRISPR<br>enrichment<br>(NGS, HEK293FT) |
|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| HEK site4 on-target<br>(GGCACTGCGGCTGGAGGTGG<br>GGG) | 1,054                                                    | Ο                                                        | Ο                                       |
| HEK site4 off1-target<br>(tGCACTGCGGCcGGAGGaGG TGG)  | 2,475                                                    | Ο                                                        | Ο                                       |
| HEK site4 off2-target<br>(GGCAtcaCGGCTGGAGGTGG AGG)  | 1,097                                                    | <mark>?</mark>                                           | 0                                       |
| HEK site4 off3-target<br>(aGCAgTGCGGCTaGAGGTGG TGG)  | 981                                                      | Ο                                                        | Ο                                       |

| HEK site4 off4-target<br>(GGCACTGaGaaaGGAGGTGG<br>AGG) | 13 | x              | X |
|--------------------------------------------------------|----|----------------|---|
| HEK site4 off5-target<br>(GGgcaTGCGGCTGGAaGTGG TGG)    | 3  | <mark>?</mark> | 0 |
| HEK site4 off6-target<br>(GCACaGgGGCTGGAGGTGG GGC)     | 3  | x              | X |

Supplementary Table 8. Comparative analysis of the CRISPR amplification method and a conventional method (targeted amplicon sequencing, NGS) for the detection of intracellular off-target mutations induced by CRISPR-Cas9. PAM sequences (NGG) of the SpCas9 effector are shown in blue and mismatched sequence to each on-target sites are shown in red respectively. Guide-seq numbers were presented according to the reference paper. (O) indicates detection and (X) indicates no detection with applied methods. NGS: finally confirmed by next generation sequencing.

| Target sequence<br>( <i>RNF2</i> )                    | GUIDE-seq read<br>counts <sup>2</sup><br>(Reported data) | Targeted<br>amplicon<br>sequencing<br>(NGS,<br>HEK293FT) | CRISPR<br>enrichment<br>(NGS, HEK293FT) |
|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| <b>RNF2 on-target</b><br>(GTCATCTTAGTCATTACCTG AGG)   | 6,643                                                    | Ο                                                        | Ο                                       |
| <b>RNF2 off1-target</b><br>(GgtATCTaAGTCATTACCTG TGG) | 0                                                        | х                                                        | X                                       |
| <b>RNF2 off2target</b><br>(GTaATCTgAGTCATTtCCTG GGG)  | 0                                                        | x                                                        | X                                       |

| RNF2 off3target            | 0 | x | X |
|----------------------------|---|---|---|
| (GTCATCcTAGTgcTTACCTG AGG) |   |   |   |

Supplementary Table 9. Comparative analysis of the CRISPR amplification method and a conventional method (targeted amplicon sequencing) for the detection of intracellular off-target mutations induced by ABE. PAM sequences (NGG) of the adenine base editor are shown in blue and mismatched sequence to each on-target sites are shown in red respectively. (O) indicates detection and (X) indicates no detection with applied methods. NGS: finally confirmed by next generation sequencing. Yellow mark indicates the mutant DNA detection with CRISPR amplification methods not by conventional NGS methods.

| Target sequence<br>( <i>PSMB2</i> )                  | Targeted<br>amplicon<br>sequencing<br>(NGS, HEK293FT) | CRISPR enrichment<br>(NGS, HEK293FT) |
|------------------------------------------------------|-------------------------------------------------------|--------------------------------------|
| <b>PSMB2-on target</b><br>(GTAAACAAAGCATAGACTGA GGG) | Ο                                                     | Ο                                    |
| PSMB2-off target2<br>(GcAAACAAAaCAgAGACTGA AGG)      | X                                                     | O                                    |
| PSMB2-off target3<br>(GTAAACAAcaCAgAGACTGA AGG)      | ×                                                     | O                                    |
| PSMB2-off target4<br>(GgAAACAgAGCATAGAaTGA TGG)      | X                                                     | O                                    |

## **Supplementary Figures**

### Supplementary Fig.1



Uncleaved(%) 0% 26.1% 54.8% 61.6%

Supplementary Figure 1. Genotyping of the Cas12a induced mutant DNA enrichment with CRISPR amplification. (a) Relatively compare the results of serially diluted (from 1X to 1/100000X) each genomic DNA sample with mutations induced by Cas12a. Relative mutant DNA frequency (%) at *AGBL1* locus was calculated by cleaving DNA amplicons with optimally designed crRNA for Cas12a. The cleaved amplicons were separated by 2% agarose gel. (b) Relative mutant DNA frequency (%) for predicted off-target sites of *RPL32P3* site in genomic DNA from U2OS cells. (c) Relative mutant DNA frequency (%) for predicted off-target sites of *RPL32P3* site indicated by asterisk and cleaved DNA from U2OS cells. Uncleaved DNA fractions are indicated by asterisk and cleaved DNA fractions are indicated by intensity ratio of band patterns (uncleaved fraction (%) / cleaved fraction (%) + uncleaved fraction (%)). Representative gel image was shown from two (N=2) independent experiments. Source data are provided as a Source Data file.



