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Experimental Methods 

Materials. Ni(NO3)2•6H2O (99.999%) was used as received from Strem. Pb(NO3)2 
(99.999%), (NH4)2Fe(SO4)2•6H2O (99.997%), H3PO4 (99.999%), and H2SO4 (99.999%) 
were used as received from Sigma Aldrich. KNO3 (99.9%) was used as received from 
Macron. KOH (<0.001% Ni, Fe, and other heavy metals) was used as received from EMD 
Millipore. TraceSELECT Ultra nitric acid and TraceSELECT standards for ICP were used as 
received from Fluka Analytical. Methylphosphonate, CH3P(O)(OH)2 (MePi), was purchased 
from Sigma Aldrich and then recrystallized twice from acetonitrile (HPLC grade, Sigma 
Aldrich). All electrolyte solutions were prepared with type I water (EMD Millipore, 18.2 MΩ 
cm resistivity). Fluorine-doped tin-oxide coated glass (FTO; TEC-7) was purchased as pre-
cut 1 cm × 2.5 cm glass pieces from Hartford Glass with 7 Ω/sq surface resistivity. 

General Electrochemical Methods. All electrochemical experiments were conducted on a CH 
Instruments 760D bipotentiostat, using an Ag/AgCl reference electrode (BASi, filled with 
saturated KCl), and a Pt-mesh (99.9% Alfa Aesar) counter electrode in a three-electrode 
electrochemical cell with a porous glass frit separating the working and auxiliary 
compartments.  

All glassware was acid cleaned by soaking in aqua regia followed by copious rinsing with 
type I water (EMD Milipore, 18.2 MΩ cm resistivity). Prior to use, FTO slides were cleaned 
by sonication in acetone and then rinsed with type I water. A 1 cm2 geometric electrode 
area was created by masking the FTO with Scotch tape. An Ag/AgCl reference electrode was 
positioned close to the FTO in the working compartment, and a Pt mesh electrode in the 
auxiliary side of the H-cell was used to complete the circuit.  

Electrode potentials were converted to the NHE scale using E(NHE) = E(Ag/AgCl) + 0.197 V. 
Overpotentials for the oxygen evolution reaction from water were computed using η = 
E(NHE) – (1.23 V – 0.059 V × pH). All measurements were performed at room temperature 
(23 ± 1 °C). 

Electrodeposition of Films. As-deposited films were prepared by applying a constant anodic 
potential to 1 cm2 FTO for a specified amount of time in a 50 mM MePi solution buffered at 
pH 8.0 containing a total of 0.5 mM metal solution. Electrodeposition conditions are based 
on previously published methods:1 NiFePbOx at 1.3 V for 1 h from solutions of 0.25 mM 
Fe2+, 0.125 mM Ni2+, and 0.125 mM Pb2+; NiPbOx at 1.3 V for 40 min from 0.25 mM Ni2+ and 
0.25 mM Pb2+; FePbOx at 1.2 V for 1.5 h from solutions of 0.25 mM Fe2+ and 0.25 mM Pb2+; 
PbOx at 1.35 V for 40 min from solutions of 0.5 mM Pb2+. To minimize precipitation of metal 
hydroxides from these solutions, 25 mL of 0.1 M MePi was added to 25 mL of 1 mM total 
metal solution. All deposition protocols aimed to achieve roughly similar mass loading of 
films. After deposition, films were briefly immersed in type I water to remove any lingering 
metal ions and subsequent electrochemical characterization was performed immediately 
unless otherwise noted. 

Scanning Electron Microscope (SEM). After completion of film deposition, the electrodes 
were gently rinsed in type I water and immersed in 0.1 M KPi + 1 M KNO3 pH 2.5 buffer. 
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Films were held at a constant current of 1 mA cm–2 while stirring at 400 rpm for 10 min 
unless otherwise noted and then rinsed in type I water. Excess water was then wiped off the 
back of the film and catalyst films were air-dried overnight. Field emission scanning 
electron microscopy (FESEM) was performed with a Zeiss Supra55VP. The FESEM was 
operated at a beam voltage of 15 kV at a working distance of 8.5 mm with a 20 μm aperture 
and a secondary electron (SE2) detector. Elemental quantification was determined at a 
beam voltage of 13 kV with an energy dispersive X-ray spectrometer using EDAX ZAF 
correction factors. Homogeneity of films were evaluated by EDS elemental maps using 
characteristic X-rays at the K-edge for Ni, Fe, and O, L-edge for Sn, and M-edge for Pb. Scans 
were taken at 512 × 400 pixel resolution and averaged over 16 frames. 

