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SUMMARY
B cells are capable of a wide range of effector functions including antibody secretion, antigen presentation,
cytokine production, and generation of immunological memory. A consistent strategy for classifying human
B cells by using surface molecules is essential to harness this functional diversity for clinical translation. We
developed a highly multiplexed screen to quantify the co-expression of 351 surface molecules on millions of
human B cells. We identified differentially expressed molecules and aligned their variance with isotype us-
age, VDJ sequence, metabolic profile, biosynthesis activity, and signaling response. Based on these ana-
lyses, we propose a classification scheme to segregate B cells from four lymphoid tissues into twelve unique
subsets, including a CD45RB+CD27� early memory population, a class-switched CD39+ tonsil-resident pop-
ulation, and a CD19hiCD11c+ memory population that potently responds to immune activation. This classifi-
cation framework and underlying datasets provide a resource for further investigations of human B cell iden-
tity and function.
INTRODUCTION

B cells have the unique capacity to generate antibodies against a

diversity of targets, providing protection against infection while

also contributing to pathogenesis in settings of immune dysregu-

lation. Antibody effector function is conferred through the immu-

noglobulin heavy chain (IgH) and is segregated into immature

(IgM and IgD) and mature (IgG, IgA, and IgE) isotypes. Beyond

antibody generation, B cells also contribute to immune re-

sponses through antigen presentation and cytokine production,

which could be attributed, in part, to functionally specialized

subsets (Cyster and Allen, 2019). Murine B cells are routinely

classified on the basis of maturation status, antibody isotype,

and effector function, but extrapolating to human B cell subsets

has proven difficult because of both limitations in genetic tools

and biological differences between species.

Canonical gating strategies segregate human B cells into

five populations: transitional, naive, non-switched memory,

switched memory, and plasma cells (Maecker et al., 2012),

mostly capturing maturation, but not functional status. CD27

marks memory B cells, but even its earliest description indicated

that there was IgH rearrangement in the CD27� pool (Klein, Ra-

jewsky and K€uppers, 1998), and there are other reports of CD27�
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memory phenotypes (Thorarinsdottir et al., 2016). IgH isotype is

often used to augment B cell gating (Krishnamurty et al., 2016),

but others have suggested that functional differences are better

capturedwith phenotypic subsetting rather than isotypic subset-

ting (Zuccarino-Catania et al., 2014). These discrepancies high-

light our inability to consistently identify and sort functional sub-

sets of human B cells, impeding our capacity to selectively target

pathogenic B cells in autoimmunity and induce memory re-

sponses in vaccination.

Our previous work provided a comprehensive analysis of B

cell development in human bone marrow (Bendall et al., 2014).

To characterizemature human B cells in the periphery, we devel-

oped a highly multiplexed single-cell screen to quantify the co-

expression of 351 surface molecules by using mass cytometry.

On the basis of our findings, we propose a classification scheme

that subsets B cells from peripheral blood, bone marrow,

lymph node, and tonsil into twelve unique populations and pro-

vide extensive single-cell profiles of cell surface phenotype, iso-

type usage, metabolism, biosynthesis activity, and signaling

response to immune activation. This atlas of human B cell iden-

tity will enable further studies to interrogate functional B cell sub-

sets in the context of homeostasis, vaccination, infection, auto-

immunity, and cancer.
, July 14, 2020 ª 2020 The Authors. Published by Elsevier Inc. 217
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. A highly multiplexed single-cell surface screen reveals the human B cell surface proteome

(A) Experimental overview (n = 2 donors).

(B) Representative gating of canonical populations.

(C) Representative thresholding of positivity for molecules on the screen.

(D) Percent positive of total B cells (top row) and median expression by subset (bottom rows) of molecules expressed by B cells.
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RESULTS

A highly multiplexed single-cell surface screen reveals
the human B cell surface proteome
To identify molecules that could potentially differentiate B cell

subsets, we developed a highly multiplexed screen and quanti-
218 Immunity 53, 217–232, July 14, 2020
fied the co-expression of 351 surface antigens on healthy human

B cells (n = 2 donors) (Figure 1A). We designed 12 mass cytom-

etry antibody panels, each consisting of nine conserved mole-

cules for subsetting, and �30 variable molecules that were

unique to each panel, for discovery (Table S1). The conserved

molecules were selected to facilitate gating into four canonical
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B cell subsets: transitional, naive, non-switched memory, and

switched memory (Figures S1A and 1B). Plasma cells were left

out of the analysis because of insufficient numbers after

cryopreservation.

The collection of targets in the screen primarily consisted of

surface molecules with immunology-associated gene ontology

(GO) terms (Boyle et al., 2004), including hundreds of CD mole-

cules (Figure S1B). After setting a stringent threshold for classi-

fying a molecules as present or absent on donor-pooled B cells

(Method Details; Figure 1C), we identified 98 surface molecules

expressed on human B cells (Figure 1D). For each molecule,

we quantified the percentage of positive B cells in the total sam-

ple and the median scaled expression value in the four canonical

subsets. Expression patterns recapitulated known biology (e.g.,

near uniform expression of the B cell activating factor [BAFF] re-

ceptor, CD268), but also provided new insights. For example, the

immunoregulatory ecto-nucleotidase, CD73, was enriched in

naive and switched memory cells, but low to absent in transi-

tional and non-switched memory cells. Interestingly, this mole-

cule has been used to subset murine memory B cells (Tomayko

et al., 2010), although its expression was mostly associated with

non-switched memory cells in contrast to its expression in

switchedmemory cells in our human dataset. Altogether, our sin-

gle-cell screen facilitated robust identification of surface mole-

cules expressed by human B cells.

Differential expression analysis reveals the anergic
profile of naive B cells
The canonical gating scheme organizes B cells by their matura-

tion status, from transitional through naive, non-switched, and

switched memory. To interrogate the proteomic shifts that occur

throughout this process, we evaluated differences in expression

between each pairwise combination of donor-pooled subsets,

for all molecules (Method Details). We plotted the difference in

median expression for 61 differentially expressed molecules

(p < 0.005, Kolmogorov-Smirnov (KS) test with Bonferroni

correction) (Figure 2A).

As expected, the immature isotypes, IgD and IgM, were en-

riched in antigen-inexperienced cells (transitional and naive),

whereas the canonical memory molecule, CD27, was enriched

in memory cells. CD9, which has been reported to distinguish

murine marginal zone, B-1, plasma (Won and Kearney, 2002),

and/or regulatory (Sun et al., 2015) B cells, was enriched in tran-

sitional cells over all other subsets. CD305 (also known as leuko-

cyte-associated Ig-like receptor 1 [LAIR-1]), which inhibits B cell

receptor (BCR) signaling (van der Vuurst de Vries et al., 1999),

was enriched in antigen-inexperienced cells over memory cells

potentially increasing the antigen-specific activation threshold

for these subsets. CD45RB (RB), an isoform of CD45, was pref-

erentially expressed in memory cells, as has been reported in the

tonsils (Jackson et al., 2009).

We then askedwhether broader patterns in protein expression

emerged from the pairwise comparison of B cell subsets. As an

example, we plotted comparisons of naive cells to the other sub-

sets and colored molecules associated with the GO term ‘‘trans-

port’’ (Figure 2B), denoting molecules involved in trafficking

across the cell membrane.We found naive cells expressed lower

numbers of molecules associated with transport than any other

subset, suggesting they are less responsive to stimuli. Indeed,
naive cells had the lowest median expression value for 16 trans-

port molecules and the lowest average expression across all 46

transport molecules (Figure 2C). We asked whether this trend

was consistent across GO terms and found that naive cells

had the lowestmean expression value for 19 out of 30 terms (Fig-

ure 2D). In fact, when themedian expression values of all 98 mol-

ecules were averaged, naive cells had the lowestmean, suggest-

ing they exist in a more anergic state than other B cell subsets.

Given that naive cells exhibited decreased expression of most

molecules on the screen comparedwith that in other subsets, we

then asked whether naive cells were enriched for any GO terms.

Naive cells did not have the highest mean expression for any GO

term and had the second highest mean expression for only two

terms: ‘‘antigen processing and presentation’’ and ‘‘humoral im-

mune response.’’ Within those two terms, only six molecules ex-

hibited increased expression in naive cells over at least one other

subset—CD1d, human leukocyte antigen (HLA)-DQ, CD197,

CD23, IgM, and IgD (Figure 2E). In fact, in the entire screen,

expression of only CD23, a non-classical Fc receptor that in-

creases the threshold for B cell activation (Wang et al., 2015),

was increased in naive cells over all other subsets. These find-

ings confirm the anergic profile of naive B cells.

CD45RB marks human memory B cells and identifies an
early memory population
To find markers that uniquely identify distinct B cells not

captured by canonical gating, we analyzed co-expression pat-

terns of molecules across all B cells in an unbiased fashion.

Because the surface screen was split across twelve tubes, we

could not directly determine whether a molecule expressed on

a cell in tube X was co-expressed with a molecule in tube Y.

We therefore generated a Uniform Manifold Approximation and

Projection (UMAP) plot (Becht et al., 2018) organized by the

expression of the conserved molecules by using donor-pooled

data from all twelve tubes (Method Details; Figure 3A). This

two-dimensional representation of the high-dimensional data al-

lowed us to visualize co-expression patterns of cells from

different tubes in the same set of plots by overlaying molecule

expression on UMAP coordinates.

Given that expression of the conserved molecules undergo

coordinated changes throughout B cell maturation, we hypothe-

sized that correlated molecules might also be useful for differen-

tiating stages of B cell maturation. We plotted molecules that

were correlated with the conserved molecules (Pearson

method, ± r > 0.3) and organized them by function (label color)

and by row for correlated conserved marker (Figure 3B). The

highest correlation (r = 0.69) was between IgD andCD72, a nega-

tive regulator of B cell activation (Tsubata, 2012). IgD was also

correlated with the negative regulators, CD23, CD305, and

CD272 (Vendel et al., 2009). Although IgM was correlated with

CD32, the inhibitory Fc receptor, it was inversely correlated

with the immunoregulatory molecule CD73, which we found

was enriched in naive and switched memory cells. CD27 was

correlated with several molecules that positively regulate im-

mune activation, potentially lowering the activation threshold of

CD27+ cells.