RPL32P3 site1(HEK293FT)

Supplementary Figure 2. Detection of the intracellular off-target mutation induced by CRISPR-Cas12a (Cpf1) by using CRISPR amplification. Detection of off-target mutations for the target sequence (*RPL32P3* locus) generated by CRISPR-Cas12a effector in HEK293FT cells. PCR amplicons were generated for 10 off-target sequences same with (Fig. 2) and indel frequency (%) was analyzed by next-generation sequencing after multiple CRISPR amplification. The Y axis represents the amplified target and off-target sequences (The PAM sequence and mismatch to wild-

type reference in protospacer is shown in blue and red color, respectively), and the X axis represents the frequency (%) of indels on a log scale. The dashed line indicates the NGS detection limit (=0.5%). Each amplification stage for mutant DNA enrichment is shown in light blue (no amplification), blue (1<sup>st</sup> CRISPR amplification), green (2<sup>nd</sup> CRISPR amplification) and dark green (3<sup>rd</sup> CRISPR amplification). Data are shown as mean from two (N=2) independent experiments. *P*-values are calculated using a one-way ANOVA, Tukey's test (ns: not significant, *P*\*=0.0332, *P*\*\*=0.0021, *P*\*\*\*=0.0002, *P*\*\*\*\*=0.0001).



Supplementary Fig.3

Supplementary Figure 3. Genotyping of the CRISPR amplification of intracellular off-target mutations induced by CRISPR-Cas9 and adenine base editor (ABE). (a) The relative mutant DNA frequency (%) for target and predicted Cas9 off-target sites of *FAT3* sequence in genomic DNA from HEK293FT cell is calculated by cleavage

and separation of PCR amplicons on 2% agarose gel. (b) The relative single-base substituted DNA frequency (%) for target and predicted base editor off-target sites of *PSMB2* sequence in genomic DNA from HEK293FT cell is calculated by cleavage and separation of PCR amplicons on 2% agarose gel. Uncleaved DNA fractions are indicated by asterisk and cleaved DNA fractions are indicated by red arrows. Uncleaved mutant DNA frequency (%) was calculated by intensity ratio of band patterns (uncleaved fraction (%) / cleaved fraction (%) + uncleaved fraction (%)). Representative gel image was shown from two (N=2) independent experiments. Source data are provided as a Source Data file.



#### RPL32P3 site1 (on-target, 3rd enrichment)

| WT     | TTTG | GGGTGA | TCAGAC | CCAACA | GCAGO | TCATO  | GGGGG | С |
|--------|------|--------|--------|--------|-------|--------|-------|---|
| Del 2  | TTTG | GGGTG/ | TCAGAC | CCTGC  | -CAG  | STCATO | GGGGG | С |
| Del 3  | TTTG | GGGTG/ | TCAGAC | CCI    | GCAGO | STCATO | GGGGG | С |
| Del 6  | TTTG | GGGTG/ | TCAGAC | C      | -CAGO | STCATO | GGGGG | С |
| Del 7  | TTTG | GGGTGA | TCAGAC | ;      | -CAGO | STCATO | GGGGG | С |
| Del 17 | TTTG | GGGTGA | \      |        |       | TCATO  | GGGGG | С |
| Del 28 | TT   |        |        |        |       | те     | GGGGG | С |
| Del 29 | TTT- |        |        |        |       |        | GGGGG | С |

#### RPL32P3 site1 (off-target 1, 3rd enrichment)

WT TTTG GGGTGATCAGACCCAACACCAGGTCATGGGGGC Del 3 TTTG GGGTGATCAGACCCCAA---CAGGTCATGGGGGC Del 6 TTTG GGGTGATCAGAC----CCAGGTCATGGGGGC Del 7 TTTG GGGTGATCAG-----ACCAGGTCATGGGGGC Del 16 TTTG GGGTGATCAGAC-----GGGGC

