Supplementary information

Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte

Liu et al.

Supplementary Table 1. Structure parameters of $\text{Li}_{1.2}\text{Ni}_{0.15}\text{Fe}_{0.1}\text{Mn}_{0.55}\text{O}_2$, space group: $R\overline{3}m$

	Lattic	_					
Sample	a (Å)	c (Å)	c/a	$v (\mathring{A}^3)$	I_{003}/I_{104}	Rp(%)	Rwp (%)
$\text{Li}_{1.2}\text{Ni}_{0.15}\text{Fe}_{0.1}\text{Mn}_{0.55}\text{O}_2$	2.8676	14.2760	4.9784	101.6654	1.45	7.61	8.73

${\bf Supplementary\ Table\ 2.\ Chemical\ compositions\ acquired\ from\ ICP-OES\ analysis}$

Sample	Theoretical molar content	of Experimental molar content
	Li:Ni:Fe:Mn	of Li:Ni:Fe:Mn
$Li_{1.2}Ni_{0.15}Fe_{0.1}Mn_{0.55}O_2$	1.20:0.15:0.10:0.55	1.199:0.159:0.100:0.542

Supplementary Table 3. Physicochemical Properties of electrolytes at $25^{\circ}\mathrm{C}$

Concentration (mol·dm ⁻³)	Density (g·cm ⁻³)	Viscosity (mPa·s)	Conductivity (mS·cm ⁻¹)
1	1.188	3.187	10.48
3	1.327	19.809	5.30
4	1.432	54.434	2.71
5	1.509	99.471	1.57

Supplementary Fig. 1. SEM image of pristine sample.

Supplementary Fig. 2. The corresponding zoom of Fig. 3b.

Supplementary Fig.3. The **SEM-EDS spectra of 100 cycled lithium counter electrode.** The SEM-EDS spectra of Lithium counter electrode cycled 100 cycles in 1 M electrolyte (a), and 3 M electrolyte (b), respectively.

Supplementary Fig.4. Specific discharge capacity in various electrolytes at various C-rates

Supplementary Fig. 5. The amount of deposited transition metals on lithium metal. The amount of transition metals deposited on lithium metal counter electrode after 25 cycles at $0.1~\rm C$ (a) and 500 cycles at $5~\rm C$ (b), respectively.

Supplementary Fig. 6. The electrochemical performance of LNFMO at 1 C. (a) The cycle performance at 1C in 1M and 3M electrolyte at 25 °C. (b) The corresponding average discharge potential at 1C in 1M and 3M electrolyte at 25 °C.

Supplementary Fig. 7. The dependence of EIS spectra of electrode with cycle number. The dependence of EIS spectra of LNFMO electrode discharged to the 50% state of charge at 1 M electrolyte (a) and 3 M electrolyte (b) with cycle number.

Supplementary Fig. 8. The Raman spectra of pristine LLNFMO and the electrodes after 200 cycles at 1C in 1 M and 3 M electrolyte.

Supplementary Fig.9. The 2 C rate cycle performance in 1 M and 3 M electrolytes at elevated temperature (40 $\,^{\circ}$ C).

Supplementary Fig.10. The SEM images of electrode. The SEM images of the pristine electrode The SEM images of the at 0.1C in 1 M (a) and 3 M electrolytes (b); the SEM images of the 100 cycled electrode at 0.1 C in 1 M (c,e) and 3 M (d,f) electrolyte.

Supplementary Fig.11. EDS mapping of F、P for the pristine and 100 cycled at 0.1C.(a, b) The pristine of LLNFMO Shelved for 24 hours in 1 Melectrolyte; (c, d) LLNFMO after 100 cycles in 1 M electrolyte at 0.1C; (e, f) the pristine of LLNFMO shelved for 24 hours in 3 M electrolyte; (g, h) LLNFMO after 100 cycles in 3 M electrolyte at 0.1C.

Supplementary Fig. 12. The atomic ratio of F and P on electrode surface. The atomic ratio of F and P on the surface of pristine (shelved for 24 hours in coin cell) and 100 cycled at 0.1C in 1 M and 3 M electrolytes.

Supplementary Fig. 13. The element atomic ratio of cycled electrode. The atomic ratio of C, O, F, and P on the surface of electrode cycled in 1 M and 3 M electrolyte at 0.1C for 100 cycles obtained by XPS spectra.

Supplementary Fig. 14. **DSC profile of electrode.** The DSC profile of LNFMO electrode after the first charging to 4.8V in 1 M and 3 M electrolyte.

Supplementary Fig. 15. **TOF-SIMS chemical maps of several typical second ion fragments.** TOF-SIMS chemical maps of several typical second ion fragments with 25s of sputtering on electrodes cycled in 1 M electrolyte (a) and 3 M electrolyte (b), respectively.

Supplementary Fig. 16. Corresponding depth profiling of second ion fragments on electrodes. The corresponding depth profiling of CH_3O^- (a) , C_2HO^- (b), LiF_2^- (c), FeF_3^- (d), MnF_2^- (e), and NiO^- (f) second ion fragments with 150s of sputtering on electrodes cycled in 1 M and 3 M electrolyte, respectively.

Supplementary Fig. 17. Depth profiling of second ion fragments of interest on electrodes. The depth profiling of C_2HO^- (a), C_2F^- (b), $C_3O_2F^-$ (c), FeF_2^- (d), and NiF_3^- (e) second ion fragments with 150s of sputtering on electrodes cycled in 1 M and 3 M electrolyte, respectively.