Overlaying canonical gate labels on the UMAP coordinates re-

vealed that two ‘‘islands’’ in the plot were not homogenously

colored, indicating that although phenotypically similar, these
Immunity 53, 217–232, July 14, 2020 219



Figure 2. Differential expression analysis reveals the anergic profile of naive B cells

(A) Difference in median expression for each pairwise comparison of subsets. All non-white tiles are significant (p < 0.005).

(B) Volcano plots of the comparisons, colored by association with the GO term ‘‘transport.’’ Significantly different molecules listed in boxes are ordered by

decreasing magnitude of difference of expression.

(C) Median expression of transport molecules (colors). Mean of median expression of all transport molecules (black).

(D) Mean of median expression of molecules associated with GO terms (color). Mean of median expression of all molecules (black).

(E) Expression of six molecules more highly expressed in naive cells (p < 0.005).
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Figure 3. CD45RB marks human memory B

cells and identifies an earlymemory popula-

tion

(A) Computational workflow.

(B) UMAP plots of molecules correlated with the

conserved molecule in their row. Arrows indicate

RB+CD27� cells.

(C) UMAP plot colored by subset.

(D) Biaxial plot colored by subset. Percent of

CD38lo B cells in each quadrant is quantified (red

text).

(E) Percent of cells in each quadrant from (D).

(F) Experimental workflow.

(G) Mean IgH mutation frequencies. All pairwise

comparisons were significantly different (p <

0.005), except where indicated.

(H) Sequence diversity across a range of diversity

orders. Shaded regions indicate 95% confidence

interval.

(I) Computational workflow.

(J) Z-scores of frequencies of shared clonality.
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cells were considered different subsets by canonical gating (Fig-

ure 3C). The switched memory island contained ungated cells,

whereas the non-switched memory island contained both naive

and ungated cells. Overlaying CD27 revealed that non-uniform

expression of CD27 in these islands resulted in thesemixed clas-

sifications. Overlaying RB, however, resulted in a more homoge-

neous coloring of the two memory populations while retaining an

absence of expression in the antigen-inexperienced island. The

majority of CD27+ cells were also RB+, whereas the RB+CD27�

population contained 25% ungated cells (Figures 3D and 3E).

Given the co-localization of RB+CD27� cells and CD27+ cells

on the UMAP, we hypothesized that that these cells represent

a population of memory cells that was not recognized under

the current classification scheme.

To assess the spectrum of memory cell specification across

the RB and CD27 compartments, we prospectively isolated the

four quadrants of the CD27 3 RB biaxial from healthy, human

B cells (n = 2 donors) and sequenced the IgH loci by next-gener-

ation sequencing (NGS) (Method Details; Figure 3F). As a proxy

for antigen exposure, we measured the donor-pooled mutation

frequency of nucleotides in the IgH loci outside of the comple-

mentarity-determining region 3 (CDR3) (Figure 3G) (Boyd and

Crowe, 2016). As expected, CD27+ cells had a relatively high

mutational burden, acquired through somatic hypermutation

(SHM) after exposure to antigen. Conversely, RB�CD27� cells

showed a low mutational burden given that they are still naive

to antigen (p < 0.005, Wilcoxon rank sum test with Bonferroni

correction). Interestingly, RB+CD27� cells displayed an interme-

diate mutational burden, higher than RB�CD27� cells and lower

than CD27+ cells, indicating that they have been exposed to an-

tigen, but undergone fewer cycles of SHM than other mem-

ory cells.

During an immune challenge, B cells that are reactive to rele-

vant antigens are selected to proliferate and differentiate into

effector and memory classes. Naive cells, therefore, tend to

have more diverse immune repertoires than memory cells

because they have not undergone selection (Briney et al.,

2012). We quantified the diversity of the four populations across

a range of diversity orders (Hafler et al., 2014) and found that

RB�CD27� cells had the highest diversity, whereas

RB+CD27+ cells had the lowest diversity (Method Details; Fig-

ure 3H). Both RB+CD27� cells and RB�CD27+ cells had inter-

mediate levels of diversity, suggesting RB+CD27� cells un-

dergo less selection than RB+CD27+ cells. This might also be

true for RB�CD27+ cells, but given their highmutational burden,

it might instead be indicative of a long-lived memory population

that mediates protection against a lifetime of past immune

challenges.
Figure 4. Segregating B cells into phenotypically and isotypically disti

(A) Experimental workflow (n = 3 donors).

(B) Median expression by subset.

(C) Percent of B cells for all subsets, colored as in (B).

(D) UMAP plot generated from an equal subsampling by subset.

(E) IgH isotype usage by subset. ND denotes ‘‘not determined’’; IgMD denotes c

(F) Euclidean distance between each B cell subset based on median expression

(G) Subset composition by isotype as determined by canonical gating or meta-c

(H) Contour plots by IgH isotype. Dots and error bars indicate mean and SEM of

(I) Relative contribution of phenotype and isotype to the variance explained by li
If expression of RB was random and irrelevant to B cell activa-

tion and maturation, we would expect RB+ and RB� cells to

share clonal lineages, given that the molecule would not mean-

ingfully segregate cells. We therefore asked whether cells from

one population tend to be clonally related to cells from any other

population (see Method Details; Figure 3I). We found that cells

from each of the four populations weremuchmore likely to share

clonal lineages with cells from the same population than with

those from a different population (Figure 3J). This indicates

that expression of RB and CD27 are highly coordinated within

clonal lineages, as would be expected of two molecules that

are expressed in response to antigen engagement. Altogether,

these findings provide strong evidence that expression of RB

is indicative of a peripheral blood memory B cell and, in conjunc-

tion with an absence of CD27, can be used to classify an early

memory population.

Segregating B cells into phenotypically and isotypically
distinct subsets
The surface screen revealed dozens of molecules differentially

expressed in B cells and resulted in the identification of a mem-

ory population, so we hypothesized that we could classify B cells

into more granular subsets. We stained fresh, healthy, human

peripheral blood B cells (n = 3 donors) with a mass cytometry

panel comprised of the most informative molecules from the

screen (Figure 4A), including canonical B cell molecules, heavy

and light chain isotypes, and molecules with multi-modal distri-

butions (Table S1).

Donor-pooled cells were clustered into ten distinct popula-

tions, including two naive and six memory subsets (Method De-

tails; Figure 4B). Their surface expression profiles were plotted

and arranged in a putative maturation order on the basis of IgH

isotype usage and expression of maturation molecules (Fig-

ure 4B, top to bottom). The characteristic expression pattern of

seven distinguishing molecules were sufficient to manually

gate each population and thus were also used to label the pop-

ulations in this scheme: CD11c, CD73, CD95, CD27, CD38, RB,

and CD19 (Figure S2B). There was some variation in subset size

between donors, but all donors contained cells from all ten sub-

sets across datasets assessed in this report (n = 12) (Figure 4C).

Each subset was equally subsampled from donor-pooled

cells, plotted by UMAP, and colored by either subset or molecule

expression (Figures 4D and S3). Subsets tended to form unique

islands on the plot, providing an orthogonal validation of our

classification methodology. Transitional cells co-localized with

CD73� and CD73+ naive cells in a single island, forming a

gradient of diminishing IgM and IgD, despite the UMAP plot be-

ing generated by using only phenotypic, not isotypic molecules
nct subsets

o-expression of IgM and IgD.

profile. White boxes denote column minimum.

lustering.

individual donors.

near models created to predict single-cell expression of CD79b or surface Ig.
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(Figure 4D). Although there was a clear separation between an-

tigen-inexperienced and memory subsets (notably bridged by

the RB+CD27�memory population), no single molecule was suf-

ficient to discriminate memory from antigen-inexperienced cells.

Plasma cells were largely RB+ and mostly lacked surface Ig as

assessed by surface light chain expression (Method Details; Fig-

ure S2C). Some IgA+ and IgM+ plasma cells retained surface

expression of Ig as previously reported (Pinto et al., 2013), but

we did not observe expression of surface IgG or IgD on plasma

cells.

Three of the six memory populations organized into a distinct

island: RB+CD27� memory (which are also CD73�), RB+CD27+-

CD73�memory, and RB+CD27+CD73+memory. Much like in the

transitional to naive gradient, differential isotype usage can be

seen in these memory subsets with RB+CD27�memory favoring

IgD, RB+CD27+CD73� favoring IgM, and RB+CD27+CD73+ fa-

voring IgG and IgA. These data could be indicative of a matura-

tion continuum that occurs after antigen exposure, though these

populations might arise concomitantly. RB�memory wasmostly

class-switched, but had a more heterogenous phenotypic pro-

file, which complemented its high clonal diversity, with varying

levels of CD27, CD73, and CD183 (also known as CXCR3), a

chemokine receptor that facilitates homing to inflamed tissue

(Kaminski et al., 2012). CD95+ memory, uniquely defined by

expression of the death receptor, CD95 (also known as FasR),

also had heterogenous expression of several molecules,

including CD11c and CD73, but tended to be class-switched,

RB+, CD27+, and CD72�. We observed that several memory

populations could also be further subdivided but were not further

analyzed in this report: CD5+CD1c+IgMD+RB+CD27�CD73�

CD38+ cells and CD9+CD22�IgA+RB+CD27+CD73� cells.