#### RPL32P3 site1 (off-target2, 3rd enrichment)

WT TTTG GGGTGATCAGACCCAACACCAGGTCGTGGGGGT Del 3 TTTG GGGTGATCAGACC---CACCAGGTCGTGGGGGT Del 6 TTTG GGGTGATCAGAC----CCAGGTCGTGGGGGT Del 7 TTTG GGGTGATCAG-----CCAGGTCGTGGGGGT Del 8 TTTG GGGTGATCAG----CAGGTCGTGGGGGT Del 9 TTTG GGGTGATCAG----CAGGTCGTGGGGGT Del 17 TTTG GGGTGATCAG-----CAGGTCGTGGGGGT

#### RPL32P3 site1 (off-target3, 3rd enrichment)

WT TTTG GGGTGATCAGACCCAACACCAGGCCGTGGGGGGC Del 3 TTTG GGGTGATCAGACC---CACCAGGCCGTGGGGGGC Del 5 TTTG GGGTGATCAGACC----CCAGGCCGTGGGGGGC Del 8 TTTG GGGTGATCAGAC-----CCAGGCCGTGGGGGGC Del 9 TTTG GGGTGATCAG-----ACCAGGCCGTGGGGGGC

#### RPL32P3 site1 (off-target4, 3rd enrichment)

WT TTTG GGGTGATCAGGCCCAACACCAGGCCATCAGGCT Del6 TTTG GGGTGATCAGGC----CCAGGCCATCAGGCT Del7 TTTG GGGTGATCAGG----CCAGGCCATCAGGCT

#### RPL32P3 site1 (off-target5, 3rd enrichment)

WT TTTG GGGTGATCAGATCCAACCCCAGGCCATGGGGGGT Del6 TTTG GGGTGATCAGA-----CCCAGGCCATGGGGGGT Supplementary Figure 4. Enriched mutant DNA pattern induced by Cas12a at predicted off-target sites for *RPL32P3* target sequence. NGS data analysis of AsCas12a induced indel patterns enriched by multiple round CRISPR amplification for (a) *RPL32P3* on-target site, (b) off-target site1, (c) off-target site2, (d) off-target site3, (e) off-target site4, and (f) off-target site5, respectively. Each amplification stage for mutant DNA enrichment is shown in pink (no amplification), light purple (1<sup>st</sup> CRISPR amplification), purple (2<sup>nd</sup> CRISPR amplification) and black (3<sup>rd</sup> CRISPR amplification).



| WT     | ATGTTTC | CTGATGGTCCATGTCTGTTACTCGCCTGTCAAGTGGCGT |
|--------|---------|-----------------------------------------|
| Del 5  | ATGTTTC | CTGATGGTCCATGTACTCGCCTGTCAAGTGGCGT      |
| Del 6  | ATGTTTC | CTGATGGTCCATGACTCGCCTGTCAAGTGGCGT       |
| Del 7  | ATGTTTC | CTGATGGTCCATACTCGCCTGTCAAGTGGCGT        |
| Del 8  | ATGTTTC | CTGATGGTCCATCTCGCCTGTCAAGTGGCGT         |
| Del 9  | ATGTTTC | CTGATGGTCCATGCGCCTGTCAAGTGGCGT          |
| Del 16 | ATGTTTC | CTGATGGTCCTGTCAAGTGGCGT                 |
| Del 21 | ATGTTTC | CTGATGGTCAAGTGGCGT                      |
| Del 22 | ATGTTTC | CTGATGTCAAGTGGCGT                       |
| Del 25 | ATGTTT- | CCTGTCAAGTGGCGT                         |
| Del 26 | ATGTT   | CCTGTCAAGTGGCGT                         |
| Del 27 | ATGTTTC | CTGATGTGGCGT                            |
| Del 28 | ATGTTTC | CTGATGGTCGT                             |
| Del 29 | ATGTTTC | CTGATGGCGT                              |
| Del 31 | ATGTTTC | CTGATGGT                                |
| Del 32 | A       | TGTCAAGTGGCGT                           |
| Del 33 | ATGT    | AAGTGGCGT                               |
| Del 37 | ATGTTTC | CT                                      |
|        |         |                                         |

Supplementary Fig.5



Supplementary Figure 5. Enriched mutant DNA pattern induced by Cas12a at

Del 28 TT - -

Del 36 ----

Del 39 ----

Del 32 TTT- ----

Del 13 TTTC CTGATG-----TTAGACACCCCTCTTCT Del 18 TTTC CTGATGGT-----CCCCTCTTCT Del 20 TTTC CT-----GACACCCCTCTTCT Del 25 TTTC C------CCCCTCTTCT Del 26 TTTC -----CCCCTCTTCT

