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Estimation of the RC time constant of the actuators 

In this section, we estimate the time to charge the electrodes of the actuator. We model the 
actuator as an RC circuit (Fig. S1A). The RC time constant of the actuator can be calculated from 
the resistance Re of the electrodes and the capacitance Ca of the actuator. The electrodes are 
connected to the voltage source and to ground near the sides of the actuator (Fig. S1B), so that 
that the resistance of the electrodes can be approximated as 
 

 𝑅e = 2𝜌
𝑤

ℎe𝐿e
, [S1] 

 

where  is the resistivity of the electrode material, w is the width of the actuator, he the thickness 
of the electrodes, and Le = L/2 the length of the electrodes (Fig. S1B). The capacitance is largest 
when the electrodes are completely zipped. For that case, the capacitance of the zipped region of 
the electrodes can be calculated as 
 

 𝐶a = 𝜀0𝜀r
𝑤𝐿e

2ℎ
, [S2] 

 

where 0 is the vacuum permittivity, r the relative permittivity of the material of the shell, and h the 
thickness of the shell. Combining Eqs. S1 and S2 leads to the RC time constant tRC: 
 

 𝑡RC = 𝑅e𝐶a = 𝜌𝜀0𝜀r
𝑤2

ℎℎe
, [S3] 

 

The largest RC time constant that occurs in this article is for the actuators made from L0WS (r = 

3.5, h = 20.3 m) with width w = 12 cm. The resistivity of the electrode material is  < 10-3 Ωm 
(specification sheet of the manufacturer). The thickness of the electrodes is approximately he ≈ 10 
μm  (measured with a micrometer). With those values we calculate an RC time constant tRC ≈ 2 
μs, which is three orders of magnitude smaller than the fastest observed time scales of actuation. 
The influence of the charging time of the actuators on the dynamics can therefore be neglected. 

Scaling analysis 

It is useful to determine the dimensionless groups of parameters which govern the dynamics of 
Peano-HASEL actuators. When neglecting the mass of the actuator, the elasticity of the shell, 
and the electric field inside the liquid-filled region of the shell, the dimensionless transition time tn 
of the actuator in response to a step-voltage signal (tn = tR or tn = tF depending on whether the 
voltage is turned on or off) can be determined from the following equation: 
 
 𝐹(Φ, 𝜀0𝜀r, ℎ, 𝑤, 𝐿, 𝐿e, 𝑉, 𝜇, 𝑀, 𝑔, 𝑡n) = 0, [S4] 
 

where  [V] is the applied voltage, 0 [mkg/s2V2] the vacuum permittivity, r [-] and h [m] the 
relative permittivity and thickness of the material of the shell, respectively, w [m] and L [m] the 

dimensions of the shell, Le [m] the length of the electrodes, V [m3] and  [kg/sm] the volume and 
the viscosity of the liquid dielectric, respectively, M [kg] the mass of the hanging weight, and g 
[m2/s] the gravitational acceleration (Fig. S2A and B). Using dimensional analysis Eq. S4 can be 
rewritten in a dimensionless form: 
 

 𝑡n (
𝑔

𝐿
)

1 2⁄

= 𝐺 (
𝛷2𝜀0𝜀r𝑤

𝑀𝑔ℎ
,

𝜇𝑤𝐿1 2⁄

𝑀𝑔1 2⁄ ,
𝑉

𝑤𝐿2 ,
𝐿e

𝐿
,

ℎ

𝐿
,

𝑤

𝐿
) [S5] 

 
The parameters V/wL2 and Le/L describe the ratio of the volume of the liquid dielectric to the 
dimensions of the shell and the electrode coverage ratio, respectively. We keep both parameters 
constant in this article and do not further investigate their influence on the dynamics. The 
parameters h/L and w/L describe the influence of the bending stiffness and the side constraints 
on the behavior of the actuator (1). We have previously shown that both parameters can be 
neglected for the actuator dimensions L > w >> h (as used in this article) (1). It is important to 
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note that this analysis made no assumption about the magnitude of the actuation strain (such as 
linearization for small strains). The scaling analysis is therefore also valid for large strains (if none 
of the other assumptions are violated). 
 
