
SUPPLEMENTARY METHODS 

Experimental model and subject details 

Primary airway smooth muscle cells were obtained through the Gift of Hope (GOH) Organ and 

Tissue Donor Network from human donor lungs that were not suitable for transplantation. ASM 

cells from 75 donors were isolated from trachea and main bronchi using established techniques 

(Panettieri, 2001). Cells were grown to 80% confluency, counted, and split into a minimum of 

two tubes of one million cells each to be used for 1) contractility studies in Boston and 2) 

expression and methylation studies in Chicago. In both locations, frozen vials of cells were 

thawed and cultured in 75 cm2 flasks in DMEM/F-12 media (Invitrogen) supplemented with 

10% FBS, 5% non-essential amino acids (Invitrogen), and 5% antibiotic/antimycotic 

(Invitrogen). After 3 days, cells from each subject were trypsinized, counted, and transferred to 

NuSil-coated 96 well plates, with the locations of each treatment changing from one batch to the 

next to avoid edge or plate effects. Cells were cultured in quadruplicate wells in serum free 

media (F12 supplemented with 1% pen/strep (Sigma), 1% glutamine (Invitrogen), 1% fungizone 

(Invitrogen), 1.2% 1M NaOH, 0.17% CaCl2*2H2O, and 1% insulin-transferrin-selenium (ITS; 

Life Technology/Gibco) for 48 hours, followed by 24-hour exposure to IL-13 (10 ng/mL) 

(Peprotech), IL-17A (3 ng/mL) (Peprotech), both together, or vehicle control (10% FBS in PBS). 

Cytokine concentrations were selected for maximal contractile response based on pilot studies. 

After 24 hours, wells were washed with PBS and lysis buffer was added. Lysates were collected 

and cells from each individual were pooled by treatment, and frozen at -80°C prior to RNA and 

DNA isolation in Chicago. In Boston, the cells were exposed to methacholine (Mch) after the 24-

hour treatment exposures and then contractile responses were measured. Cells were cultured at 



37°C at all times and authenticated by visual inspection. Cells from one donor were lost to 

contamination in Chicago and cells from four donors were lost to contamination in Boston. 

Because materials used in this study were obtained from deceased subjects, The Institutional 

Review Board at the University of Chicago does not consider them human subjects. 

Method Details 

Contractility Studies in Cultured ASMCs  

Rectangular glass slides (55mm x 75mm x 0.1mm) were cleaned with acetone, then with 

isopropanol. A first layer of a silicone-based polymer, NuSil (NuSil Silicone Technologies) with 

an elastic modulus of 12.1kPa and a thickness of approximately 100 µm was uniformly spread 

on top of the beads, covering the slide. The NuSil layer was incubated at 100°C for 1 hour in 

order to cure. A second layer of NuSil also with an elastic modulus of 12.1kPa but with a 

thickness of approximately 1 µm was then spin coated onto the first layer. Pre-mixed into this 

second layer was a 1% volume fraction of ~400 nm size green-fluorescence microspheres. In this 

manner, the final composite (layer 1 + layer 2) yielded a substrate with a surface layer of finely 

dispersed fluorescent microbeads. The composite was then incubated at 100°C for 1 hour in 

order to cure. Separately, 55mm x 75mm x 10mm molds of patterned 96-well plastic were coated 

with the silicone elastomer, Sylgard (Dow Corning) and lightly pressed against NuSil to strongly 

bond to it. Each hole from the patterned slab functioned as an individual well, with the NuSil 

substrate within each well.  

 Fourier transform traction microscopy (FTTM) was performed in each well of the multi-

well plate. An image of surface microspheres (green beads) and of cells were obtained in quick 

succession. Such image pairs were registered at three different time points: before cell plating 

(reference), at the pre-methacholine baseline (baseline), and during methacholine exposure (during 



Mch). By comparing the basal or treated position of surface beads with the corresponding reference 

position, the cell-exerted displacement field at baseline and during Mch exposure were obtained 

(Trepat et al., 2009). From the displacement field and from knowledge of substrate stiffness and 

substrate thickness, the monolayer traction field and the root mean squared (RMS) value of traction 

were computed (Butler et al., 2002, Trepat et al., 2009).  

 

DNA and RNA Isolation 

DNA for methylation studies and RNA for gene expression studies were isolated from cell 

lysates using the QIAgen AllPrep Kit (Qiagen). DNA for genotyping was isolated from untreated 

cells using the QIAamp DNA Blood Mini Kit (Qiagen).  

 

Quantification and Statistical Analysis 

Genotyping and imputation of cell donors 

DNA from 74 cell lines was genotyped using either the Illumina Omni2.5v8v1A or Human Core 

arrays. All individuals had call rates >98%. After extracting the set of overlapping variants, a 

total of 236,843 with call rates >98% remained. Two pairs of subjects were determined to be 

identical to one another, and two failed sex checks. The samples that failed sex checks and one 

of each duplicated pair were dropped from all downstream analyses yielding a final sample size 

of 70 unrelated subjects.  