Of particular note were CD19hiCD11c+ memory, which have

overlapping features with previously described T-bet+ B cells

(Karnell et al., 2017). This subset formed a unique island charac-

terized as CD21�, CD20hi, CD38�, CD73�, CD40lo, and RB�.
Notably, this population largely lacked expression of the chemo-

kine receptors CD185 (also known as CXCR5) and CD184 (also

known as CXCR4), suggesting these cells might not participate

in germinal center (GC) responses or might be recent GC emi-

grants (Cyster and Allen, 2019). These cells could be further

delineated on the basis of isotype usage, with IgMD+ cells tend-

ing to be CD27+/lo, CD185lo, CD183+, and CD95+/� and class-

switched cells tending to be CD27�/lo, CD185�, CD183�, and
CD95�. To further investigate this heterogeneity, we analyzed

a public dataset that contained mass cytometry data of healthy

donors by using a general immunophenotyping panel (n = 5 do-

nors) and a B-cell-centric panel (n = 3 donors, Hartmann et al.,

2019). We confirmed that the CD19hi CD11c+ memory subset

was significantly enriched for T-bet positivity over other B cells

(medians: 51% and 4% positive for T-bet, p < 0.005, Wilcoxon

signed rank test) (Figures S4A and S4B). Within CD19hiCD11c+

memory, T-bet and CD27 were negatively correlated (r =

�0.55, Pearson method), so we hierarchically clustered cells

on the basis of expression of these markers, generating a

CD27� T-bet+ population and CD27+/� T-bet� population (Fig-

ure S4C). We found an enrichment for IgG usage in T-bet+ cells

(Figure S4D), and diminished expression of CD21, CD40, CD45,

and CD45RA (p < 0.005) (Figure S4E). Notably, T-bet+ cells were

enriched for programmed cell death protein 1 (PD-1) (Figures
224 Immunity 53, 217–232, July 14, 2020
S4E and S4F). Because these cells are present in higher propor-

tion in various autoimmune conditions than in healthy controls

(Karnell et al., 2017), they might contribute to the adverse auto-

immune events that are associated with anti-PD-1 therapy (Ab-

del-Wahab, Shah and Suarez-Almazor, 2016).

To assess phenotypic similarity between subsets, we calcu-

lated the pairwise Euclidean distance between median expres-

sion profiles (Figure 4E). For each population, we quantified the

subset that was most phenotypically similar (Figure 4E, white

boxes). RB+CD27� memory and RB+CD27+CD73� were most

similar to each other, further validating the status of RB+CD27�

cells as a memory subset. Interestingly, plasma cells were

most similar to CD95+ memory, mirroring their proximity on the

UMAP (Figure 4D), whereas CD95+ memory was most similar

to RB+CD27+CD73+ memory, another population enriched for

class-switched isotypes.

IgH isotype was not used to meta-cluster cells, but organizing

B cells by phenotype resulted in an organization by isotype as

well, in pooled data (Figure 4F) and across individual donors (Fig-

ure S2D). Importantly, less than 0.26% of any transitional/naive

subset expressed a mature isotype. As class-switch recombina-

tion occurs only after activation, naive cells are, by definition, not

class-switched (Cyster and Allen, 2019). By canonical gating,

30% of IgG+ cells and 20% of IgA+ cells were left ungated

because of an absence of CD27, demonstrating the insufficiency

of CD27 alone as a memory molecule (Figures 4G and S2E). In

contrast, our approach correctly classified more than 99% of

IgG+ and 98% of IgA+ cells asmemory cells. Furthermore, by ca-

nonical gating, 45% of cells with indeterminate isotype were left

unannotated. These cells are not mislabeled IgE+ B cells as they

are exceedingly rare in healthy blood (Jiménez-Saiz et al., 2019)

(Figure S2G). This is an important consideration in cytometry

panel design as IgMD� is often used as a proxy for IgG+ or

IgA+. Iglo/� cells, which comprised 10% of total B cells (Fig-

ure S2F), were found across all phenotypes, and likely encom-

pass a mixture of all isotypes. It is therefore essential to include

probes against all four major isotypes if comparisons are to

be made.

Ig isotype usage is known to affect downstream effector func-

tion and differentiation patterning (Dogan et al., 2009). As such,

we also organized B cells on the basis of isotype and observed

distinct patterns of expression of two components of the BCR

complex: surface Ig and CD79b (Figure 4H). Surprisingly, the

mature isotype, IgA, had the lowest expression numbers of

both molecules despite the increased sensitivity of antigen-

experienced B cells (Kurosaki, Kometani and Ise, 2015). We

also found that although CD79b and surface Ig expression

were correlated in each isotype, IgG+ B cells had the highest cor-

relation between surface Ig and CD79b expression (r = 0.63,

Pearson method), whereas IgA+ B cells had the lowest (r =

0.32), suggesting IgA+ cells do not solely rely on CD79 for

signaling and might instead possess unique regulatory frame-

work downstream of the BCR.

Given these trends, we asked whether phenotype or isotype

contributed more to predicting expression amounts of surface

Ig and CD79b. We created single-cell multiple linear regression

models in which a cell’s phenotypic label (e.g., RB+CD27�mem-

ory) and isotypic label (e.g., IgA+) were used to predict the

expression of either CD79b or surface Ig (Method Details;



Figure 5. Interrogation of B cell subset function reveals differential metabolic, biosynthesis, and immune signaling activity

(A) Experimental workflow (n = 9 donors).

(B) Expression of metabolic enzymes. Stars indicate significance (p < 0.005). Boxes represent interquartile range (IQR) and whiskers represent IQR +/� 1.5*IQR

(legend continued on next page)
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Figure 4H). Although both were informative, a cell’s isotype

contributed more than a cell’s phenotype for predicting the

expression of the two molecules. Altogether these findings

demonstrate that our high-dimensional classification organizes

peripheral blood B cells into ten phenotypically distinct subsets

with a more accurate partitioning of cells than canonical gating

strategies. Additionally, these phenotypic partitions displayed

isotypic restriction that further contributed to a B cell’s identity.

Interrogation of B cell subset function reveals
differential metabolic, biosynthesis, and immune
signaling activity
To investigate the functional properties of our refined B cell clas-

sification scheme, we askedwhether surface profile denoted dif-

ferences in other underlying functional cell processes. We

stained healthy, human peripheral blood mononuclear cells

(PBMCs) from additional donors (n = 9 donors) with mass cytom-

etry panels to interrogate B cell metabolic profiles, biosynthesis

activity, and immune signaling (Figure 5A; Table S1).

Toassess single-cellmetabolic profiles (Hartmannet al., 2020),

we quantified the expression of eight enzymes, associated with

four metabolic pathways: glycolysis or fermentation, ATP

sensing, oxidative phosphorylation (ox-phos), and fatty acid

oxidation (Figure 5B). All subsets expressed all enzymes, but

expression levels variedbyphenotype.Naive cells had the lowest

expression of all subsets, which synergizes with the anergy

observed in their surface proteomes, whereas RB+CD27� mem-

ory cells hadan intermediatemetabolic profilebetweennaive and

memory subsets. Plasma cells had the highest median expres-

sion for all enzymes and were significantly higher than other B

cell subsets for molecules associated with both ox-phos and

glycolysis (p < 0.005). Outside of plasma cells, RB+CD27+CD73�

memory and CD19hiCD11c+ memory cells had the highest me-

dian expression for all enzymes. Interestingly, CD19hiCD11c+

memory was higher than RB+CD27+CD73� memory for two ox-

phos enzymes, but lower for the glycolytic enzyme MCT1 (p <

0.005). These differences in pathway usage might be because

of different functional roles and therefore different meta-

bolic needs.

We recently developed an assay to quantify de novo RNA and

protein synthesis in parallel with functional and phenotypic char-

acteristics by combining 5-Bromouridine (BRU) and puromycin

labeling with mass cytometry (Kimmey et al., 2019). Applying

this approach to healthy human B cells, we found transcriptional

activity explained very little of the variance observed in transla-

tional activity (r2 = 0.005) (Figure 5C), highlighting the differential

regulation of these two processes. CD19hiCD11c+ memory cells

had the highest median transcriptional activity, followed by

CD73+ naive cells, which had the lowest median translational ac-
(C) Biaxial of biosynthesis activity.

(D) Violin plots of biosynthesis activity. Bimodality indicated by arrows.

(E) Violin plots of significantly differentially expressed molecules (p < 0.005).

(F) Signaling diagram.

(G) Median expression of Igl� B cells, grouped by phenotype or isotype.

(H) Contour plots of signaling molecules.

(I) Quantification of earth mover’s distance from baseline samples to stimulated

(J) Relative contribution of phenotype and isotype to the variance explained by l

biosynthesis activity, or cell signaling.
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tivity (Figure 5D). Given the anergy observed in the naive depart-

ment, it was surprising to see such a high level of transcriptional

activity in these cells, and it is unclear what transcripts are being

synthesized given the low translational activity in these cells.

Plasma cells had the highest median translational activity but

displayed bimodal transcriptional activity. We asked whether

any other molecules were differentially expressed between tran-

scriptionhi and transcriptionlo plasma cells and found that trans-

lational activity and CD184 expression were higher in transcrip-

tionally active plasma cells than in transcriptionlo plasma cells

(p < 0.005) (Figure 5E). This transcriptionally active population

might be long-lived plasma cells whereas the transcriptionally

inactive population might be short-lived plasma cells. Long-lived

plasma cells have been observed to increase expression of

CD184 to facilitate bone marrow homing and would require

continuous transcriptional activity to facilitate constitutive Ig pro-

duction and secretion (Nutt et al., 2015).

Given that transcriptional and translational activity were un-

correlated in total B cells, but positively correlated in plasma

cells, we asked whether the relationship between transcriptional

and translational activity varied by phenotype. We fit simple

linear models to interrogate the relationship between transcrip-

tional activity and translational activity in transitional/naive clus-

ters and separately in memory clusters (Figure S3A). Transcrip-

tional and translational activity in transitional/naive clusters had

a strongly negative relationship (r2 = 0.61, p < 1�10), but were un-

correlated in memory cells (r2 = 0.02, p = 1.32). Total Ig amounts

(measured by intracellular staining) correlated with translational

activity in both transitional/naive (r2 = 0.66, p < 1�12) andmemory

(r2 = 0.28, p < 1�3) clusters, but each regression had different co-

efficients and intercepts, so total Ig was only predictive of trans-

lational activity if the phenotypic subset was considered, high-

lighting the importance of proper subsetting in discovery and

interpretation of biological findings.