-----TTCT

----TCTTCT

----CCCTCTTCT

---T

predicted off-target sites for DNMT1 target sequence. (a) Detection of off-target mutations for the target sequence (DNMT1) generated by the CRISPR-Cas12a effector in HEK293FT cells. PCR amplicons were generated for on-target and three off-target sequences (The PAM sequence and mismatch to wild-type reference in protospacer is shown in blue and red color, respectively) predicted in silico and the indel frequency (%) was analyzed by NGS after sequential CRISPR amplifications. NC indicates a negative control for no Cas12a delivery into the cells. Each amplification stage for mutant DNA enrichment is shown in gray (NC), light pink (no amplification), pink (1<sup>st</sup> CRISPR amplification), red (2<sup>nd</sup> CRISPR amplification) and dark red (3<sup>rd</sup> CRISPR amplification). The dashed line indicates the NGS detection limit (=0.5%). Data are shown as mean from two (N=2) independent experiments. *P*-values are calculated using a one-way ANOVA, Tukey's test (ns: not significant, P\*=0.0332, P\*\*=0.0021, P\*\*\*=0.0002, P\*\*\*\*=0.0001). (b) Fold increases in DNMT1 target and offtarget mutant DNA after CRISPR amplification (N=2). (c-e) NGS analysis of AsCas12a induced indel patterns on DNMT1-site3 locus enriched by third round CRISPR amplification for (c) on-target, (d) off-target site2, (e) off-target site3, respectively. Each amplification stage for mutant DNA enrichment is shown in pink (no amplification), light purple (1<sup>st</sup> CRISPR amplification), purple (2<sup>nd</sup> CRISPR amplification) and black (3<sup>rd</sup> CRISPR amplification).

# Supplementary Fig.6



### FAT3 site1 (On-target, 3<sup>rd</sup> enrichment, deletion pattern)

TTTG<u>GAGCTGCTTAAGCATTTCAAGGG</u>AAGAAACCCT

TTTGGAGCTGCTTAAGCATT-CAAGGGAAGAAACCCT

TTTGGAGCTGCTTAAGCAT - - CAAGGGAAGAAACCCT

TTTGGAGCTGCTTAAGC----CAAGGGAAGAAACCCT TTTGGAGCTGCTTAAG----CAAGGGAAGAAACCCT TTTGGAGCTGCTTAAGC----AGGGAAGAAACCCT

TTTGGAGCTGCTT-----CAAGGGAAGAAACCCT

Del 10 TTTGGAGCTGCTTAA-----GGAAGAAACCCT Del 11 TTTGGAGCTGCTTAAGCATTTC-----CCCT Del 13 TTTGGAGC-----CAAGGGAAGAAACCCT

WT Del 1

Del 2

Del 4 Del 5

Del 6

Del 8

FAT3 site1 (On-target, 3<sup>rd</sup> enrichment, insertion pattern)

| WТ    | TTTGGAGCTGCTTAAGCATTTCAA   | <b>GGG</b> AAGA |
|-------|----------------------------|-----------------|
| Ins 1 | TTTGGAGCTGCTTAAGCATTTACAA  | GGGAAGA         |
| Ins 2 | TTTGGAGCTGCTTAAGCATTTT-CAA | <b>GGG</b> AAGA |
| Ins 3 | TTTGGAGCTGCTTAAGCATTTTTCAA | <b>GGG</b> AAGA |





WT CCCTGGAGATGCAGAAGCATTTCAAGGGGACAGCCAC Del 1 CCCTGGAGATGCAGAAGCATT-CAAGGGGACAGCCAC

Supplementary Figure 6. Enriched mutant DNA pattern induced by Cas9 effector

**at predicted off-target sites for** *FAT3* **target sequence.** NGS analysis of SpCas9 induced indel patterns on *FAT3* locus enriched by third round CRISPR amplification for **(a)** on-target and **(b)** off-target site3. PAM sequence (NGG) for SpCas9 is shown in red color and inserted DNA bases are shown in orange color respectively. Each amplification stage for mutant DNA enrichment is shown in pink (no amplification, indel only), light purple (1<sup>st</sup> CRISPR amplification), purple (2<sup>nd</sup> CRISPR amplification) and black (3<sup>rd</sup> CRISPR amplification).