Acid Stability During Oxygen Evolution. The stability of catalyst films for oxygen evolution in 
acid buffers was assessed by long-term chronopotentiometry. Unless otherwise noted, 0.1 
M KPi + 1.75 M KNO3 at pH 2.5 was used as the buffer. A 50 mL, two compartment H-cell 
was used, and the electrolyte was stirred at 400 rpm in the working and reference electrode 
compartment to decrease local pH gradients during prolonged electrolysis. 
Chronopotentiometry was performed on freshly prepared catalyst films (after a quick 
gentle rinsed in type I water) at 1 mA cm–2 and the potential was recorded over time until 
film dissolution was noted by a sudden jump in potential to 2.7 V (potential required for 1 
mA cm-2 of OER by blank FTO). Independently prepared films were made and tested for 
acid stability three times to ensure reproducibility. 

Tafel Slope Collection. The oxygen evolution activities of freshly prepared catalyst films were 
determined by measuring the steady-state current density (j) as a function of applied 
potential (E) in solutions of 100 mM KPi + 1 M KNO3 at pH 2.5. Steady state conditions were 
obtained by holding the films at each discrete potential for 100 s to allow for the current to 
converge. The measurements were initiated at the highest potential first to further 
minimize any pseudocapacitance. Solutions were stirred at 400 rpm with a Teflon stir bar 
(sufficient to remove mass transport limitations) and the applied potentials were post 
corrected for uncompensated resistance by subtracting iR (measured on a blank FTO in the 
same solution conditions). Typical values of uncompensated resistance are ~17 Ω. Further 
precautions were exercised by targeting Tafel data collection at current densities between 1 
μA and 1 mA cm–2. The current-potential data were plotted as log j vs. overpotential (η) to 
construct Tafel plots. The measured intercept and slope from independently prepared films 
under the same conditions were reproduced three times. 

Cyclic Voltammetry (CV). Blank FTO was transferred to the deposition solution containing 
Pb, Ni, and/or Fe salts. CV scans were initiated at 0 V and then scanned towards positive 
potentials until ~2 mA of current was obtained at which point the polarity of the scan was 
reversed towards negative potentials until –0.8 V when the polarity was switched again 
ultimately ending at 0 V. Scans were run without pause in quiescent solution at a scan rate 
of 0.1 V/sec with iR compensation corrected through automatic positive feedback.  

Faradaic Efficiency of Oxygen Evolution. The faradaic efficiency of oxygen evolution on 
NiFePbOx films was determined in 0.1 M KPi + 1 M KNO3 at pH 2.5 using a gas 
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chromatograph as previously published.1 The film was mounted into a custom-built two-
compartment electrochemical cell where a cation-exchange membrane (Nafion 117, Sigma 
Aldrich) was used to separate the two chambers. An Ag/AgCl-based leak-free reference 
electrode (LF-1, Warner Instruments) was used as the reference electrode and a Pt wire 
was the counter electrode. A Viton O-ring was applied to define the area of working 
electrode and OER was sustained at constant current density of 1 mA cm–2. While stirring, a 
constant flow of Ar gas (20 sccm) was bubbled through the chamber containing the 
working/reference electrodes. The gas outlet was connected to a gas chromatograph 
equipped with a thermal conductivity detector (multiple gas analyzer #3, SRI Instruments). 
The amount of O2 in the out-fluxing Ar gas was quantified based on the calibration with 
known O2 concentrations. Initial control experiments were performed to ensure that O2 in 
the air has no contribution to the measured O2 signals. The detected O2 concentrations were 
compared to the theoretical yield of O2, which was calculated by dividing the charge passed 
by 4 Faraday to obtain the faradaic efficiency.  

X-Ray Absorption Spectroscopy. In situ Pb L3-edge and Ni K-edge X-ray absorption near-edge 
spectra (XANES) were recorded on catalyst films prepared by electrodeposition on an X-ray 
transparent indium tin oxide coated poly(ethylene terephthalate) sheet (ITO-PET) with 
resistance of 60 Ω/sq and ITO coating of 1300 AÅ  thickness (Sigma Aldrich). The ITO-PET 
sheets were fit to a home-made Teflon cell for XAS experiments. A 3 cm × 5 cm sheet of ITO 
was covered with tape to expose 1 cm × 1 cm for deposition and 5 mm at the top for 
connection to the potentiostat. Unless otherwise noted, catalyst films were held at 1.9 V in 
0.1 M KPi + 1 M KNO3 pH 2.5 and stirred at 400 rpm. 