To assess differences in immune activation sensitivity between

subsets, we stimulated B cells with varying doses of BCR cross-

linker (anti-kappa light chain) andCD40 ligand (CD40L) for 10min

and fixed and stained them with a mass cytometry panel that

included antibodies against phosphorylated targets intrinsic to

B cell signaling (Figure 5A; Table S1). We measured phosphory-

lation of spleen tyrosine kinase (pSYK) and the downstream

phospholipase Cg2 (pPLCg2), two molecules involved in the

signaling cascade caused by antigen recognition mediated by

the BCR complex (Figure 5F) (Kurosaki, Shinohara and Baba,

2010).Wealsomeasuredphosphorylation of the stress-activated

protein kinase p38 (pp38), which is strongly induced by CD40

stimulation, a molecule activated during antigen presentation to

T cells and weakly induced by BCR stimulation (Sutherland

et al., 1996). Phosphorylation of p38 can also be induced by
samples (1 mg/mL) for pPLCg2 and pSyk and pp38.

inear models created to predict single-cell expression of metabolic pathways,



Figure 6. Characterization of lymphoid tissue-specific B cell populations

(A) Experimental workflow (n = 11 donors).

(B) Violin plots of molecules significantly differentially expressed by at least two tissues (p < 0.005).

(legend continued on next page)
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Toll-like receptor (TLR) stimulation (Kawai and Akira, 2006), but

response to TLR ligands was not evaluated in this study.

We segregated donor-pooled Igl� B cells by subset and iso-

type and assessed the median levels for each regulatory phos-

phorylation as a function of stimulant dose (Figure 5G). As ex-

pected, total kappa light chain diminished after stimulation as

surface Ig was crosslinked, internalized, and degraded. Unsur-

prisingly, IgM+ and IgD+ cells had lower levels of signaling in

response to stimulation, whereas cells with the mature isotypes,

IgG and IgA, were the most potent responders. As we had seen

in our previous datasets, IgA+ cells had the smallest quantity of Ig

at baseline, yet responded with comparable potency to IgG+

cells, which had the highest quantity of Ig at baseline. This is

particularly surprising as we had previously observed that IgA+

cells also had the lowest expression of the BCR signaling mole-

cule, CD79b. Segregating class-switched cells by phenotype,

we found little difference in signaling response between IgG+

and IgA+ cells of the same phenotype, despite their differences

in BCR expression (Figure S3B). The only exception was plasma

cells, in which IgG+ cells had weak responses compared with

those of IgA+, presumably because of a lack of surface Ig on

IgG+ cells. These findings highlight that signaling potency is

poorly explained by BCR copy number.

We visualized changes in phosphorylation state of the two

molecules in the BCR complex signaling cascade, SYK

and PLCg2, on biaxial contour plots and found stark contrasts

in distribution shifts between subsets (Figure 5H). Although

all populations responded to stimulation, only the plasma

and memory subsets (particularly CD95+ memory and

CD19hiCD11c+ memory) contained a highly responsive, dou-

ble-positive population. To quantify the signaling response, we

calculated the earth mover’s distance between baseline and

stimulated cells and found that these two memory populations,

along with plasma cells, were notably more responsive than all

other subsets (Figures 5I, left, and S3C). Interestingly, the other

seven populations self-organized from least to most responsive

when arranged by putative ordering of maturation (Figure 4),

suggesting that sensitivity to BCR-specific activation increases

with maturation.

To assess CD40 signaling, we also quantified the distance be-

tween baseline and stimulated cells for pp38, (Figures 5I, right,

and S3D). Although some of the trends were similar to the BCR

complex signaling molecules (e.g., antigen-inexperienced cells

were less responsive than memory cells), some differences

emerged. Plasma cells had much lower signaling than in the

BCR complex pathway, which is unsurprising because their pri-

mary function is antibody production, not T cell stimulation (Cys-

ter and Allen, 2019). CD19hiCD11c+ memory signaling was

uniquely high, despite having the lowest baseline expression of

CD40, other than plasma cells (Figure 4B).

Given the heterogeneity of functional activity we observed

across B cells, we asked whether this variance was best ex-
(C) IgH isotype usage by tissue. ND denotes ‘‘not determined’’; IgMD denotes co

(D) Subset composition by tissue.

(E) Manhattan distance between each tissue based on subset composition.

(F) Biaxial of B cells colored as GC or other.

(G) Biaxial of B cells colored as CD39+ tonsillar or other.

(H) UMAP plot generated from an equal subsampling by tissue, then an equal su
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plained by our phenotypic labels or by isotype. Using the same

multiple linear regression approach used to quantify contribu-

tions to surface Ig and CD79b (Figure 4H), we quantified the rela-

tive contribution of phenotype and isotype usage to predict

expression of metabolic pathway expression, biosynthesis ac-

tivity, and signaling response (Figure 5J). In contrast to surface

Ig and CD79b expression, a cell’s phenotype was much more

informative than a cell’s isotype for predicting its metabolic,

biosynthesis, and signaling profiles. Collectively, these findings

demonstrate that our phenotypic classification captures func-

tional distinctions in metabolic pathway usage, biosynthetic ac-

tivity, and signal response to immune activation.

Characterization of lymphoid-tissue-specific B cell
populations
To broaden the scope of our human B cell profiling beyond pe-

ripheral blood, we profiled bone marrow (n = 3), tonsil (n = 3),

lymph node (n = 1), and additional peripheral blood samples

(n = 4) from a new cohort of healthy donors (n = 11) by mass cy-

tometry (Figure 6A; Table S1). As expected, tonsil and lymph

node were heavily enriched for B cells, as compared to those

in peripheral blood and bone marrow (Figure S6A).

To interrogate global differences in B cell expression between

tissues, we evaluated differences in expression between each

pairwise combination of donor-pooled tissues, for all molecules.

We identified 21molecules that were differentially expressed (p <

0.005) between at least one pair of tissues and plotted their dis-

tributions, organized by function (Figure 6B). HLA-DR, which fa-

cilitates antigen presentation to T cells, was expressed at high

amounts in tonsil and lymph node, two tissues that promote

T:B interactions. CD32, an inhibitory Fc receptor, had low

expression in tonsil and lymph node, as might be expected in

a microenvironment promoting B cell activation. Adversely,

several inhibitory molecules were enriched in lymph node,

including CD23, CD72, CD73, and CD305. The lymph node

also had substantial skewing toward immature isotypes (Figures

6C andS6B). Tonsil, however, was not enriched for any inhibitory

molecule (Figure 6B) and had the largest proportion of IgG+,

IgA+, and undetermined isotypes, which are primarily composed

of cells with memory phenotypes (Figures 6C and 4G).

To evaluate the composition of B cell phenotypes within tis-

sues, we plotted subset proportions and, in accordance with

the isotype data, we found that the lymph node was heavily en-

riched for CD73+ naive cells (> 50%) (Figures 6D and S6C). In

fact, all memory populations in the lymph node were nearly ab-

sent (< 0.5%) save for RB+CD27� memory. The tonsil, however,

did not exhibit this same skewing toward naive cells; it had

greatly diminished proportions of RB+CD27+CD73� memory

and RB+CD27+CD73+ memory, but an enrichment of RB� mem-

ory (> 20%). CD19hiCD11c+ memory was absent in both the

tonsil and lymph node. Transitional cells were also absent in

both tonsil and lymph node and enriched in bone marrow,
-expression of IgM and IgD.

bsampling by subset.
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though the definition also encompassed immature B cells, which

were present exclusively in the bone marrow. Plasma cells were

present at the lowest amounts in the blood, and this phenome-

non might be underrepresented here because of cell loss from

cryopreservation. To evaluate the dissimilarity of tissues, we

calculated the pairwiseManhattan distance between each tissue

on the basis of subset composition (Figures 6E and S6D). Each

lymphoid tissue was most similar to peripheral blood, and pe-

ripheral blood was most similar to bone marrow.

We identified two subsets absent in peripheral blood: germinal

center (GC) B cells, present in both the tonsil and lymph node,

and a CD39+ tonsillar population, present exclusively in the tonsil

as �8% of total B cells (Figures 6D and S6E). GC cells were

CD38+ and CD32� (Figure 6F) as previously described (Macardle

et al., 2002), whereas CD39+ tonsillar cells were CD185� (Fig-

ure 6G). CD39 is an ectoenzyme that regulates immune re-

sponses by converting ATP into AMP, which can be dephos-

phorylated into adenosine by CD73 (Antonioli et al., 2013). To

our knowledge, this population has not previously been reported

andmight represent a tissue-resident precursor to othermemory

and effector phenotypes.

To better characterize the heterogeneity present in our

lymphoid tissues, tissue- and subset-subsampled cells were

plotted byUMAP (MethodDetails; Figures 6H andS7). In parallel,

we assessed differential expression between tissues within sub-

sets, as well as tissue-specific subset expression profiles

(Figures S6E and S6F). Cells derived from the tonsil and lymph

node largely occupied unique areas of the UMAP, whereas

bone marrow and peripheral blood tended to overlap,

as expected from our quantification of dissimilarity (Figure 6E).

Compared with RB+CD27� memory in peripheral blood, RB+

CD27� memory in the lymph node was particularly distinct with

differential expression of 18 molecules, including higher expres-

sion of the chemokine receptors CD184 and CD185, the antigen-

presentation-related molecules CD1c and CD40, and the nega-

tive immune regulators CD23, CD39, and CD72 (Figure S6E).