HEK293 site4 (On-target, 3<sup>rd</sup> enrichment, deletion pattern)

| WT     | GGT <u>GGCACTGCGGCTGGAGGTGG</u> | GGGTTAAAG |
|--------|---------------------------------|-----------|
| Del 1  | GGTGGCACTGCGGCTGGAG-TGG         | GGGTTAAAG |
| Del 2  | GGTGGCACTGCGGCTGGATGG           | GGGTTAAAG |
| Del 3  | GGTGGCACTGCGGCTGGTGG            | GGGTTAAAG |
| Del 4  | GGTGGCACTGCGGCTGTGG             | GGGTTAAAG |
| Del 5  | GGTGGCACTGCGGCTGGA              | GGGTTAAAG |
| Del 6  | GGTGGCACTGCGGCTGG               | GGGTTAAAG |
| Del 6  | GGTGGCACTGCGGCTGGA              | -GGTTAAAG |
| Del 12 | GGTGGCACTGG                     | GGGTTAAAG |
| Del 13 | GGTGGCATGG                      | GGGTTAAAG |
| Del 18 | GGTGGCAC                        | TTAAAG    |
| Del 21 | GG                              | GGGTTAAAG |
|        |                                 |           |

b HEK293 site4 (Off-target 1) Indel (no amplification) 🗾 1st 🔲 2nd 🔲 3rd 30 Indel frequency (%) 20 10 0 +2 +1 -1 -2 -9 -10 -12 -13 -14 -16 -20

Indel size (bp)

HEK293 site4 (Off-target 1, 3<sup>rd</sup> enrichment, deletion pattern)

| WT     | GG <u>TGCACTGCGGCCGGAGGAGG</u> | <b>TGG</b> AGGATGGA |
|--------|--------------------------------|---------------------|
| Del 1  | GGTGCACTGCGGCCGGAGG-GG         | TGGAGGATGGA         |
| Del 2  | GGTGCACTGCGGCCGGAAGG           | TGGAGGATGGA         |
| Del 9  | GGTGCACTGCGGCC                 | -GGAGGATGGA         |
| Del 10 | GGTGCACTGCGG                   | <b>TGG</b> AGGATGGA |
| Del 12 | GGTGCACTGG                     | TGGAGGATGGA         |
| Del 13 | GGTGCAAGG                      | TGGAGGATGGA         |
| Del 14 | GGTGCAGG                       | TGGAGGATGGA         |
| Del 16 | GGTGCACTGCGGCC                 | GGA                 |
| Del 20 | GG                             | TGGAGGATGGA         |
|        |                                |                     |



HEK293 site4 (Off-target 2, 3<sup>rd</sup> enrichment, insertion pattern)





Supplementary Figure 7. Enriched mutant DNA pattern induced by CRISPR-Cas9 effector at predicted off-target sites for HEK293 site4 target sequence. NGS analysis of SpCas9 induced indel patterns on HEK293 site4 locus enriched by third round CRISPR amplification for (a) on-target, (b) off-target site1, (c) off-target site2, (d) off-target site3 and (e) off-target site5. PAM sequence (NGG) for SpCas9 is shown in red color. Deleted and inserted DNA bases are shown in dashed line and yellow color, respectively. Each amplification stage for mutant DNA enrichment is shown in pink (no amplification, indel only), light purple (1<sup>st</sup> CRISPR amplification), purple (2<sup>nd</sup> CRISPR amplification) and black (3<sup>rd</sup> CRISPR amplification).

# Supplementary Fig.8



Supplementary Figure 8. Target-specific genome editing and enriched mutant DNA pattern induced by CRISPR-Cas9 effector at predicted off-target sites for

**RNF2 target sequence.** (a) Detection of off-target mutations for the target sequence (RNF2) generated by the CRISPR-Cas9 effector in HEK293FT cells. PCR amplicons were generated for on-target and three off-target sequences (The PAM sequence and mismatch to wild-type reference in protospacer is shown in blue and red color, respectively) predicted in silico and the indel frequency (%) was analyzed by NGS after sequential CRISPR amplifications. NC indicates a negative control for no Cas9 delivery into the cells. Each amplification stage for mutant DNA enrichment is shown in blue (NC), light pink (no amplification, only indel), pink (1<sup>st</sup> CRISPR amplification), red (2<sup>nd</sup> CRISPR amplification) and dark red (3<sup>rd</sup> CRISPR amplification). The dashed line indicates the NGS detection limit (=0.5%). Data are shown as mean from two (N=2) independent experiments. P-values are calculated using a one-way ANOVA, Tukey's test (ns: not significant, P\*=0.0332, P\*\*=0.0021, P\*\*\*=0.0002, P\*\*\*\*=0.0001). (b, c) NGS analysis of SpCas9 induced indel patterns on RNF2 locus enriched by third round CRISPR amplification for on-target. PAM sequence (NGG) for SpCas9 is shown in red color. Deleted and inserted DNA bases are shown in dashed line and yellow color, respectively. Each amplification stage for mutant DNA enrichment is shown in pink (no amplification, indel only), light purple (1<sup>st</sup> CRISPR amplification), purple (2<sup>nd</sup> CRISPR amplification) and black (3rd CRISPR amplification).