Ni K-edge and Pb L3-edge XANES spectra were collected at beamline 12 BM at the Advanced 
Photon Source at Argonne National Laboratory using a Si(111) X-ray monochromator with 
a focused beam size of ~0.5 × 0.5 mm. All data were collected in fluorescence mode using a 
13-element Ge Canberra detector. Energy calibration was carried out using Ni foil and Pb 
foil. XAS data were collected at room temperature using a home-made in situ XAS cell. No 
sample damage due to X-ray beam exposure was observed after multiple scans using the 
same sample/electrode position. Three to five scans were averaged for analysis. 
Background subtraction and data normalization were carried out using the Athena 
software package.2 

X-Ray Photoelectron Spectroscopy (XPS). After completion of film deposition, the electrodes 
were gently rinsed in 18 MΩ distilled water and immersed in 0.1 M KPi + 1 M KNO3 pH 2.5. 
Films were held at a constant current of 1 mA cm–2 for 10 min with stirring at 400 rpm 
unless otherwise noted and then rinsed in type I water. PbOx and FePbOx films were held at 
2.0 V (as opposed to the high potential of 2.7 V necessary to achieve 1 mA cm–2 of OER in 
these film) to be more reflective of the potentials held by NiPbOx-based films. Excess water 
was then wiped off the back of the film and catalyst films were air-dried overnight. All 
samples were illuminated using a monochromated Al Kα X-ray source (1486.6 eV energy 
and 0.85 eV line width)3 with a 400 μm spot size. Surface charging was compensated by a 
low energy (0–14 eV) electron flood gun. The system was pre-calibrated with Au, Ag, and 
Cu standards built into the sample stage using an automated routine. High-resolution 
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spectra for Ni 2p, Pb 4f, C 1s, and O 1s were measured with a step size of 0.1 eV. Spectra for 
Ni and O were averaged from 50 scans, Pb from 30 scans, and C from 20 scans. All spectra 
were then calibrated to the C 1s peak at 284.8 eV and normalized.4 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Trace elemental analysis was 
carried out with quadrupole ICP-MS (Thermo Electron, X-Series ICP-MS with collision cell 
technology). All pipettes and polypropylene tubes were soaked in ~5% TraceSELECT nitric 
acid overnight and rinsed with type I water. All pipette tips were pre-rinsed with 2% 
double-distilled trace nitric acid prior to use. Films were digested by soaking in 20% double 
distilled trace nitric acid over two days. FTO substrates were then scanned by cyclic 
voltammetry after soaking in 20% nitric acid to ensure complete film digestion. ICP 
samples were diluted to 2% nitric acid prior to analysis. Film samples along with standards 
and controls were then scanned twice for 60 s each for 56Fe, 60Ni, and 208Pb. Internal 
standards and controls dispersed throughout the samples were run to confirm no signal 
drift.  
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Figure S1. Cyclic voltammograms (CVs) of a 1 cm2 FTO electrode in 50 mM MePi buffer at 
pH 8.0 with 0.25 mM total metal concentration: (a) Ni2+ and Pb2+ (red ▬), and (b) Fe2+, 
Ni2+, and Pb2+ (blue ▬). Scan rate is 100 mV s–1. 
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Table S1. Elemental composition of PbOx based films as-deposited and after operating OER 
at 1 mA cm–2 in 0.1 M KPi + 1M KNO3 pH 2.5 for 40 h. 