GC B cells formed a distinct island on the UMAP, nested be-

tween memory and plasma cells, as would be expected given

that germinal centers give rise to both plasma and memory cells

(Cyster and Allen, 2019). In fact, several GC cells localized with

plasma and RB� memory cells, which might reflect cells actively

transitioning into these phenotypes. GC cells have low surface Ig

amounts, comparable to plasma cells, making isotype distinc-

tion difficult. It is, however, clear from those cells with sufficient

expression to classify that although perhaps enriched for mature

isotypes, the population contains IgD and IgMD cells, despite

GC cells being canonically defined as IgD� (Victora and Nus-

senzweig, 2012). These cells are distinct from other populations

described here because they are RB�CD27�CD24�CD39�

CD73� and CD32�, in addition to being CD38+ and CD95+/�

(Figure S7).

GC B cells can be further subdivided by their spatial location

within a germinal center—dark zone (DZ) B cells undergo division

and somatic hypermutation, whereas light zone (LZ) B cells un-

dergo selection through interactions with follicular dendritic cells

and T cells (Victora and Nussenzweig, 2012). CD184 has been

reported as enriched in DZ GC B cells and CD185 in LZ GC B

cells (Victora et al., 2012), but in our dataset the markers were

positively, not negatively correlated, as would have been ex-
pected given their proposed opposing roles in trafficking. The

two markers instead mostly captured tissue-specific differences

because double positives were enriched in lymph node and dou-

ble negatives were enriched in tonsil (Figure S6G).

Tonsillar CD39+ B cells also formed a distinct area on the

UMAP, situated next to RB� memory and CD95+ memory (Fig-

ure 6H). These cells were also characterized by low expression

of surface Ig and were enriched for class-switched isotypes,

particularly IgA. They were CD32+, had mixed expression of

RB, CD27, CD24, CD11c, CD95, and CD183, low to no expres-

sion of CD21, CD72, and CD73, and completely lacked expres-

sion of CD38 (Figure S7). Those tonsillar CD39+ cells that were

CD11c+ also tended to be CD19hi, but were distinguishable

from CD19hiCD11c+ memory (which were absent in the tonsil)

by their lower expression of CD20, CD22, and CD72, and higher

expression of CD39, CD40, and CD184. It is possible, however,

that CD39+ tonsillar cells are a precursor to CD19hiCD11c+

memory.

Plasma cell profiles also varied by tissue (Figure S6F).Whereas

peripheral blood plasma cells were characterized as CD38+

CD27hi, plasma cells from all other tissues were CD38hiCD27+/�.
High expression of HLA-DR, mixed expression of CD95, and an

absence of CD32 uniquely distinguished lymph node plasma

cells (Figure 6H). Bone marrow and tonsil plasma cells were

most similar (Figure S6F), unified by high expression of CD32,

an enrichment of CD184, mixed expression of CD183, and low

to absent expression of HLA-DR and RB (Figure S7). As evaluted

by surface expression, peripheral blood and tonsil plasma cells

were enriched for IgA, whereas lymph node and bone marrow

cells were enriched for IgM.

Altogether, these data reveal the tissue-specific profiles and

proportions of the ten subsets identified and introduce extensive

phenotypic profiles of GC B cells and CD39+ tonsillar B cells. We

report a gating scheme for tonsil (also applicable to lymph node)

to capture all populations present in these tissues by using only

six markers: CD27, CD38, CD39, RB, CD73, and CD95 (Fig-

ure S6H). These findings, in combination with our evaluation of

metabolic pathway usage, biosynthetic activity, and signal

response to immune activation, provide comprehensive descrip-

tions of twelve distinct B cell subsets (Figure S8). These subset

definitions represent a framework to understand and assess

the functional contributions of B cells to human immunity.

DISCUSSION

To interrogate deep phenotypic diversity in primary cells, we

developed a highly multiplexed single-cell surface screen and

applied it to identify molecules that could segregate subsets of

human B cells. This approach enabled us to differentiate twelve

B cell subsets across four lymphoid tissues and relate their func-

tional profiles. Importantly, these populations could also be

manually gated for prospective isolation by fluorescence-acti-

vated cell sorting (FACS), though purity and yield might suffer

without high-dimensional profiles. These subsets built and

expanded upon an existing understanding of B cell identity,

including the utility of CD27 as a memory marker, IgH isotype re-

striction within subsets, and coarse definitions of transitional,

naive, memory, and plasma cells. We found no obvious innate-

like B1 B cell phenotype (Cyster and Allen, 2019) in our cohort
Immunity 53, 217–232, July 14, 2020 229
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of healthy human adults, despite their prevalence in mice.

Whether these cells are present in other tissues and/or develop-

mental stages is unclear. We also chose not to designate any

subset as innate-like marginal zone B cells, as the marginal

zone is an anatomical region that might contain multiple B cell

subsets.

We identified six memory populations, confirming previous re-

ports of phenotypic diversification after antigen recognition in

mice and humans (Garraud et al., 2012). This should, however,

not be confused with greater clonal diversity, as our immune

repertoire analysis demonstrated that naive B cells had greater

clonal diversity than their memory counterparts, as expected

due to antigen selection and clonal expansion. We identified

RB as a marker for memory cells and confirmed that RB+CD27�

cells have undergone SHM. The RB antibody clone MEM55

(used in this study) distinguishes B cell subsets because of differ-

ential glycosylation of RB, rather than differential usage of the RB

isoform (Koethe et al., 2011). Unlike CD45RA and CD45RO

splice isoforms in the switch of naive to memory T cells, the

switch of naive tomemory B cells identified here is accompanied

by the post-translational modification of RB and therefore

impossible to detect with mRNA sequencing, instead requiring

a proteomic readout.

We also identified a CD19hiCD11c+ memory population that

shares some common features with several populations that

have been described in the context of autoimmunity, infection,

and aging (Karnell et al., 2017). Within this population, we sepa-

rated cells by CD27 expression and found an enrichment for

T-bet and PD-1 within CD27� CD19hiCD11c+ memory cells,

similar to effector memory phenotypes seen in T cells (Lazarevic,

Glimcher and Lord, 2013). Despite these altered expression pro-

files, we found no differences in metabolism, biosynthesis, or im-

mune signaling between CD27+ and CD27� fractions (data not

shown). These cells lack CD184, have low expression of CD40,

mixed expression of CD185, and were absent in both tonsil

and lymph node, suggesting they might not participate in

germinal center reactions, despite having the most potent

response to activation in both the BCR and CD40 signaling path-

ways. This contrasts previous reports that have indicated cells

with similar phenotypes are hyporesponsive to BCR and CD40

activation (Isnardi et al., 2010, Rakhmanov et al., 2009). This

discrepancy might be explained by our use of high-dimensional

clustering rather than binary gating, our shorter stimulation

times, our quantification of signaling post-translational modifica-

tions as a readout, and our IgH-agnostic anti-kappa stimulation.

Altogether, the increased frequency of this cell type in various

disease states, its absence in secondary lymphoid organs, and

its potent response to immune stimulation suggest that these

cells are a population of effector memory cells.

CD95+memorywas also highly responsive to stimulation, sug-

gesting they too might represent an effector memory population.

CD95 can be expressed on activated lymphocytes as a mecha-

nism for limiting inflammation because ligation of CD95 can

lead to apoptosis (Daniel and Krammer, 1994) The ligation of

CD95, however, does not exclusively result in apoptosis and it

might be relevant in lymphocyte activation, survival, and prolifer-

ation (Peter et al., 2007), so rather than accelerating cell death,

CD95 might be endowing these cells with increased potency

and longevity. CD95 was, however, also expressed on GC B
230 Immunity 53, 217–232, July 14, 2020
cells, so it is possible that CD95+ memory cells are simply recent

germinal center emigrants that have retained expression

of CD95.

Within the tonsil, we identified a population uniquely charac-

terized by high expression of CD39. Although CD39 expression

might be indicative of regulatory function, we would caution

against that interpretation. The expression of CD73, a function-

ally related enzyme, was expressed by multiple populations

that did not appear enriched for regulatory characteristics, so

CD39 and CD73 might instead be part of larger expression pro-

grams that balance immune sensitivity and activation. Because

these cells were exclusive to the tonsil, we did not label them

as conventionally circulating memory, though phenotypically,

they appear to be antigen experienced. Given that they shared

phenotypic features with CD95+ memory, RB� memory, and

CD19hiCD11c+ memory, they might represent a precursor to

these populations.

Further investigation of tissue-resident B cells is warranted

because our study had a very limited cohort of lymphoid tissue

donors and lymph node composition might vary by anatomical

location. Future studies should utilize our phenotypic profiles

to address compartmentalization and trafficking of B cell sub-

sets with high-dimensional imaging. Our comprehensive charac-

terization of surface phenotypes could also be paired with

single-cell epigenetic, transcriptional, and/or immune repertoire

profiles to give a more complete overview of cell identity.

Furthermore, subsets should be prospectively isolated for

further characterization of antibody secretion, plasma cell differ-

entiation, TLR ligand sensitivity, cytokine production, and anti-

gen presentation capabilities.