# Supplementary Fig.9



Supplementary Figure 9. Enrichment of the artificially synthesized mutant DNA amplicon with 1bp and 10bp deletions at individual or mixed condition. (a) PCR

amplicons were artificially generated for wild-type (ZNF609) and two deleted sequences (Del1, Del10). (b) Deletion frequency (%) was analyzed by NGS after sequential CRISPR amplifications with wild-type-Del 1 and wild type-Del 10 amplicon mixture, respectively. Each amplification stage for mutant DNA enrichment is shown in light pink (no amplification), pink (1<sup>st</sup> CRISPR amplification), red (2<sup>nd</sup> CRISPR amplification) and dark red (3rd CRISPR amplification). Data are shown as mean from two independent experiments (N=2). (c) Fold increase after CRISPR amplification (N=2) for each Del 1 and Del 10 sequence. Primary, secondary, and tertiary CRISPR amplification results are shown in gray, dark gray, and black, respectively. All experiments were conducted at least two times. (d) Deletion frequency (%) was analyzed by NGS after sequential CRISPR amplifications with wild-type-Del1-Del10 amplicon mixture. Each amplification stage for mutant DNA mixture enrichment is shown as (b). (e) Deletion frequency (%) of each Del 1 and Del 10 pattern was analyzed by NGS after sequential CRISPR amplifications. (f) Fold increase after CRISPR amplification (N=2) for each Del 1 and Del 10 sequence from mixed enrichment result. Data is shown as (c).



Supplementary Figure 10. Enriched mutant DNA pattern induced by Cas9 effector at ZNF609 (Spacer8A) target sequence. (a) Detection of on-target

mutations for the target sequence (ZNF609, Spacer8A) generated by the CRISPR-Cas9 effector in HEK293FT cells. Indel frequency (%) was analyzed by NGS after sequential CRISPR amplifications. Each amplification stage for mutant DNA enrichment is shown in light pink (no amplification, only indel), pink (1<sup>st</sup> CRISPR amplification), red (2<sup>nd</sup> CRISPR amplification) and dark red (3<sup>rd</sup> CRISPR amplification). Data are shown as mean from two (N=2) independent experiments. NC indicates negative control of no Cas9 delivery into cells. (b) NGS analysis of CRISPR-Cas9 induced indel frequency on ZNF609 (Spacer8A) locus. Top: Indel frequency versus various size of indel patterns from NGS sequencing data (a). Bottom: Each mutation frequency of amplification stage for various indel enrichment is shown in pink (no amplification, indel only), light purple (1<sup>st</sup> CRISPR amplification), purple (2<sup>nd</sup> CRISPR amplification) and black (3rd CRISPR amplification). (c) NGS analysis of CRISPR-Cas9 induced indel patterns on ZNF609 locus enriched by third round CRISPR amplification. PAM sequence (NGG) for SpCas9 is shown in red color. Deleted and inserted DNA bases are shown in dashed line and yellow color, respectively. (d) Magnified view of amplified mutation frequency of 1bp insertion and 10bp deletion. (e) Fold increases in *ZNF609* target for 1bp insertion and 10bp deletion mutant DNA after CRISPR amplification (N=2).





Supplementary Figure 11. Comparison of enrichment property between wildtype Cas9 (wtCas9) and specificity enhanced Cas9 (eCas9). (a) Mutant DNA