Using the simplifications described in the preceding paragraph, Eq. S5 reduces to 
 

 𝑡n (
𝑔

𝐿
)

1 2⁄

= 𝐺 (
𝛷2𝜀0𝜀r𝑤

𝑀𝑔ℎ
,

𝜇𝑤𝐿1 2⁄

𝑀𝑔1 2⁄ ). [S6] 

 

The dimensionless parameter 20rw/Mgh describes the ratio of the electrostatic forces and the 
weight of the load. We have previously shown that this parameter governs the equilibrium strain 
(1) and expect it to be an important parameter for the dynamics of Peano-HASEL actuators.  
 

The meaning of the parameters (L/g)1/2 and wL1/2/Mg1/2 can be explained by analyzing the two 

limiting cases  → 0 and  → . In the case  → 0, the viscosity of the liquid dielectric becomes 

negligible and the parameter  disappears as an independent parameter from Eq. S4 reducing 
the number of independent dimensionless parameters by one. Repeating the scaling analysis 
under this assumption leads to 
 

 𝑡n (
𝑔

𝐿
)

1 2⁄

= 𝐻 (
𝛷2𝜀0𝜀r𝑤

𝑀𝑔ℎ
). [S7] 

 

From Eq. S7 follows that when the parameter 20rw/hMg is constant, the rise and fall times are 

proportional to the timescale i = (L/g)1/2. In the limit  →  inertial effects can be neglected and 
the actuator contracts in a quasistatic motion. With this assumption the parameters M and g enter 
as the product Mg into Eq. S4, which also reduces the number of independent dimensionless 
parameters by one. Repeating the scaling analysis under this assumption leads to 
 

 𝑡n
𝑀𝑔

𝜇𝑤𝐿
= 𝐼 (

𝛷2𝜀0𝜀r𝑤

𝑀𝑔ℎ
). [S8] 

 

From Eq. S8 follows that when the parameter 20rw/Mgh is constant, the rise and fall times are 

proportional to the timescale v = wL/ Mg. In Eq. S6, the parameter wL1/2/Mg1/2 is the ratio of 

the two timescales v/i. The value of v/i governs if an actuator lies in the inertial or the viscous 
regime (see main text).  

Dynamic equations of motion 

We assume that the polymer membrane in the liquid-filled region of the shell takes the shape of 

cylinder sections and parameterize its geometry with half the angle , at which the cylinder 
sections intersect (Fig. S2B). We treat the liquid dielectric as incompressible. Using the length of 

the shell L, the width of the shell w, and the volume of the liquid dielectric V, the initial angle 0 
can be calculated from 
 

 𝐿 = √
2𝑉𝛼0

2 𝑤⁄

𝛼0−sin (𝛼0)cos (𝛼0)
. [S9] 

 
and the initial length l0 of the actuator as 
 

 𝑙0 =
𝐿 sin(𝛼0)

𝛼0
. [S10] 

 
In the zipped state, the zipping length z is defined by 
 

 𝑧 = 𝐿 − √
2𝑉𝛼2 𝑤⁄

𝛼−sin (𝛼)cos (𝛼)
, [S11] 
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and the stroke of the actuator becomes 
 

 𝑥 = 𝑙0 − 𝑧 − (𝐿 − 𝑧)
sin(𝛼)

𝛼
. [S12] 

 
The equations of motion of the system can be calculated using the Lagrangian equations of the 
second kind (2): 
 

 
d

d𝑡
(

𝜕𝐴

𝜕�̇�
) −

𝜕𝐴

𝜕𝛼
= 𝑞, [S13] 

 
where A = T-P (T = kinetic energy, P = potential energy) is the Lagrangian of the system and q 
the generalized force due to viscous dissipation. 
 