Here, our deep phenotypic profilingwithmulti-omic integration

of numerous single-cell functional readouts in healthy individuals

reveals the identity of new, more granular populations, compre-

hensively mapping B cell identity across blood and lymphoid tis-

sues in the human. The quantitative assessment of the contribu-

tion of phenotype versus isotype usage across several cellular

processes highlights the need for analysis beyond repertoire

sequencing and isotype identity for understanding human B cell

immune function. Our findings should serve as a resource for

future studies investigating the humoral immune response in

the context of vaccination or disease, as several populations

and molecules described here may be crucial to understanding

B-cell-mediated pathogenesis or protection.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat F(ab’)2 Anti-Human Kappa-UNLB Southern Biotech Cat#2062-01; RRID: AB_2795736

All antibodies used for cytometry Various Table S1

Biological Samples

Leukocyte reduction chamber from

human blood

Stanford Blood Center stanfordbloodcenter.org

Whole blood from healthy donors Obtained under informed consent with

IRB approval

n/a

Human tonsil Stanford Hospital, adult tonsilectomy

from adults with obstructive sleep apnea

stanfordhealthcare.org

Human lymph node Stanford Hosptial, biopsy sample of

recovered lymphoma patient

stanfordhealthcare.org

Human bone marrow from healthy donors AllCells allcells.com

Chemicals, Peptides, and Recombinant Proteins

Ficoll-Paque Plus GE Healthcare Cat#300-25

RPMI 1640 media Thermo Fisher Scientific Cat#21-870-092

GlutaMAX supplement Thermo Fisher Scientific Cat#35050-061

Fetal bovine serum USDA approved lot Omega Scientific, Inc. Cat#FB-01

Benzonase nuclease Sigma-Aldrich Cat#E1014-25KU

Recombinant human CD40L BioLegend Cat#591704

Human TruStain FcX (Fc Receptor Blocking

Solution)

BioLegend Cat#422302

Bovine Serum Album (BSA) Heat-shock

Treated

Thermo Fisher Scientific Cat#BP1600-100

Cell-ID Intercalator-Ir Fluidigm Cat#201192A

Cell-ID Cisplatin Fluidigm Cat#201064

Saponin from quillaja bark Sigma-Aldrich Cat#S7900-25G

Calibration Beads, EQ, Four Element Fluidigm Cat#201078

7-AAD Viability Staining Solution BioLegend Cat#420404

Streptavidin Particles Plus BD Biosciences Cat#557812

Critical Commercial Assays

Cell-ID 20-Plex Pd Barcoding Kit Fluidigm Cat#201060

Maxpar X8 Antibody Labeling Kit Fluidigm Cat#201176B

IMag Cell Separation Magnet BD Biosciences Cat#552311

QIAamp DNA Micro Kit QIAGEN Cat#56304

immunoSeq Human B Cell - survey

resolution

Adaptive adaptivebiotech.com

Deposited Data

Mass cytometry data This study flowrepository.org/id/FR-FCM-Z2MA

flowrepository.org/id/FR-FCM-Z2MC

Software and Algorithms

RStudio Rstudio rstudio.com

MATLAB MathWorks mathworks.com/products/MATLAB.html

Cytobank Cytobank cytobank.org

CellEngine Primity Bio cellengine.com

Other

Custom code for analysis This study github.com/davidrglass/atlas
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Sean

Bendall (bendall@stanford.edu).

Materials availability
This study did not generate new unique reagents

Data and code availability
The accession numbers for themass cytometry data reported in this paper are Flow Repository: FR-FCM-Z2MA (surface screen) and

FR-FCM-Z2MC (other). All associated code is available at github.com/davidrglass/atlas.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human specimens
Deidentified human blood (n = 20) and bonemarrow (n = 3) were obtained from healthy adult donors (Stanford Blood Center, AllCells).

Deidentified, discarded surgical tonsil samples from healthy adult patients undergoing tonsillectomy for obstructive sleep apnea

were collected (n = 3). The lymph node (n = 1) was excised from a 60 year old woman with increased FDG uptake on PET scan

and a history of diffuse large B cell lymphoma, last treated with R-CHOP four years prior. It showed normal follicular architecture

and immunophenotype by histology and flow cytometry, respectively. The patient received no subsequent therapy and no radio-

graphic evidence of lymphoma or progression was seen in the two years since. All samples were obtained under informed consent

and in accordance with Stanford’s Institutional Review Board.

METHOD DETAILS

Peripheral blood and bone marrow processing
Mononuclear cells (MCs) were isolated from Trima Accel leukocyte reduction system (LRS) chambers or heparinized tubes using Fi-

coll-Paque Plus (GE Healthcare) density gradient centrifugation according to the manufacturer’s instructions. For long-term storage

(surface screen and tissue phenotyping only), MCs were resuspended in fetal bovine serum (FBS; Omega Scientific, Inc.) with 10%

DMSO, slowly cooled to�80�C, and stored in liquid nitrogen at a density of 1-53 107 cells/mL. CryopreservedMCswere thawed into

cell culture medium (CCM; RPMI 1640 containing 10% FBS, and GlutaMAX; Thermo Fisher Scientific) supplemented with 25cU/mL

benzonase (Sigma-Aldrich). and pelleted for 5cmin at 250cg. Where indicated, cells underwentmagnetic lineage depletion according

to the manufacturer’s instructions using BD Streptavidin Particles Plus and the BD IMag Cell Separation Magnet (BD Biosciences)

with biotinylated anti-CD3 (surface screen samples) or a cocktail of biotinylated antibodies consisting of CD3, CD7, CD15, CD33,

CD56, CD61, and CD235ab (other samples). The biotinylated antibody cocktail was detected by labeled anti-biotin (mass cytometry)

and streptavidin (FACS) and further depleted in silico.

Tissue processing
After lymph node excision, a fresh portion was placed in RPMI and refrigerated until it could be minced into �1-3 mm fragments

with a clean blade. Fragments were resuspended in 3 mL DPBS and refrigerated. After diagnostic testing was complete, a portion

of the remainder was filtered through 35 mm nylon mesh, centrifuged at 250 x g for 5 min, resuspended in 10% FBS at approx-

imately �5 3 106 cells/aliquot, slowly cooled to �80�C, and then stored in liquid nitrogen. Whole tonsil pairs were collected in

saline and processed immediately. Tonsils were disinfected in an antibiotic cocktail for 30 min, rinsed with saline, and any

cauterized tissue was removed. The remaining healthy tissue was cut into small pieces (approximately 2mm x 2mm x 5mm)

and pressed through a 100um nylon mesh strainer using a syringe plunger. The strainer was rinsed with serum-containing media

(RPMI1640 with 10% FBS) and the released cells were washed two times. After enumeration, cells were cryopreserved in approx-

imately 50-100 3 106 cells/aliquot in FBS + 10% DMSO at �80�C and transferred to long-term storage in liquid nitrogen the

next day.

Metabolism, biosynthesis activity, and stimulation assays
PBMCs were rested in 37�C 5% CO2 incubator for 30 min (biosynthesis activity assays), 1 h (metabolism assays), or 2 h (stimulation

assays) at 53 106 cells/mL in CCM. Metabolism samples were fixed in 1.6% PFA in PBS for 10 min and then palladium barcoded as

previously described (Zunder et al., 2015). After rest, biosynthesis activity assay samples were spiked with 2 mMBRU and 10 mg/mL

puromycin and incubated for an additional 30 min (Kimmey et al. 2019) and then fixed and palladium barcoded. Stimulation samples

were resuspended in CCM with 3.3 mM H2O2 (Irish et al., 2010) and specified doses of anti-kappa F(ab’)2 (Southern Biotech) and

CD40L (BioLegend) for 10 min and then fixed and palladium barcoded.
e2 Immunity 53, 217–232.e1–e5, July 14, 2020
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Mass cytometry antibody conjugation, staining, and data acquisition
Antibody conjugation, staining, and data acquisition were performed as previously described (Hartmann, Simonds and Bendall,

2018). Briefly, metal-isotope labeled antibodies used in this study were conjugated using the MaxPar X8 Antibody Labeling kit per

manufacturer instruction (Fluidigm), or were purchased from Fluidigm pre-conjugated. Each conjugated antibody was quality

checked and titrated to optimal staining concentration using a combination of primary human cells and/or cancer cell lines (Fig-

ure S1C). Tissue samples were live-cell barcoded as previously described (Hartmann, Simonds and Bendall, 2018). Cells were sus-

pended in TruStain FC blocker for 10min at RT andwashed in cell stainingmedia (CSM: PBSwith 0.5%BSA and 0.02%sodium azide

and benzonase 25x108 U/mL (Sigma)) prior to staining. All surface staining was performed in CSM for 30 min at RT. Cells were

washed in CSM and resuspended in cisplatin for 5 min to label non-viable cells (Sigma, 0.5 mM final concentration in PBS). Cells

were washed in CSM and fixed with 1.6% PFA in PBS for 10 min at RT and (if intracellularly stained) washed in CSM and permea-

bilized with MeOH for 10 min on ice. Intracellular and anti-biotin staining was performed in CSM for one h at RT. Before acquisition,

samples were washed in CSM and resuspended in intercalation solution (1.6% PFA in PBS, 0.02% saponin (Sigma) and 0.5 mM

iridium-intercalator Fluidigm)) for 1 h at RT or overnight at 4�C. Before acquisition, samples were washed once in CSM and twice

in ddH2O. All samples were filtered through a 35 mm nylon mesh cell strainer, resuspended at 1 3 106 cells/mL in ddH2O supple-

mented with 1x EQ four element calibration beads (Fluidigm), and acquired on a CyTOF2mass cytometer (Fluidigm). Barcoded sam-

ples were acquired using the Super Sampler injection system (Victorian Airship).

FACS sorting, gDNA extraction, and immune repertoire sequencing
PBMCs were lineage depleted and Fc blocked as described above. Cells were surface stained (Table S1) in CSM in the dark for

30 min on ice and then washed in CSM. Prior to data acquisition, cell suspensions were spiked with 7-AAD (BioLegend) to label

non-viable cells. Non-transitional/non-plasma B cells were gated as singlet, viable, CD45+, lin-, CD19+, CD38lo/- and then sorted

from the four quadrants of the CD27 x RB biaxial plot using a BD FACS Aria II (BD Biosciences). Approximately 100,000 cells per

subset per donor were sorted into tubes. Cells were lysed and gDNA was extracted using the QIAamp DNA Micro kit (QIAGEN) ac-

cording to the manufacturer’s instructions. DNA was frozen and shipped to Adaptive Biotechnologies for IgH library preparation and

next-generation sequencing using the immunoSEQ Assay (Adaptive).

