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SUPPLEMENTARY FIGURES 
 

 
Figure S1. Conformational changes of rRNA nucleotides 23S rRNA A1913 (from Helix 69) 
and 16S rRNA A1492-1493 (from helix 44) during decoding. A, In the absence of tRNA in 
the A site, A1913 and A1492 form a stacking interaction (PDB code 5MDZ (1)). B, When 
tRNAGGC

Ala  binds to a cognate GCC codon in the A site, A1492 flips to form stacking interactions 
with A1493 replacing A1492’s interaction with A1913, and A1913 also stacks against the tRNA 
backbone. C, When tRNAGGC

Ala  binds to a near-cognate GCA codon in the A site, A1492 flips to 
stack with A1493, A1913 partially swings towards the A-site tRNA but the nucleobase is not 
engaged with the tRNA backbone. 
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Figure S2. The decoding center of the ribosome. 16S rRNA nucleotides G530 (from helix 18), 
A1492 and A1493 (from helix 44) (teal) inspect the A-site tRNA anticodon (blue) and mRNA codon 
(black) interaction, while 23S rRNA nucleotide A1913 (from Helix 69) (gray) packs against the 
tRNA phosphate backbone. 
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Figure S3. The 32-38 pair in tRNAs bound to the ribosomal A site. Structures of different 
tRNAs bound to the 70S showing an interaction between nucleotides 32 and 38 in the case of 
C•A, Y•A, and U•A. The U32-U38 base pair does not appear to form an interaction (PDB codes 
5EL6 (1), 4WPO (2), 4V5C (3), 4V5G (4), 4V87 (5)).  Y: pseudouridine. 
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Figure S4. The codon-anticodon interactions in structures of the	tRNAGGCAla  U32-A38 mutant 
bound in the A site. The interaction is maintained for the cognate (panel A) and near-cognate 
(panel B) codons similar to that in the wild-type tRNA. This is similar to the codon-anticodon 
interactions shown in Figs. 2,3. 
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Figure S5. tRNAGGCAla  with the reversed 32-38 pairing shows good electron density of the 
pairing even when bound to a near-cognate codon. A, In the structure of tRNAGGC

Ala  with the 
reversed 32-38 pairing bound to a cognate codon in the A site, the tRNA shows good electron 
density for the whole tRNA and, in particular, for the 32-38 pair (inset). B, In the structure of 70S-
tRNAGGC

Ala  with the reversed 32-38 pairing bound to a near-cognate codon in the A site, there is 
good electron density for the whole tRNA and, in particular, for the 32-38 pair (inset). This is in 
contrast to the structure of 70S with wild-type tRNAGGC

Ala  where the 32-38 pair shows a lack of 
electron density in the presence of a near-cognate codon. The 2Fo-Fc electron density maps (gray 
mesh) are contoured at 1σ.   
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Figure S6. Representative electron density of 23S rRNA A1913 and the reversed 32-38 
pairing when bound to a cognate or near-cognate codon. A, The 70S-tRNAGGC

Ala  structure 
containing the reversed 32-38 pairing shows A1913 packing against the tRNA with good 
electron density when bound to a cognate codon. B, When bound to a near-cognate codon, 
A1913 and the 32-38 pairing also have good electron density. C, An overlay of the two 
structures indicates that the position of A1913 superimposes well. The 2Fo-Fc electron density 
map is contoured at 1σ. 
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Figure S7. Examples of previously solved structures of anticodon-codon mismatches 
bound to the ribosome. A, A•A and A•C mismatches in the ribosomal A site in the first and 
second positions do not form stable Watson-Crick base pairs, but H69 A1913 adopts the ‘ON’ 
position in all of these cases (6). B-E, The G•U mismatches have been extensively investigated 
at the first, second, and third positions in both the P and A sites, and at all positions, a G•U 
mismatch adopts a Watson-Crick geometry (5, 7-9). Q: queuosine, S: 5-methylaminomethyl-2-
thiouridine, mnm5s2U  
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