amplification with wild-type Cas9 (wtCas9) or specificity enhanced Cas9 (eCas9) for the target sequence (RP11-77122.4 site, Spacer15A) generated by the CRISPR-Cas9 effector in HEK293FT cells. Indel frequency (%) was analyzed by NGS after sequential amplifications with wild-type Cas9 (wtCas9) or specificity enhanced Cas9 (eCas9), respectively. Each amplification stage for mutant DNA enrichment is shown in light pink (no amplification, only indel), pink (1<sup>st</sup> CRISPR amplification), red (2<sup>nd</sup> CRISPR amplification) and dark red (3<sup>rd</sup> CRISPR amplification). Data are shown as mean from two (N=2) independent experiments. NC indicates negative control of no Cas9 delivery into cells. (b) Fold increases of mutations in RP11-77122.4 target for wild-type Cas9 (wtCas9) and specificity enhanced Cas9 (eCas9) after CRISPR amplification (N=2). (c) NGS analysis of CRISPR-Cas9 induced indel patterns on RP11-77122.4 (Spacer15A) locus. (d) NGS analysis of CRISPR-Cas9 induced indel frequency on RP11-77122.4 (Spacer15A) locus. Top: Indel frequency versus various size of indel patterns from NGS sequencing data (a). Middle: Each mutation frequency of amplification stage generated by wild-type Cas9 (wtCas9) is shown in pink (no amplification, indel only), light purple (1<sup>st</sup> CRISPR amplification), purple (2<sup>nd</sup> CRISPR amplification) and black (3<sup>rd</sup> CRISPR amplification). Bottom: Each mutation frequency of amplification stage generated by specificity enhanced Cas9 (eCas9) is shown in pink (no amplification, indel only), light blue (1st CRISPR amplification), blue (2nd CRISPR amplification) and dark blue (3rd CRISPR amplification). (e) A magnified histogram comparing the frequency of the mutation (from (d)) amplified using wtCas9 and eCas9, respectively. The yellow-highlighted portion shows the difference in tendency amplified by wtCas9 and eCas9.

Supplementary Fig.12



HEK site4 (HEK293FT)

Supplementary Figure 12. The investigation of CRISPR amplification on negative control samples. (a) Detection of mutation frequency (%) for negative

control samples which is corresponding to the on/off target sequence (HEK293 site4) of Fig.3c. PCR amplicons were generated for on-target and six off-target sequences predicted *in silico* and the indel frequency (%) was analyzed by NGS after sequential CRISPR amplifications (N=2). NC indicates a negative control for no CRISPR-Cas9 delivery into the cells. **(b)** A magnified histogram of yellow highlighted region in (a). The dashed line indicates the NGS detection limit (=0.5%).