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass cytometry data pre-processing
Acquired samples were bead-normalized using MATLAB-based software as previously described (Finck et al., 2013). Where appli-

cable, barcoded data was debarcoded using MATLAB-based software (Zunder et al., 2015). Normalized data was then uploaded

onto the Cytobank analysis platform for gating (Figures 1B and S1A; Kotecha, Krutzik and Irish, 2010). Gated data was downloaded

and further processed with the R programming language (http://www.r-project.org) and Bioconductor (http://www.bioconductor.

org) software. Data was transformed with an inverse hyperbolic sine (asinh) transformation with a cofactor of 5. Molecules on the

screen compromised by bleed from other channels or by any other technical considerations were removed. Conserved molecules

from the surface screen were quantile normalized by donor to correct for technical variation between mass cytometry runs. Peak

normalization (alignment of mode of positive population) of each molecule was applied to normalize samples from different donors

in Figure 4 only, as those samples were not barcoded and stained in the same tube (Figure S2A). As the tissue samples (Figure 6) were

processed and collected in two batches; batches were normalized to produce equal 99.9th percentile expression of each molecule

within the peripheral blood samples. For all experiments, eachmolecule was scaled to the 99.9th percentile of expression of all cells in

that experiment for comparability between parameters. Individual cell quantifications from all donors were pooled together for all an-

alyses except where noted to utilize all observations acquired.

Surface screen thresholding
To avoid subjectivity in determining whether eachmolecule was present or absent on B cells, we set a uniform threshold for positivity,

mandating that the 99.9th percentile of expression in B cells for each molecule was at least 40 raw counts (2.78 asinh-transformed

value) to be considered positive. The cutoff was set at a high value to prevent inclusion of false positives with high background stain-

ing, at the expense of enriching for false negatives. This approach provided confidence that all molecules assessed as positive were

truly present on B cells, while those assessed as negative were either absent on B cells or were present at low levels. The 99.9th

percentile was used instead of median values for thresholding, in order to capture molecules expressed by a small subset of B cells

(e.g., IgA) and not just those uniformly expressed by all B cells (e.g., beta-2 microglobulin, Figure 1C). Furthermore, with a mean of

245 thousand B cells assessed with each mass cytometry panel in the screen, a molecule was on average only considered positive if

�245 cells express the target at a high level. The dataset could be reanalyzed to identify more rarely- or more lowly-expressed

markers.

Ig quantification
To quantify surface Ig (surface stain, Figures 4 and 6) and total Ig (intracellular stain, Figure 5) across IgH isotypes, Igk and Igl light

chains were independently measured on two different mass cytometry channels. The two distributions were peak normalized within

each experiment (Figure S2C) and then each cell was assigned a new parameter, surface or total Ig, calculated as the pairwise
Immunity 53, 217–232.e1–e5, July 14, 2020 e3
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maximum of the two peak normalized light chain channels. As B cells can only express a single light chain isotype, the pairwise

maximum represents true signal, while the pairwise minimum represents noise and can therefore be discarded. This approach pro-

vides an independent quantification of Ig expression for single cells that is not biased by antibodies with differing affinities to the

various IgH isotypes.

Dimensionality Reduction
To visualize co-expression of moleculesmeasured on different cells in the surface screen, cells stained with different mass cytometry

panels were plotted together on a single UMAP plot using the umap package in R (Figures 3A and 3B). 2,500 cells from each of the 12

mass cytometry panels were randomly subsampled and used to generate a UMAP plot (uwot package) based on the expression of

molecules positive on B cells that are conserved in all panels: CD45, CD19, CD24, CD38, CD27, IgM, and IgD. This ensured that cells

of similar phenotype localized into similar coordinates, facilitating qualitative assessment of molecule co-expression between mol-

ecules that were not measured on the same cell. Color overlay of molecule expression for a given molecule used only cells from the

screen on which that molecule wasmeasured for the visualization. For visualization of surfacemolecule expression of our meta-clus-

ters, 1,000 cells were randomly subsampled from each of the ten B cell subsets and used to generate a UMAP plot (Figure 4D). The

plot was generated based on expression of all phenotypic molecules. Isotype was not used to generate the map to prevent artificial

separation of phenotypically similar cells. Subsampling by B cell subset facilitated visualization of heterogeneity within and between

populations without the map being dominated by the most abundant populations. The same approach was taken for the UMAP in

Figure 6, with the addition of an equal subsampling by tissue before an subsampling by subset (840 cells per subset).

Clustering
For initial subset discovery (Figure 4) cells were over-clustered into 169 clusters using FlowSOMwith all molecules as input. Clusters

were then hierarchically clustered as either ‘‘antigen-inexperienced’’ or ‘‘antigen-experienced’’ based on median expression of RB,

CD27, CD305, CD44, and CD11c. Antigen-inexperienced clusters were then hierarchically clustered into three subsets: (1) Transi-

tional, (2) CD73- Naive, and (3) CD73+ Naive, based on expression of CD38, CD79b, and CD73. Antigen-experienced clusters

were hierarchically clustered into four subsets: (1) Plasma, (2) CD95+ Memory, (3) CD19hi CD11c+ Memory, and (4) other memory

based on expression of CD20, CD268, CD95, and CD11c. Other memory clusters were hierarchically clustered into two subsets:

(1) RB- Memory and (2) RB+ Memory based on expression of RB. RB+ Memory was then hierarchically clustered into three subsets:

(1) CD27- Memory, (2) RB+ CD27+ CD73- Memory, and (3) RB+ CD27+ CD73+ Memory based on expression of CD27 and CD73. This

entire procedure resulted in the identification of ten unique subsets. This approach was selected for several reasons: A) The initial

over-clustering step groups phenotypically similar cells based on high-dimensional data and prevents arbitrarily drawing lines be-

tween overlapping populations based on a single molecule, as in canonical gating schemes. B) Hierarchical clustering allows segre-

gation of cells into large groups (antigen-inexperienced versus antigen-experienced) before further subsetting. Thismirrors canonical

gating, where T cells are segregated from B cells before expression of CD4 or CD8 is considered. C) This approach allows us to use

specific molecules to subset specific groups of cells. Once we have determined that expression of a parameter is uniform in a group

(e.g., RB in naive cells), the use of that molecule as a clustering parameter will only add noise to the model. Instead, we selected

molecules for each group where there was meaningful differential expression (e.g., CD73 in naive cells).

For subsequent subsetting of other datasets (Figures 5 and 6), cells were over-clustered with surface and intracellular Ig molecules

and then manually segregated into subsets in a gating scheme similar to Figures S2B and S6H. This ensured consistency of classi-

fication between datasets. For signaling data, only unstimulated cells were clustered and classified so that Ig levels could be used in

the initial clustering step. After crosslinking, Ig levels diminish, so clustering based on these molecules causes a segregation of cells

based on stimulation dose. Stimulated cells were instead classified into subsets based on a KNN (k = 3) classifier trained on unsti-

mulated data, using only Euclidean distance of surface molecule expression, which is not altered by the short stimulation.

GO quantifications
‘‘Biological Processes’’ gene ontology annotations for all molecules on the surface screen were compiled fromUniProt (https://www.

uniprot.org). This resulted in over 2,000 unique annotations, so GO terms were collapsed into 30 parent terms using the Generic GO

Term Mapper (Figure S1B) (https://go.princeton.edu/cgi-bin/GOTermMapper).

Immune repertoire sequencing pre-processing
Templates per sequence (number of unique cells with identical IgH sequences) was determined by Adaptive Biotechnology based on

number of sequencing reads normalized to spiked-in controls of ‘‘artificial’’ IgH sequences. Sequences with less than ten reads were

eliminated from the analysis. The Immcantation pipeline (Vander Heiden et al., 2014; Gupta et al., 2015) was used for downstream

processing and analysis. V and J gene usage was determined using IgBlast (Ye et al., 2013) on the IMGT database (Lefranc et al.,

2015) and corrected by Bayesian inference of each donor’s genotype. Clonal lineages assignments of sequences were made

with the following requirements: same donor, identical V and J gene usage, identical CDR3 length, and a hamming distance to

another member of the lineage beneath the set threshold. This distance threshold was determined for each donor by fitting a gener-

alized mixture model based on the density plot of the hamming distance of the CDR3 to its nearest neighbor for each sequence. This

creates a bimodal distribution of sequences with a clonal relative (lower peak) and sequences without a clonal relative (higher peak).

The intersection of the two fitted gaussians was set as the distance threshold for clonal membership. Germline sequences were
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inferred for each clonal lineage and silent and non-silent mutations outside of the CDR3 were quantified as deviations from the in-

ferred germline.

Immune repertoire analyses
Mutation frequency was calculated as the frequency of mutations from the reconstructed germline sequence to input sequence (Fig-

ure 3G). The D region and N/P nucleotides were excluded from the calculation as they are difficult to accurately call and reconstruct.

Mutations were binned as either silent (no amino acid change) or replacement (amino acid change). Sequence diversity was calcu-

lated using the general form of the diversity index (Hill, 1973) over a range of orders (Figure 3H). 95%confidence intervals were gener-

ated by 200 bootstrap resampling calculations, as previously described (Gupta et al., 2015). For clonal analysis, all sequences were

labeled by their population of origin and then these labels were then randomly permuted (Figure 3I). For each population label, the

frequency in which a sequence from population X shared a clonal lineage with a sequence from population Y was quantified and then

repeated for all combinations of the four populations. This calculation is asymmetric as the frequency in which a sequence from pop-

ulation X shares a lineage with a sequence from population Y is not the same as the frequency in which a sequence from population Y

shares a lineage with a sequence from population X. This process was repeated 200 times to create a null distribution and then z-

scores of the frequencies were derived for the observed data using the original population labels (Figure 3J). This approach shares

some features of significance analysis of microarrays (SAM) analysis (Tusher, Tibshirani and Chu, 2001), where null distributions are

also created through permutation analysis and scores are assigned on the basis of changes in expression relative to the standard

deviation.

Statistics
All statistical tests for differences in distribution of molecules between B cell subsets from mass cytometry data were performed on

equally subsampled populations using the KS test. This non-parametric test determines the equality of two continuous distributions

and is sensitive to both changes in mean and shape of a distribution. It can therefore detect if even a fraction of a subset has a change

in expression compared to the reference population. All P values were corrected by the Bonferroni method, the most conservative of

multiple hypothesis correction approaches, and only considered significant if the adjusted p < 0.005, rather than the standard p <

0.05. These rigorous statistical conditions were chosen to prevent inclusion of false positives at the expense of enriching for false

negatives. This approach provides confidence that our differential marker expression analysis is reflective of significant biological

differences.