When neglecting the electric energy stored in the electric field inside the fluid-filled region of the 
shell, the capacitance of the actuator can be described as a parallel plate capacitor with 
capacitance equal to the capacitance of the zipped area of the electrodes. With this assumption, 
the potential energy of the system becomes 
 

 𝑃 = 𝑀𝑔𝑥 +
ℎ𝑄2

𝜀0𝜀𝑟𝑤𝑧
− Φ𝑄, [S14] 

 

where M is the mass of the weight, g the gravitational acceleration, 0 the vacuum permittivity, r 

the relative permittivity of the shell material, h the thickness of the shell,  the applied voltage, 
and Q the charge on the electrode. The first term on the right hand side of Eq. S14 describes the 
potential energy of the weight, the second equation the electric energy stored in the zipped region 
of the electrodes, and the third term the change in energy of the voltage source when the charge 
Q flows onto the actuator. Using the relationship between voltage and charge on a capacitor (Q = 

C, where C is the capacitance), we can simplify Eq. S14 to  
 

 𝑃 = 𝑀𝑔𝑥 −
ε0εrwzΦ2

4ℎ
. [S15] 

 
Since we neglect the mass of the actuator, only the kinetic energy of the weight contributes to the 
kinetic energy of the system: 
 

 𝑇 =
1

2
𝑀�̇�2, [S16] 

 
where �̇� is the velocity of the weight (Fig. S2B). 
 
To obtain a model for viscous dissipation, we approximate the flow of the liquid dielectric with the 
Poiseuille flow (3) between two parallel plates (Fig. S2C). As the length of the plates we use the 
length of the fluid-filled region of the shell  
 

 𝑙 = (𝐿 − 𝑧)
𝑠𝑖𝑛(𝛼)

𝛼
. [S17] 

 
As the distance between the plates, we use the average thickness of the fluid-filled region of the 

shell. It can be calculated using the radius of the shell r = (L-z)/2 as 
 

 𝑑 =
2

𝑙
∫ 𝑟(𝑐𝑜𝑠(𝜃) − cos(𝛼))𝑟𝑐𝑜𝑠(𝜃)d𝜃 =

2𝑟2

𝑙
(𝛼 −

1

2
sin (2𝛼)) 

𝛼

−𝛼
. [S18] 

 
We assume that the average flow velocity of the fluid is the speed �̇� at which the electrodes zip. 
The pressure drop along a plate section of length l is (3) 
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 Δ𝑝 = −
12𝜇𝑙�̇�

𝑑2 . [S19] 

 
Using Eqs S17-S19, the generalized force q due to viscous dissipation can be calculated as (2) 
 

 𝑞 = 𝜂Δ𝑝𝑤𝑑
𝜕𝑧

𝜕𝛼
= −𝜂24𝜇𝑤

𝑠𝑖𝑛(𝛼)2

𝛼−0.5 sin(2𝛼)
(

𝜕𝑧

𝜕𝛼
)

2

�̇�, [S20] 

 

where �̇� is the rate of change of  with time, and  is a fitting factor to account for the 
simplifications made to obtain the equation for q. 
 
Combining Eqs. S13, S15, S16, and S20 leads to the equation of motion for the actuator: 
 

 �̈� =
𝜀𝑤Φ2

4𝑀ℎ

cos(𝛼)

1−cos(𝛼)
(

𝜕𝑥

𝜕𝛼
)

−1

− 𝑔 (
𝜕𝑥

𝜕𝛼
)

−1

− (
𝜕2𝑥

𝜕𝛼2) (
𝜕𝑥

𝜕𝛼
)

−1

𝛼2̇ −
24𝜂𝜇𝑤

𝑀

𝑠𝑖𝑛(𝛼)2

𝛼−0.5 sin(2𝛼)

cos(𝛼)2

(1−cos(α))
2 �̇� [S21] 

 
Equation S21 can be integrated numerically using Eq. S11 and 
 

 
∂x

∂α
= (𝐿 − 𝑧) (

sin(𝛼)

𝛼2 −
cos(𝛼)

𝛼
) +

𝜕𝑧

𝜕𝛼
(

sin(𝛼)

𝛼
− 1), [S22a] 

 

 
∂z

∂α
= −

2𝑉

𝑤(𝐿−𝑧)

𝛼2 cos(𝛼)2−𝛼sin (𝛼)cos (𝛼) 

(𝛼−sin(𝛼) cos(𝛼))2 , [S22b] 

 

 
∂2x

∂α2 = (𝐿 − 𝑧) (
sin(𝛼)

𝛼
+

2 cos(𝛼)

𝛼2 −
2 sin(𝛼)