crRNA for enrichmen gRNA for editing

RPL32P3 site1 on

TTCTTTTGGGGTGATCAGACCCAACAGCAGGTCATGGGG AAGAAAACCCCACTAGTCTGGGTTGTCGTCCAGTACCCC RPL32P3 site1 off 1-3

GGTT**TTTGGGGTGATCAGACCCAACACCAGG**TCATGGGG CCAAAAACCCCACTAGTCTGGGTTGTgGTCCAGTACCCC

### RPL32P3 site1 off 4

AAATTTTGGGGTGATCAGgCCCAACACCAGGCCATCAGG TTTAAAAACCCCACTAGTCcGGGTTGTgGTCCGGTAGTCC RPL32P3 site1 off 5

ATTT**TTTGGGGTGATCAGACCCAACcCAGG**CCATGGGG TAAAAAACCCCACTAGTCTGGGTTGggGTCCGGTACCCC

### RPL32P3 site1 off 6

TTATTTTGGGGTGATCAGACCtAACActAGGCCATGGGG AATAAAACCCCACTAGTCTGGaTTGTgaTCCGGTACCCC RPL32P3 site1 off 7

AATT**TTTGGGGTGATCcaACCCAACACCAGG**ACGTGGGT TTAAAAACCCCACTAGgtTGGGTTGTgGTCCTGCACCCA RPL32P3 site1 off 8

AACTTTTGGGGTGgcCAGACCCAACAcCAGGCCATGGGG TTGAAAACCCCACcgGTCTGGGTTGTgGTCCGGTACCCC RPL32P3 site1 off 9

TACTTTTGGGGTGgaCAGACCCAACACCAGGTCGTGAGG ATGAAAACCCCACctGTCTGGGTTGTgGTCCAGCACTCC RPL32P3 site1 off 10

ATAATTTTGGGTGTTCAGgaCCAACAaCAGGACTAACTA TATTAAAACCCACaAGTCctGGTTGTtGTCCTGATTGAT

> crRNA for enrichment gRNA for editing

DNMT1 site3 on-target

AATG**TTTCCTGATGGTCCATGTCTGTTACTC**GCCTGTCA TTACAAAGGACTACCAGGTACAGACAATGAGCGGACAGT

#### DNMT1 site3 off1

GCCATTTCCTGATGGTCCAcGcCTGTTAacaTCAAAATG CGGTAAAGGACTACCAGGTgCgGACAATtgtAGTTTTAC

#### DNMT1 site3 off2

ACCATTTCCTGATGGTCCATacCTGTTAacaTTAAAATG TGGTAAAGGACTACCAGGTAtgGACAATtgtAATTTTAC

#### DNMT1 site3 off3

GAAGTTTCCTGATGGTCCATGTCTGaattagACACCCCT CTTCAAAGGACTACCAGGTACAGACttaatcTGTGGGGA

FAT3 site1 on

crRNA for enrichmen

gRNA for editing

GAGCTGCTTAAGCATTTCAAGGGAAGAAACCCTGAAACTCT CTCGACGAATTCGTAAAGTTCCCTTCTTTGGGACTTTGAGA

#### FAT3 site1 off1

GAGCTaaTTAAaCATTTCAAAGGGAAACATTATTTTAACTC CACGAttAATTtGTAAAGTTTCCCTTTGTAATAAAATTGAG

#### FAT3 site1 off2

aAGCTGCTTctGCATTTCAAAGGGGCTGATTTATCACTTTC tTCGACGAAgaCGTAAAGTTTCCCCGACTAAATAGTGAAAG

#### FAT3 site1 off3

GAGaTGCagAAGCATTTCAAGGGGACAGCCACTACTGAGGC CTCtACGtcTTCGTAAAGTTCCCCTGTCGGTGATGACTCCG

> crRNA for enrichm gRNA for editing

PSMB2 site1 on-target

CACCATCTTTTGTACACTCAGAGTAAACAAAGCATAGACTGAGGG GTGGTAGAAAACATGTGAGTCTCATTTGTTTCGTATCTGACTCCC

#### PSMB2 site1 off1

TGCTGCACTCAGTAACATTTCAGTAAACtAAtCATAGAtTGAAGG ACGACGTGAGTCATTGTAAAGT**CATTTGaTTaGTATCTaACTTCC** 

#### PSMB2 site1 off2

GCTCAGCACTGGGTATATACTTGCAAACAAAaCAgAGACTGAAGG CGAGTCGTGACCCATATATGAACgTTTGTTTtGTcTCTGACTTCC

#### PSMB2 site1 off3

TCATTTAATTTTTTAGTGACCTGTAAACAAcaCAgAGACTGAAGG GTAAATTAAAAAATCACTGGACATTTGTTgtGTcTCTGACTTCC

GAGTTAAATAATGTGTAAACATGgAAACAgAGCATAGAaTGATGG CTCAATTTATTACACATTTGTACCTTTGTCTCGTATCTtACTACC

#### PSMB2 site1 off5

GTACAGTGTGGAGATAAAAGAGGTAAAgAAAGaATAGtCTGAGGG CATGTCACACCTCTATTTTCTCCATTTcTTCtTATCaGACTCCC

# Supplementary Fig.13

PSMB2 site1 off4



sgRNA for enrichment

GTCATCTTAGTCATTACCTGAGG CAGTAGAATCAGTAATGGACTCC

TAAGCGGAATG<mark>GgtATCTaAGTCATTACCTGTGG</mark>AACTT ATTCGCCTTACCcaTAGAtTCAGTAATGGACACCTTGAA

TTTTAAAAAATGGTaATCTgAGTCATTtCCTGGGGATTCT AAAATTTTTACCAtTAGAcTCAGTAAaGGACCCCTAAGA

GGGGATCCAGCGTCATCcTAGTgcTTACCTGAGGCTTGG CCCCTAGGTCCCAGTAGgATCAcgAATGGACTCCGAACC

Supplementary Fig.13

## Supplementary Figure 13. Design of the guide RNA for wild-type DNA specific

**cleavage and mutant DNA amplification.** Guide RNA (gRNA) was used to induce target genomic locus mutation by various effectors and gRNA was used for target DNA enrichment by CRISPR amplification. Each single-guide and crRNA was designed for **(a)** *RPL32P3* on/off site mutations by Cas12a, **(b)** *DNMT1*-site3 on/off site mutations by Cas12a, **(c)** *FAT3* on/off site mutations by Cas9, **(d)** *PSMB2* on/off site mutations by adenine base editor, **(e)** Spacer8A, 15A site mutations by Cas9, **(f)** HEK293 site4 on/off mutations by Cas9, **(g)** *RNF2* on/off site mutations by Cas9. PAM sequence and mismatched sequences within protospacer region is shown in green, red bar and red lower case letter in protospacer, respectively.

### References

- Kleinstiver, B.P. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34, 869-874 (2016).
- 2. Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. *Nat Biotechnol* **33**, 187-197 (2015).