 Genotypes within each platform were phased separately for European American and 

African American subjects using MACH (Li et al., 2010) and imputed with minimac3(Howie et 

al., 2012) using the 1,000 Genomes phase 3 reference panels. SNPs with an imputation 

efficiency >0.7 within each ethnicity/platform analysis were retained, and biallelic variants with 



a MAF > 10% in both the European American and African American samples were used in 

subsequent studies (n=1,005,490). Ancestry informative markers were used to determine 

ancestral PCs as described (Tandon et al., 2011). 
 

Gene Expression Analysis 

RNA from vehicle and cytokine treated cells was hybridized to the Illumina Human HT-12 v4 

array at The University of Chicago Functional Genomics Facility. All samples had RIN scores 

≥9.7 with the exception of one (<3), which was not sent for processing; the three other conditions 

for that individual were also excluded. The probe level raw intensity values across arrays were 

normalized using quantile normalization and background corrected normalized expression values 

were obtained for each probe using the R package lumi (Du et al., 2008). Probes that were 

indistinguishable from background intensity (P<0.01), contained more than one HapMap single 

nucleotide polymorphism (SNP), or mapped to multiple locations in the genome (Nicodemus-

Johnson et al., 2016) were removed. Median probe intensity was used to represent the 

transcriptional abundance of each gene. Of the 47,231 transcripts on the Illumina Human 

HT12v4 array, 18,279 (39%) were detected as expressed in cultured ASMCs. 

The strongest effects on expression variability were treatment; extraction batch, chip, 

RNA concentration, cell line age (i.e. number of months frozen), smoking history, and plate as 

identified by principal components analysis (PCA) (Leek et al., 2010) analysis of the gene 

expression data. The technical effects of culture and extraction batch, chip and plate were 

removed using ComBat (Johnson et al., 2007), and RNA concentration and cell line age were 

removed using linear regression. Ancestry PC1 and PC2 were included as covariates. History of 

smoking, age and sex were included as covariates in all analyses. The final sample size for gene 



expression analyses was 70. Differential expression analyses between individuals with and 

without asthma were performed in R (Version 1.0.136) using Limma (Phipson et al., 2016, 

Ritchie et al., 2015) using a random effects model where individual IDs were coded as random 

effects.  

 

Methylation Analysis 

DNA from vehicle and cytokine treated cells was assessed for genome-wide methylation patterns 

using the Illumina Infinium Human MethylationEPIC Beadchip at The University of Chicago 

Functional Genomics Facility. Probes located on the sex chromosomes and those with detection 

P values > 0.01 in 75% of samples were removed. Probes mapping to more than one genomic 

location or overlapping with known SNPs (MAF>5% in either African Americans or European 

Americans) were also excluded (McCartney et al., 2016). Data were processed using Minfi 

(Aryee et al., 2014); Infinium type I and type II probe bias were corrected using SWAN 

(Maksimovic et al., 2012). Raw probe values were corrected for color imbalance and background 

by control normalization. 

Data quality was assessed using PCA. One sample was an outlier in PCA analysis (PC3 

and PC4) and was removed. The final sample size for methylation studies was 70. Culture and 

extraction batch, array, and cell passage number were removed using ComBat, and DNA 

concentration and cell line age were removed using linear regression. Sex and age were 

significant variables and were included as covariates in all analyses; imputed smoking was also 

included as a covariate. DNA methylation levels are reported as b values at each CpG site, which 

is the fraction of signal obtained from the methylated beads relative to the sum of methylated and 



unmethylated bead signals. Differential methylation analyses between individuals with and 

without asthma were performed in R using Limma.  

 

Subsampling analysis 

To ensure that the differences in gene expression and DNA methylation responses between 

individuals with and without asthma were not due to differences in sample size, we randomly 

sub-sampled data from the 53 or 54, respectively, individuals without asthma to match the 

number of individuals with asthma for gene expression (N=14) and DNA methylation studies 

(N=16). We then analyzed 100 of these sub-sampled datasets using limma to detect differential 

expression or methylation following exposure to cytokines. 

 

Imputing smoking status 

The clinical variable with the greatest amount of missing data (N=16) was smoking history 

(defined as ‘smoking ever’).  Of the remaining sample, 35 donors were classified as ever-

smokers and 19 as never-smokers. To assess whether genome-wide methylation levels in 

ASMCs could be used to impute smoking status, we removed individuals with missing data and 

performed differential methylation analysis between smokers and non-smokers. We identified 

440 CpGs (FDR=5%) that were differentially methylated between individuals with and without a 

history of smoking. We then performed hierarchical clustering analysis of the samples based on 

those DMCs. This yielded an epigenetic prediction of smoking history with 89% sensitivity and 

95% specificity. We then included the 440 predictive CpG sites from the 16 subjects missing 

smoking status in the hierarchical clustering analysis and assign imputed smoking history to 



these subjects. Imputed smoking status was included as covariates in all downstream analyses of 

gene expression, DNA methylation, and contractility.  