𝛼3 ) − 2
𝜕𝑧

𝜕𝛼
(

sin(𝛼)

𝛼2 −
cos(𝛼)

𝛼
) +

𝜕2𝑧

𝜕𝛼2 (
sin(𝛼)

𝛼
− 1), [S22c] 

 
and 
 

 
∂2z

∂α2 = −
2𝑉

𝑤(𝐿−𝑧)

2𝛼sin (𝛼)3 cos(𝛼)+𝛼2sin (𝛼)4−2𝛼3 sin(𝛼)cos (𝛼) 

(𝛼−sin(𝛼) cos(𝛼))3 . [S22d] 

Transition between viscous and inertial regime 

We determine the transition between the inertial to viscous regimes (Fig. 5) by calculating at 

which value of wL1/2/Mg1/2 a simulation in which inertia is neglected leads to the same transition 
time as a simulation in which viscosity is neglected.  
 
When viscosity is neglected, Eq. S21 reduces to 
 

 �̈� =
𝜀𝑤Φ2

4𝑀ℎ

cos(𝛼)

1−cos(𝛼)
(

𝜕𝑥

𝜕𝛼
)

−1

− 𝑔 (
𝜕𝑥

𝜕𝛼
)

−1

− (
𝜕2𝑥

𝜕𝛼2) (
𝜕𝑥

𝜕𝛼
)

−1

𝛼2̇. [S23] 

 
When inertial effects are neglected, Eq. S21 reduces to 
 

 �̇� =

𝜀𝑤Φ2

4ℎ
−𝑀𝑔

1−cos(𝛼)

𝑐𝑜𝑠(𝛼)

𝜂24𝜇𝑤
𝑠𝑖𝑛(𝛼)2

𝛼−0.5 sin(2𝛼)
𝜕𝑧

𝜕𝛼

. [S24] 

Frequency dependence of the actuation strain for a periodic excitation signal 

The scaling analysis for a periodic excitation voltage amplitude  and frequency f is similar to that 

for a step-voltage. Here we present the scaling analysis for the extreme cases μ → 0 and  → . 

In the case of  → 0, the amplitude of the actuation strain ea can be determined from 
 

 𝐹(Φ, 𝑓, 𝜀0𝜀r, ℎ, 𝑤, 𝐿, 𝐿e, 𝑉, 𝑀, 𝑔, 𝑒𝑎) = 0, [S25] 
 

where  [V] and f [1/s] are the amplitude and frequency of the excitation voltage, respectively, 0 

[mkg/s2V2] the vacuum permittivity, r [-] and h [m] the relative permittivity and thickness of the 
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material of the shell, respectively, w [m] and L [m] the dimensions of the shell, Le [m] the length of 
the electrodes, V [m3] the volume of the liquid dielectric, M [kg] the mass of the hanging weight, g 
[m2/s] the gravitational acceleration, and ea [-] the amplitude of the actuation strain. Using 
dimensional analysis Eq. S25 can be rewritten in a dimensionless form: 

 

 𝑒𝑎 = 𝐺 (
𝛷2𝜀0𝜀r𝑤

𝑀𝑔ℎ
, 𝑓√

𝐿

𝑔
,

𝑉

𝑤𝐿2 ,
𝐿e

𝐿
,

ℎ

𝐿
,

𝑤

𝐿
). [S26] 

 
As discussed above (see Scaling Analysis), the last four parameters in G can be neglected, 
which leads to  

 

 𝑒𝑎 = 𝐺 (
𝛷2𝜀0𝜀r𝑤

𝑀𝑔ℎ
, 𝑓√

𝐿

𝑔
). [S27] 

  

In the case of  →  the starting function for the dimensional analysis is 
 

 𝐹(Φ, 𝑓, 𝜀0𝜀r, ℎ, 𝑤, 𝐿, 𝐿e, 𝑉, 𝜇, 𝑀𝑔, 𝑒𝑎) = 0, [S28] 
 

where  [V] and f [1/s] are the amplitude and frequency of the excitation voltage, respectively, 0 