For comparisons of mutation frequencies between sorted B cell populations (Figure 3G) and analysis of B cells positive for T-bet

(Figure S4B), the Wilcoxon rank sum test was performed with Bonferroni correction, and only considered significant if p < 0.005. To

determine the contribution of phenotype and isotype to various processes (Figures 4I and 5J), a multiple linear regression model was

used for each response. Each observation (cell) was labeled with two discrete predictors: phenotype (B cell subset membership

determined by clustering) and isotype (determined by manual gating). These two predictors were used to regress the continuous

expression value of the desired response variable (e.g., CD79b expression). The relative contribution to variance explained by

each predictor was calculated using the ‘‘lmg’’ metric of the relaimpo R package (Grömping, 2015).
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Figure S1: Surface screen gating, summary, and quality control - related to Figure 
1 

A) Representative plots from one donor of the gating strategy for total B cells in the 
surface screen. B) Quantification of the number of surface molecules in the surface 
screen that were associated with specific GO annotations. C) Representative plots of 
surface screen antibody staining concentration titrations of healthy PBMCs, arranged by 

immune population (columns) and staining concentration (rows, µg/mL). Staining 

concentration used in the screen is boxed. All populations are defined as CD45+ lin-. 
Additionally, B cells are CD19+, T cells are CD3+, NK cells are CD56+, and monocytes 
are CD14+. 
  



A

0.0

0.1

0.2

0.3

0.4

0.5

4
CD305

D
en

si
ty

20

Before
normalization

420

After
normalization

Donor
1
2
3

Plasma CD19hi CD11c+ Memory

CD95+ Memory

5%ï
Memory

RB+
CD27+
CD73+
Memory

RB+
CD27+
&'��ï
Memory

RB+
CD27-

Memory

CD73+
Naïve

&'��ï
Naïve

Transitional

Singlet Viable
CD45+ lin- CD19+B

C

0

1

2

3

4

0.60.30.0 0.9

D
en

si
ty

0.60.30.0 0.9

After
normalization

Before
normalization

Surface light chain

Light chain
Kappa

Lambda

D
1 2 3

0

25

50

75

100

Pe
rc

en
t o

f S
ub

se
t

Tr
an

si
tio

na
l

C
D

73
- N

aï
ve

C
D

73
+ 

N
aï

ve

C
D

19
hi
 C

D
11

c+
 M

em
or

y

R
B+

 C
D

27
- M

em
or

y
R

B+
 C

D
27

+ 
C

D
73

- M
em

or
y

R
B+

 C
D

27
+ 

C
D

73
+ 

M
em

or
y

R
B-

 M
em

or
y

C
D

95
+ 

M
em

or
y

Pl
as

m
a

Tr
an

si
tio

na
l

C
D

73
- N

aï
ve

C
D

73
+ 

N
aï

ve

C
D

19
hi
 C

D
11

c+
 M

em
or

y

R
B+

 C
D

27
- M

em
or

y
R

B+
 C

D
27

+ 
C

D
73

- M
em

or
y

R
B+

 C
D

27
+ 

C
D

73
+ 

M
em

or
y

R
B-

 M
em

or
y

C
D

95
+ 

M
em

or
y

Pl
as

m
a

Tr
an

si
tio

na
l

C
D

73
- N

aï
ve

C
D

73
+ 

N
aï

ve

C
D

19
hi
 C

D
11

c+
 M

em
or

y

R
B+

 C
D

27
- M

em
or

y
R

B+
 C

D
27

+ 
C

D
73

- M
em

or
y

R
B+

 C
D

27
+ 

C
D

73
+ 

M
em

or
y

R
B-

 M
em

or
y

C
D

95
+ 

M
em

or
y

Pl
as

m
a

Isotype by surface expression by donor

IgD
IgMD
IgM
IgG
IgA
ND

IgD
IgMD

IgM
IgG
IgA
ND

IgD
IgMD

IgM
IgG
IgA
ND

IgD
IgMD

IgM
IgG
IgA
ND

IgD
IgMD

IgM
IgG
IgA
ND

IgD
IgMD

IgM
IgG
IgA
ND

IgD
IgMD

IgM
IgG
IgA
ND

Cell classification by canonical gating Cell classification by meta-clusteringE

1

2

3

D
onor

0 25 50 75 100
Percent of isotype

0 25 50 75 100
Percent of isotype

Transitional/naïve
Memory/plasma
Ungated

F

1

2

3

0 25 50 75 100
Percent of total B cells

D
on

or

Isotype usage by donor
IgD
IgMD
IgM
IgG
IgA
ND

G Live CD45+



Figure S2: Quality control, data processing, and individual donor contributions to 
phenotypic characterization - related to Figure 4. 

A) Representative density plots of CD305 expression for total B cells of three donors 
(colors) before and after peak normalization. B) Representative plots from a single 
donor of the gating strategy for B cell subsets. C) Representative density plots of light 
chain isotype expression (colors) for total B cells pooled from three donors before and 
after peak normalization. D) IgH isotype usage by subset and donor. ND denotes “not 
determined”; IgMD denotes co-expression of IgM and IgD. E) Subset composition by 
isotype for each donor as determined by canonical gating or meta-clustering F) IgH 
isotype usage by donor. ND denotes “not determined”; IgMD denotes co-expression of 

IgM and IgD. G) Representative contour plot from one donor from the surface screen of 
total CD45+ cells showing low co-occurrence of IgE and CD19. 
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Figure S3: Comprehensive phenotypic profiling of B cell subsets by UMAP - 
related to Figure 4. 

UMAP plot generated from an equal subsampling of 1000 cells from each subset using 
only phenotypic (not isotypic) molecules. UMAP coordinates are identical to Figure 4D. 
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Figure S4: Further phenotypic characterization of CD19hi CD11c+ Memory from a 
public dataset – related to Figure 4: 

A) Biaxial of B cells from a representative healthy donor B) Percent of CD19hi CD11c+ 
Memory cells and other B cells positive for T-bet in healthy donors. Star indicates 
significance (p<0.005, Wilcoxon rank sum test, n=8). C) Biaxial of donor-pooled (n=3) 
CD19hi CD11c+ Memory cells, colored by T-bet positivity, as determined by hierarchical 
clustering of the two axes. D) IgH isotype usage by subset. ND denotes “not 
determined”; IgMD denotes co-expression of IgM and IgD. E) Violin plots of significantly 
differentially-expressed molecules (KS test, p<0.005, Bonferroni correction). Diamond 
denotes median. F) Biaxial of donor-pooled (n=3) CD19hi CD11c+ Memory cells. 
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Figure S5: Biosynthesis correlations, mature isotype signaling responses, and 
individual donor signaling responses – related to Figure 5 
A) Biaxial plots of median expression of clusters (generated using FlowSOM – also 
used for initial over-clustering before subset assignment), colored as either memory 
(blue) or transitional/naïve (grey). Circle size indicates number of cells in cluster. 
Statistics and lines were calculated from simple linear regression models. B) Boxplots of 
the expression of three signaling molecules at three different doses (x-axis) segregated 
by isotype (colors) and by phenotype (columns). Only phenotypes that were > 3% IgG+ 
and > 3% IgA+ were included in visualization C) Quantification of earth mover’s 
distance from baseline samples to stimulated samples (1 μg/mL) for pPLCγ2 and pSyk 

for individual donors. D) Quantification of earth mover’s distance from baseline samples 
to stimulated samples (1 μg/mL) for pp38 for individual donors. 
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Figure S6: individual donor contributions to phenotypic characterization, 
differential expression analysis, tissue-specific subset expression profiles and 

tissue gating scheme – related to Figure 6: 
A) Percent B cells of CD45+ cells for each donor, colored by tissue. B) IgH isotype 
usage by donor and tissue. ND denotes “not determined”; IgMD denotes co-expression 
of IgM and IgD.  C) Subset composition by donor and tissue. D) Pairwise Manhattan 
distance between each donor, ordered by hierarchical clustering. The distance was 
calculated based on the proportion of B cells in each subset for each donor. E) 
Difference in median expression between peripheral blood and indicated tissue for each 
subset and molecule. Only comparisons with at least 150 cells in each tissue/subset 

and an absolute difference > 0.1 and a p-value < 0.005 by KS test after Bonferroni 
correction are plotted – all other comparisons are absent from the heatmap or colored 
white. Rows are ordered by row-mean, resulting in an organization of the heatmap in 
which molecules enriched in peripheral blood appear at the top and those enriched in 
tissue appear at the bottom. F) Median expression for each molecule segregated by 
subset and tissue. Only subsets with at least 150 cells in a given tissue are plotted. Both 
axes are organized by hierarchical clustering. G) Representative plots from a single 
donor of the gating strategy for B cell subsets within tonsil. 
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Figure S7: Comprehensive phenotypic profiling of tissue B cell subsets by UMAP 
- related to Figure 6. 

UMAP plot generated from an equal subsampling of tissues and then from that 
distribution, an equal subsampling of B cell subsets, using only phenotypic (not isotypic) 
molecules. Coordinates are identical to UMAP in Figure 6H. 
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Figure S8: Summary of B cell subsets - related to Figure 4, 5, and 6. 
Summary of features of B cell subsets described in this study. Cells are colored as in 
Figure 4, 5, and 6. Surface Ig illustrations relate the primary IgH isotypes used by each 
subset (see legend, upper left corner). Definition describes the key molecules that are 
uniquely expressed by each subset. Tissue diagram relates for each tissue, the percent 
of total B cells comprised by each subset (see legend, left middle). Putative maturation 
arrow (upper row) shows the proposed maturation ordering that occurs in the periphery. 
Key features (bottom row) describe unique features of each subset. 
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