 

Molecular QTL mapping studies 

Expression (e)QTL and methylation (me)QTL mapping were performed using matrix 

eQTL(Shabalin, 2012). Windows of 500 kilobase (kb) from each transcription start site and 5 kb 

from each CpG were used for eQTL and meQTL mapping, respectively. For both studies, age, 

sex, imputed smoking history, and the first two ancestry PCs were used as covariates. To identify 

unique and shared QTLs across exposures, we selected QTLs at an FDR of 20% in each 

exposure as input into mashr (Urbut et al., 2019), using a local false sign rate (lfsr) of 0.05.  

Using mashr, we classified 6,390 eQTLs and 61,207 meQTLs as either shared or unique to the 

IL-13, IL-17A, and IL-13+IL-17A-exposed ASMCs. The vast majority of QTLs were shared 

across treatments, but three eQTLs were unique to IL-17A treated cells, whereas 780, 1,672, and 

234 meQTLs were unique to IL-13, IL-17A or IL-13+IL17A treatments, respectively.  

 

 

Cellular (ce)QTL mapping of contractile response in ASMCs 

A GWAS for contractile response was performed in ASMCs from the 67 donors using GEMMA 

(Zhou and Stephens, 2012), and including sex, age, ancestry PC1 and PC2, and smoking history 

as covariates.  

 

QTL mapping of bronchial responsiveness index (BRI) in the Hutterites 



A GWAS for the quantitative trait bronchial responsiveness index (BRI) was performed in 964 

Hutterite individuals using GEMMA (Zhou and Stephens, 2012). Briefly, BRI was calculated 

from methacholine challenge studies (described in Motika et al. (Motika et al., 2011)) using the 

formula described in Burrows et al. (Burrows et al., 1992). QTL mapping was performed using a 

pedigree-based imputation program and variants from Hutterite whole genome sequences (Livne 

et al., 2015). Because variants were imputed based on pedigree information, missing genotype 

data reflect the absence of pedigree information and not quality of the genotypes. Therefore, we 

included SNPs with call rates ≥ 85% and MAF ≥ 0.05, similar to our previous studies in this 

population (Igartua et al., 2017, Mozaffari et al., 2018, Mozaffari et al., 2019). This yielded 

5,358,732 variants for the BRI GWAS. Associations between genotype and inverse transformed 

phenotype were tested, including age and height as covariates; kinship coefficients between all 

pairs of individuals were included as a random effect to correct for relatedness between subjects.  

 

Enrichment analysis of QTLs in asthma GWASs 

P-values for each SNP were extracted from the largest GWAS to date for childhood-onset (<12 

years; n=9,433 cases and 318,237 controls) and adult-onset (26-75 years; n=21,564 cases and 

318,237 controls) asthma, which were conducted in the UK Biobank (Pividori et al., 2018). 

GARFIELD (Iotchkova et al., 2019), an approach for functional enrichment analysis that 

corrects for linkage disequilibrium among SNPs, was used to assess enrichment of asthma 

GWAS SNPs with P-values <0.01 among all QTLs (eQTLs, meQTLs, coQTLs) and BRI GWAS 

SNPs.  meQTLs (52%), coQTLs (16%) and BRI-associated SNPs (30%) contributed to the 

observed enrichment among childhood-onset associated SNPs, while only one eQTL was among 

them. Only the strongest QTL signal is considered by GARFIELD and in many cases there were 



multiple QTLs contributing to a locus. For example, an meQTL provided the strongest signal 

near ankyrin repeat and SOCS box containing 3 (ASB3), a gene that was recently reported to be 

associated with bronchodilator response during childhood and adolescence (Israel et al., 2015), 

but four other variants in linkage disequilibrium with the lead SNP also contributed to the signal, 

and all four of those SNPs are both meQTLs and coQTLs. 

 

Pathway analysis and enrichment testing 

Protein-protein interaction network analyses were conducted using the Ingenuity Knowledge 

Base as implemented in Ingenuity Pathway Analysis (IPA; QIAGEN, 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/). Network 

interactions were limited to those known to occur in primary cells or tissues; all other settings 

were left as the defaults. The score of each network is based on the network hypergeometric 

distribution and is calculated with the right-tailed Fisher’s Exact Test to identify over-

representation of genes in the input gene list relative to all genes present on the Illumina HT12 

v4 array.  

 Enrichment testing was performed using Advaita Bio’s iPathwayGuide 

(https://www.advaitabio.com/ipathwayguide). This software analysis tool implements the 

‘Impact Analysis’ approach that takes into consideration the direction and type of all signals on a 

pathway, the position, role and type of every gene, etc., as described in (Ashan and Draghici, 

2017; Donato et al., 2013; Draghici et al., 2007; Tarca et al., 2009). A list of genes detected as 

expressed in ASMCs (N=18,279) was used as the reference gene panel for all analyses. 
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