[mkg/s2V2] the vacuum permittivity, r [-] and h [m] the relative permittivity and thickness of the 
material of the shell, respectively, w [m] and L [m] the dimensions of the shell, Le [m] the length of 

the electrodes, V [m3] and  [kg/sm] the volume and the viscosity of the liquid dielectric, 
respectively, Mg [mkg/s2] the weight of the attached mass, and ea [-] the amplitude of the 
actuation strain. Using dimensional analysis and the simplifications described above, Eq. S28 can 
be rewritten in a dimensionless form: 

 

 𝑒𝑎 = 𝐻 (
𝛷2𝜀0𝜀r𝑤

𝑀𝑔ℎ
, 𝑓

𝜇𝑤𝐿

𝑀𝑔
). [S29] 

 

Equation S27 and S29 show that for a periodic signal the inertial timescale i = (L/g)1/2 and the 

viscous timescale v = wL/Mg, which govern the transition times, also govern the frequency 
dependence of the actuation strain of Peano-HASEL actuators in the two regimes. Important 
dynamic characteristics of the actuators such as the roll-off frequency therefore also scale with 
these timescales. It is important to note that in this analysis no assumption of the shape of the 
excitation signal (e.g., sinusoidal, rectangular, triangular) was made. For different excitation 
signals, the functions G and H may be different, but the scaling behavior still follows Eq. S27 and 
S29 (Adding a static offset to the voltage signal adds an additional term to G and H, but it does 
not change the overall scaling behavior). 
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Fig. S1. Estimation of the RC time constant of Peano-HASEL actuators. (A) Equivalent circuit of a 
Peano-HASEL actuator. The actuator is modeled as two resistors Re/2 representing the 
resistance of the electrodes and a capacitor Ca representing the capacitance of the zipped region 
of the electrodes. (B) Definition of the parameters used to estimate the RC time of Peano-HASEL 
actuators.  
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Fig. S2. Model of Peano-HASEL actuators. (A) and (B) Definition of the parameters used in the 
scaling analysis and in the theoretical model. (C) The fluid flow is approximated as the Poiseuille 
flow between two parallel plates. The length of the plates is equal to the length of the unzipped 
region of the shell. The distance between the plates is equal to the average thickness of the 
unzipped region of the shell. The average velocity of the fluid flow is assumed to be equal to the 
zipping speed. 
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Fig. S3. Comparison between experimental results and model predictions when the parameter  
is chosen separately for the rise and the fall time. Comparison of the measured normalized rise 
times (blue) and fall times (yellow) as functions of φ for an actuator in the viscous regime 
(diamonds) and an actuator in the inertial regime (triangles) with model predictions. For the 

calculation of the rise time  = 4.7; for the calculation of the fall time  = 2.0. Experimental 

parameters: w = 6 cm, L = 2 cm, h = 20.3 mm, r = 3.5,  = 6 kV. 
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Movie S1 (separate file). Electrostatic zipping of Peano-HASEL actuators in the inertial and 
viscous regimes. Peano-HASEL actuators were made from L0WS with dimensions w = 12 cm, L 

= 4 cm and filled with liquid dielectric of viscosities  = 4.6 mPa·s (left) and  = 0.96 Pa·s (right). 
Both actuators were suspended from the top frame and a 600 g weight was attached to the top 
frame. Both actuators were excited with a square wave signal of 6 kV at 0.1 Hz with reversing 
polarity. The video is replayed in real time. 

Movie S2 (separate file). High-speed video of zipping in the viscous regime. A Peano-HASEL 
actuator was made from L0WS with dimensions w = 12 cm, L = 4 cm and filled with liquid 

dielectric of viscosity  = 0.96 Pa·s. The actuator was suspended from the top frame and a 600 g 
weight was attached to the top frame. The actuator was excited with a square wave signal of 6 kV 
at 0.1 Hz with reversing polarity. The video is replayed at 0.1 speed. 

Movie S3 (separate file). High-speed video of zipping in the inertial regime. A Peano-HASEL 
actuator was made from L0WS with dimensions w = 12 cm, L = 4 cm and filled with liquid 

dielectric of viscosity  = 4.6 mPa·s. The actuator was suspended from the top frame and a 600 g 
weight was attached to the top frame. The actuator was excited with a square wave signal of 6 kV 
at 0.5 Hz with reversing polarity. The video is replayed at 0.01 speed.  
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