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Supporting Information Text11

1. Supplementary Note 1: Dispersion curves12

A. Equations of motion and band structures. A first step towards designing a topological insulator is to compute the band13

structure along the edges of the Brillouin zone in order to realize Dirac cones at the K−points (in the case of a hexagonal14

lattice). Herein, a composite unit cell is made by bonding two 0.5 mm piezoelectric disks (PZT) to a host layer (PLA) of15

thickness 0.5 mm. The host layer is modeled as a linear isotropic material, rigidly bonded to each PZT disk. The equations of16

motion for this composite is governed by,17

ρÜ = ∇.S [1]18

S = c(E0) : ε(U)− eT E [2]19

∇.D = ρv [3]20

D = eε(U) + εrsE, [4]21

where U(x, y, z) = uî+ vĵ + wk̂ denotes the displacement vector, ρ the mechanical density, ∇. the divergence operator, S the22

stress matrix, c(E0) the fourth order elasticity tensor, E0 the modulus of elasticity, ε(U) the strain matrix, D the electrical23

charge, ρv the electrical charge density, e the coupling matrix of the piezoelectric, E the electrical field, and εrs the relative24

permitivity. Note that for the linear elastic material (i.e., PLA in absence of the PZT), the governing equations are arrived25

at by setting all electrical terms to zero. Figure S1(a) displays a PLA (E = 3.5 GPa, ρ = 1300 kg/m3, ν = 0.3) hexagonal26

honeycomb unit cell bonded to two piezoelectric disks (PZT4) of diameter 7 mm. Each of these unit cells are then repeated27

periodically in the a1 = Lî, a2 = L/2̂i+
√

3L/2ĵ lattice directions to form the phononic crystal. Bloch boundary conditions in28

COMSOL Multiphysics, with appropriate destinations on the edges, are used to compute the band structure by sweeping the29

wavenumber along the boundaries of the first irreducible Brillouin zone (blue triangular area in Fig. S1(b)),30

Γ = (0, 0) [5]31

M = (0, 2π/
√

3) [6]32

K = (2π/3, 2π/
√

3). [7]33

Figure S1(c) displays the band structure in the absence of any external circuit for the frequency range of interest in this work.34

As shown, two degenerate Dirac cones are observed at the K-point.35

B. System connected to an external circuit. One possible way to vary the piezoelectric stiffness is to employ shunted piezoelectric36

disks. Figure S2 depicts a piezoelectric disk attached to an external circuit. When a piezoelectric patch is connected to an37

active circuit with the capacitance of −C′, the elastic stiffness can change dramatically (1–5). As shown in Fig. S2(a), the38

equivalent negative capacitance of the circuit is given by,39

−C′ = −R2C0

R1
, [8]40

where R1 and R2 are the resistors connected to the OP-AMP, and C0 is the paralleled capacitor. Although the material41

properties of these disks can change by varying the negative capacitance, they are stable only for C′ > CT
p (6), where CT

p is42

the internal capacitance of the PZT at short circuit. In addition, to prevent saturation of the capacitor, which can also lead43

to instability, a resistor (R0) with a relatively large resistance compared to R1 and R2 is paralleled with the capacitor (7).44

Finally, as shown in Fig. S2, by placing a switch between the piezoelectric and the circuit, we can connect/disconnect the45

PZT disk to the external circuit. Figure S2(b) plots the band structure for a range of negative capacitance values. As shown,46

by decreasing the value of negative capacitance, the topological bandgap becomes wider, until this value reaches its optimal47

value for C′ = −1.7nF . Further decreasing the value of the negative capacitance results in deforming the bands bounding the48

topological bandgap, and increasing the chance of destabilizing the piezoelectric disks.49

2. Supplementary Note 2: Chern numbers50

For any dispersion curve bounding the topological band-gap, the Berry connection is defined as (8),51

AAA (k) = 〈U(k)|i∇k|U(k)〉, [9]52

where U(k) is the mass-normalized displacement of the eigenmode computed at the wave-vector k, ∇k = ∂
∂kx

î+ ∂
∂ky

ĵ, and53

i =
√
−1 is the unit imaginary number. The Berry curvature of a given mode is defined as FFF = ∇k ×AAA . Figure S3 displays54

the Berry curvature of the system shown in Fig. 1(a-b) of the main manuscript. Finally, the valley Chern number of each mode55

is computed as the integral of the Berry curvature over half of the Brillouin zone (9),56