Film Condition Total metal 
mol Pb mol % Ni mol % Fe mol % 

NiPbOx 

as-deposited 277.3 ± 6.9 49.7 ± 1.2 50.3 ± 0.3 – 

40 h OER in 
0.1 M KPi + 1.75 M 

KNO3 pH 2.5 
63.4 ± 6.3 97.2 ± 0.9 2.8 ± 0.7 – 

NiFePbOx 

as-deposited 255.7 ± 11.2 39.0 ± 0.8 30.1 ± 0.6 30.9 ± 1.2 

40 h OER in 
0.1 M KPi + 1.75 M 

KNO3 pH 2.5 
89.3 ± 15.3 85.9 ± 2.6 3.8 ± 2.3 10.3 ± 2.3 
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Figure S2. SEM images of (a) PbOx, (b) FePbOx, (c) NiPbOx, and (d) NiFePbOx for 
comparison. All samples were prepared on FTO substrate, and scale bar indicates 300 nm.   
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Figure S3. EDS elemental maps recorded through SEM of (a) PbOx, (b) FePbOx, (c) NiPbOx 
and (d) NiFePbOx. Individual elemental channels for Sn, Pb, O, and Fe were taken on the 
same sample spot. All samples were prepared on FTO substrate, and scale bars are 600 nm.
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Figure S4. (a) Potential required to achieve 1 mA cm–2 (V1mA) in 0.1 M KPi + 1.75 M KNO3 
pH 2.5 buffer for PbOx and NiOx based films and (b) film stability at that potential to 
maintain 1 mA cm–2.  
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Figure S5. Measured oxygen concentration and corresponding faradaic efficiency of OER in 
0.1 M KPi + 1.75 M KNO3 pH 2.5 on NiFePbOx film operating at 1 mA cm–2 ( ). O2 was 
detected by gas chromatography after a 30-60 min purging period. Theoretical O2 
concentrations (– – –) are calculated from the charge passed during chronoamperometry 
assuming 100% faradaic efficiency. The average faradaic efficiency is 103 ± 3 %.  
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Figure S6. Representative Tafel plots of oxygen evolution for NiFePbOx in (a) 0.1 M KPi + 1 
M KNO3 pH 7.0 and (b) 0.1 M KBi + 1 M KNO3 pH 9.2. Tafel slope fits are 98 mV/dec and 42 
mV/dec for (a) and (b), respectively.  
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Figure S7. (a) Tafel plots of oxygen evolution for NiFePbOx in 0.1 M KPi + 1 M KNO3 pH 2.5 
with Ni:Fe content ratios of 1:12 ( , Tafel slope: 87.6 ± 6.1 mV/dec ), 1:3 ( , Tafel slope: 
96.5 ± 2.3  mV/dec), 1:1 ( , Tafel slope: 90.1 ± 6.3 mV/dec), 3:1 ( , Tafel slope: 88.0 ± 5.3 
mV/dec), and 12:1 ( , Tafel slope 74.2 ± 5.0 mV/dec). (b) Chronoamperometry at 1 mA 
cm–2 for NiFePbOx films in 0.1 M KPi + 1 M KNO3 pH 2.5 for NiFePbOx films with Ni:Fe ratio 
of 1:12 (▬), 1:3 (▬), 1:1 (▬), 3:1 (▬), and 12:1 (▬). 
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Figure S8. High-resolution XPS spectra of Ni 2p for NiPbOx (▬) and NiFePbOx (▬) films 
held at 1 mA by chronoamperometry for 10 min prior to analysis. 
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Figure S9. Ni K-edge of NiPbOx (▬) and NiFePbOx (▬) films operating OER in 0.1 M KPi + 1 
M KNO3 pH 2.5 at 1.9 V. 
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Figure S10. High-resolution XPS spectra of (a) Pb 4f, (b) O 1s, and (c) Ni 2p for NiFePbOx 
films after maintaining an OER current of 1 mA cm–2 for 10 min (▬) and 40 h (▬ ▬ ▬) in 0.1 
M KPi 1M KNO3 pH 2.5. A fresh NiFePbOx film was prepared and conditioned (as described) 
for each time point analyzed. 
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Figure S11. Metal composition: Pb (grey), Fe (brown) and Ni (green) of PbOx based films 
(a) as-deposited and (b) after performing OER at 1 mA cm–2 in 0.1 M KPi + 1.75 M KNO3 pH 
2.5 for 40 h (this time point is well past point of film stability as indicated by large 
inflection in chronoamperometry curves).  
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Figure S12. SEM images of NiFePbOx film surface after performing OER at 1 mA cm–2 in 0.1 
M KPi + 1 M KNO3 pH 2.5 buffer for (a) 0 h, (b) 1 h, (c) 3 h, (d) 7 h, and (e) 19 h. All samples 
were prepared on FTO substrate, and scale bar indicates 2 μm. A fresh NiFePbOx film was 
prepared and conditioned (as described) for each time point analyzed. 
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Figure S13. Cyclic voltammograms (CVs) of NiPbOx (▬) and NiFePbOx (▬) films in 1 M 
KNO3 + 0.1 M KPi, pH 2.5 solution. CVs start at 1.7 V vs. NHE, and are initially scanned 
anodically. A scan rate of 0.1 V s–1 was used for both CVs. 
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Figure S14. Structures of (a) α-PbO2 and (b) β-PbO2.6 Pb and O atoms are colored orange 
and red, respectively. Black lines denote the edges of a single unit cell for each structure. 
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