

## **Disruption of evolutionarily correlated tRNA elements**

### impairs accurate decoding

Ha An Nguyen<sup>1,2</sup>, Sunita S.<sup>1</sup> and Christine M. Dunham<sup>1\*</sup>

<sup>1</sup>Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322 USA <sup>2</sup>Department of Chemistry, Emory University, Atlanta, Georgia 30322 USA

> Corresponding author: Christine M. Dunham, <u>christine.m.dunham@emory.edu</u>, phone +1-404-712-1756, fax +1-404-727-2738

# Supporting Information

This PDF file includes:

Figures **S1** to **S7** SI References

#### SUPPLEMENTARY FIGURES



**Figure S1. Conformational changes of rRNA nucleotides 23S rRNA A1913 (from Helix 69) and 16S rRNA A1492-1493 (from helix 44) during decoding.** *A*, In the absence of tRNA in the A site, A1913 and A1492 form a stacking interaction (PDB code 5MDZ (1)). *B*, When tRNA<sup>Ala</sup><sub>GGC</sub> binds to a cognate GCC codon in the A site, A1492 flips to form stacking interactions with A1493 replacing A1492's interaction with A1913, and A1913 also stacks against the tRNA backbone. **C**, When tRNA<sup>Ala</sup><sub>GGC</sub> binds to a near-cognate GCA codon in the A site, A1492 flips to stack with A1493, A1913 partially swings towards the A-site tRNA but the nucleobase is not engaged with the tRNA backbone.



**Figure S2. The decoding center of the ribosome.** 16S rRNA nucleotides G530 (from helix 18), A1492 and A1493 (from helix 44) (teal) inspect the A-site tRNA anticodon (blue) and mRNA codon (black) interaction, while 23S rRNA nucleotide A1913 (from Helix 69) (gray) packs against the tRNA phosphate backbone.



**Figure S3. The 32-38 pair in tRNAs bound to the ribosomal A site.** Structures of different tRNAs bound to the 70S showing an interaction between nucleotides 32 and 38 in the case of C•A,  $\Psi$ •A, and U•A. The U32-U38 base pair does not appear to form an interaction (PDB codes 5EL6 (1), 4WPO (2), 4V5C (3), 4V5G (4), 4V87 (5)).  $\Psi$ : pseudouridine.





Figure S4. The codon-anticodon interactions in structures of the tRNA<sub>GGC</sub><sup>Ala</sup> U32-A38 mutant bound in the A site. The interaction is maintained for the cognate (panel A) and near-cognate (panel B) codons similar to that in the wild-type tRNA. This is similar to the codon-anticodon interactions shown in Figs. 2,3.



A tRNA<sup>Ala</sup> U32-A38 bound to a cognate GCC codon (PDB ID 6ORD)

B tRNA<sup>Ala</sup> U32-A38 bound to a near-cognate GCA codon (PDB ID 6OPE)



Figure S5. tRNA<sub>GGC</sub><sup>Ala</sup> with the reversed 32-38 pairing shows good electron density of the pairing even when bound to a near-cognate codon. *A*, In the structure of tRNA<sub>GGC</sub><sup>Ala</sup> with the reversed 32-38 pairing bound to a cognate codon in the A site, the tRNA shows good electron density for the whole tRNA and, in particular, for the 32-38 pair (inset). *B*, In the structure of 70S-tRNA<sub>GGC</sub><sup>Ala</sup> with the reversed 32-38 pairing bound to a near-cognate codon in the A site, there is good electron density for the whole tRNA and, in particular, for the 32-38 pair (inset). *B*, In the structure of 70S-tRNA<sub>GGC</sub><sup>Ala</sup> with the reversed 32-38 pairing bound to a near-cognate codon in the A site, there is good electron density for the whole tRNA and, in particular, for the 32-38 pair (inset). This is in contrast to the structure of 70S with wild-type tRNA<sub>GGC</sub><sup>Ala</sup> where the 32-38 pair shows a lack of electron density in the presence of a near-cognate codon. The 2F<sub>o</sub>-F<sub>c</sub> electron density maps (gray mesh) are contoured at 1 $\sigma$ .



C Overlay of tRNA<sup>Ala</sup> U32-A38 bound to cognate GCC and near-cognate GCA codons



Figure S6. Representative electron density of 23S rRNA A1913 and the reversed 32-38 pairing when bound to a cognate or near-cognate codon. *A*, The 70S-tRNA<sup>Ala</sup><sub>GGC</sub> structure containing the reversed 32-38 pairing shows A1913 packing against the tRNA with good electron density when bound to a cognate codon. *B*, When bound to a near-cognate codon, A1913 and the 32-38 pairing also have good electron density. *C*, An overlay of the two structures indicates that the position of A1913 superimposes well. The  $2F_o$ - $F_c$  electron density map is contoured at 1 $\sigma$ .



**Figure S7. Examples of previously solved structures of anticodon-codon mismatches bound to the ribosome.** *A*, A•A and A•C mismatches in the ribosomal A site in the first and second positions do not form stable Watson-Crick base pairs, but H69 A1913 adopts the 'ON' position in all of these cases (6). *B-E,* The G•U mismatches have been extensively investigated at the first, second, and third positions in both the P and A sites, and at all positions, a G•U mismatch adopts a Watson-Crick geometry (5, 7-9). Q: queuosine, S: 5-methylaminomethyl-2-thiouridine, mnm<sup>5</sup>s<sup>2</sup>U

### SUPPLEMENTARY REFERENCES

- 1. A. Rozov *et al.*, Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. *Nat Commun* **7**, 10457 (2016).
- 2. J. Lin, M. G. Gagnon, D. Bulkley, T. A. Steitz, Conformational changes of elongation factor G on the ribosome during tRNA translocation. *Cell* **160**, 219-227 (2015).
- 3. R. M. Voorhees, A. Weixlbaumer, D. Loakes, A. C. Kelley, V. Ramakrishnan, Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. *Nat Struct Mol Biol* **16**, 528-533 (2009).
- 4. T. M. Schmeing *et al.*, The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. *Science* **326**, 688-694 (2009).
- 5. N. Demeshkina, L. Jenner, E. Westhof, M. Yusupov, G. Yusupova, A new understanding of the decoding principle on the ribosome. *Nature* **484**, 256-259 (2012).
- 6. A. Rozov, N. Demeshkina, E. Westhof, M. Yusupov, G. Yusupova, Structural insights into the translational infidelity mechanism. *Nat Commun* **6**, 7251 (2015).
- 7. A. Rozov, E. Westhof, M. Yusupov, G. Yusupova, The ribosome prohibits the G\*U wobble geometry at the first position of the codon-anticodon helix. *Nucleic Acids Res* **44**, 6434-6441 (2016).
- 8. A. B. Loveland, G. Demo, N. Grigorieff, A. A. Korostelev, Ensemble cryo-EM elucidates the mechanism of translation fidelity. *Nature* **546**, 113-117 (2017).
- 9. A. Rozov *et al.*, Tautomeric G\*U pairs within the molecular ribosomal grip and fidelity of decoding in bacteria. *Nucleic Acids Res* (2018).