Cv = 1
2π

∫∫ (
∂Aky

∂kx
− ∂Akx

∂ky

)
dkx dky [10]57

For the system proposed in this study, the valley Chern numbers are computed to be {+1/2,−1/2}.58
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Fig. S1. (a) Schematic of the proposed hexagonal unit cell in this work (with the size of L), composed of a PLA host layer with two bonded piezoelectric disks, (b) Schematic of
the Brillouin zone of the proposed hexagonal unit cell, (c) Band structure of the hexagonal unit cell.
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Fig. S2. (a) Schematic of a shunted piezoelectric disk and its connected circuit. (b) Band structure of the hexagonal unit cell for different values of negative capacitance plotted
for two different ranges of frequency.
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Fig. S3. The Berry curvature of the system proposed in Fig. 1(a-b) of the main manuscript for the topological bandgap with a higher frequency (i.e., the band above the
bandgap).
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3. Supplementary Note 3: Absence of standing waves59

The topology of the studied waves offers protection from back-scattering, and thus the avoidance of standing waves in the60

considered structure. To verify this property, a small control volume at one of the unit cells is considered (as shown in Fig. S4).61

Then, the input and output power into the control volume (marked with vertical lines) is computed based on the experimental62

data. Finally, the input and output control volume energy is determined by integrating each power over five periods. The63

computed value for the input energy is 2.340 J , while the output is 2.176 J , representing a 7% difference. This difference64

results from stored energy in the control volume (i.e., standing wave energy) and dissipated energy. Its small value clearly65

confirms that little standing wave energy is generated by the propagating waves.66

4. Supplementary Note 4: Experiment67

A. Setup. Figure S5 depicts the fabricated structure (on the left) and the external circuit (on the right). This structure is68

realized by machining a 0.5 mm thickness PLA plate (E = 3.5 GPa, ρ = 1300 kg/m3, ν = 0.3) and bonding (using 3M DP27069

Epoxy Adhesive) 50 piezoelectric disks (PZT4). Each piezoelectric disk has a 7 mm diameter and a 0.5 mm thickness. For each70

circuit wired to the PZT disks, negative capacitance C′ = −1.7 nf is obtained by using R1 = 10, R2 = 17 Ω, C0 = 1 nF , and71

R0 = 1 MΩ. A Polytec PSV-400 scanning laser Doppler vibrometer measures the resulting out-of-plane wavefield velocity using72

the backside of the PLA plate, repeating and averaging each measurement 10 times (in order to reduce the influence of noise).73

In order to generate waves into the system, one of the bonded piezoelectric disks is connected to a 150mV (peak-to-peak) burst74

sinusoidal signal, using a function generator (Agilent 33220A) coupled to a voltage amplifier (B&K1040L). Proper triggering of75

the laser measurements allows reconstruction of the out-of-plane velocity field. Finally, in order to decrease the boundary76

effects at the location of the source, absorbing patches are used to reduce the leakage of propagation waves on the edge.77

B. Time snapshots of experimental results. Figures S6 and S7 plot snapshots of the experimentally measured wavefield for the78

two interfaces reported in the manuscript at different points in time. The maximum distance that waves can travel in one79

period are computed from the group velocity of band diagrams in Fig. 2 to be 3 mm. For the horizontal interface depicted80

in Fig. S5, the time values are t1 ≈ 4T , t2 ≈ 11T , t3 ≈ 23T , and t4 ≈ 38T , respectively. On the other hand, for the angled81

interface shown in Fig. S6, these time values are t1 ≈ 4T , t2 ≈ 12T , t3 ≈ 20T , and t4 ≈ 34T , respectively. Based on the82

calculated maximum distance that waves can travel, the wave should propagate from the source to the receiver in a time equal83

to approximately 40 times the propagation the period, which is in a good agreement with the time values reported above.84
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Fig. S4. A schematic of the considered control volume to calculate the amount of standing waves.
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Fig. S5. Fabricated experimental setup. On the left: the tested structure wired to the external circuits. On the right: the external circuits used to provide negative capacitance.
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t = 0.05 ms t = 0.15 ms

t = 0.3 ms t = 0.5 ms

Fig. S6. Experimentally measured displacement field of the system with a horizontal interface (depicted in Fig. 4(b) of the manuscript) captured at different times, excited by a
source with frequency 77 kHz. The source location is marked with a green star.
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t = 0.05 ms t = 0.17 ms

t = 0.25 ms t = 0.45 ms

Fig. S7. Experimentally measured displacement field of the system with a sharp-angled interface (depicted in Fig. 4(b) of the manuscript) captured at different times, excited by
a source with frequency 77 kHz. The source location is marked with a green star.
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