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SUPPLEMENTARY METHODS 

Cell lines 

Cell lines used in this study are part of the NCI601 and CRC652 cell line panels, as well as HeLa3 and Jurkat 

cells4. Detailed information on these cell lines can be obtained from the cited publications, as well as from 

Supplementary Table 1. Cell lines were not authenticated for this study. 

Breast cancer patients 

The breast cancer cohort included 361 patients who received surgery between 2004 and 2012 at the 

Department of Gynecology of the Klinikum rechts der Isar. Informed consent was obtained from all patients 

with respect to scientific analyses of their data and scientific analyses of biomaterial obtained for diagnostic 

purposes. The mean patient age was 61 years. 316 cases were hormone receptor positive of which all were 

expressing the estrogen receptor (ER+) and 277 were additionally positive for the progesterone receptor 

(PGR+). 28 of the hormone receptor positive tumors also expressed HER2 (either 3+ by 

immunohistochemistry or 2+ and FISH positive; HER2+). 11 of the hormone receptor negative cases were 

HER2 positive and another 34 were triple-negative. For pPGR data was available for 265 out of 277 PGR 

positive cases. 182 cases were classified as pT1, 151 cases were pT2, 13 cases were pT3 and 15 cases were 

categorized as being pT4. 224 cases were node negative and 137 cases were node positive. 44 cases were 

graded as G1, 172 cases were G3 and 145 cases were G3, respectively. 41 patients died during follow-up. 

Mean follow-up time for patients still alive at the endpoint of analysis was 55.5 months. All patients 

received standard adjuvant therapy after resection according to the current treatment guidelines depending 

on the tumor’s stage and biology (chemotherapy), hormone receptor and HER2 status (targeted therapy). 

Briefly, ER+ and ER+/PGR+ patients received endocrine therapy (Tamoxifen or an aromatase inhibitor) 



+/- chemotherapy, while HER2+ patients received Trastuzumab + chemotherapy + endocrine therapy if 

they were ER+ or ER+/PGR+. Triple-negative patients received chemotherapy. 

AML Patients 

Patients were admitted to the University Hospital Frankfurt between 2010 and 2014 and treated for newly 

diagnosed AML with regimens containing standard dose Cytarabine and Daunorubicin (“7+3”). Patients at 

the University Hospital Frankfurt are routinely advised to undergo a bone marrow biopsy at diagnosis. All 

patients consented to the scientific analyses of their data and to scientific analyses of biomaterial that was 

obtained for diagnostic purposes. All patients received at least one course of Cytarabine at a dose of 100 

mg/m2 over 7 days and Daunorubicin at a dose of 60 mg/m2 over 3 days (“7+3”) (if not stated otherwise). 

All patients under the age of 60 received a second cycle of induction therapy. Patients over the age of 60 

received a second induction cycle only if their day-15 bone marrow aspirate showed more than 5% blasts. 

For the analyses, patient records were reviewed by physicians who were unaware of the AK1 expression 

results in the diagnostic biopsies. Remission criteria and cytogenetic risk groups were assessed according 

to the ELN guidelines. The initial response to induction therapy was analyzed in bone marrow biopsies and 

aspirates and defined as complete (CR) if the blast count was <5%, and as “no CR” if the blast count 

was >5%. For the calculation of event-free survival (EFS), events were defined as failure to achieve 

complete remission (CR, CRi, CRp) within 40 days after the last induction cycle, relapse or death at any 

time after start of therapy. 

Cell culture 

In line with the standard protocol for the in vitro cancer screen of the Developmental Therapeutics Program 

(DTP) of the National Cancer Institute, NCI60 cell lines were cultured in Roswell Park Memorial Institute 

(RPMI) 1640 medium containing stable glutamine and 5% fetal bovine serum (FBS; Biochrom) at 37°C 

and 5% CO2. CRC65 cell lines were grown in high glucose Dulbecco's modified Eagle medium (DMEM, 



including GlutaMAX and pyruvate; PAA) containing 1% Pen‐Strep (penicillin at 100 units/mL and 

streptomycin at 100 μg/mL final concentration; PAA) and 10% FBS at 37°C and 10% CO2. HeLa and Jurkat 

cell lines were cultured in Iscove's Modified Dulbecco's Medium (IMDM; #FG0465, Biochrom) including 

stable glutamine and 10% FBS (#S0615, Biochrom) at 37°C and 5% CO2. 

Cell lysis 

Adherent cells were harvested at ~80–90% confluence. Suspension cells were harvested by centrifugation 

in 250‐mL centrifuge tubes at 300 ×g and 4°C for 5 min. After two washes with PBS (without Mg2+ and 

Ca2+), lysis buffer is added to each T175 cell culture flask (adherent cells) or cell pellet (suspension cells). 

NCI60 cells were lysed in 8 M urea, 40 mM Tris-HCl pH = 7.6 containing protease (Complete™ mini with 

EDTA; Roche) and phosphatase inhibitors (Phosphatase Inhibitor cocktail 1 and 2; Sigma Aldrich) at 1× 

and 5× of the final concentration recommended by the manufacturer. For CRC65 cells, we used RIPA100 

buffer (20 mM Tris–HCl pH 7.5, 1 mM EDTA, 100 mM NaCl, 1% Triton X‐100, 0.5% sodium 

deoxycholate and 0.1% SDS) containing protease (Complete™ mini with EDTA; Roche) and phosphatase 

inhibitors (Phosphatase Inhibitor cocktail 1 and 2; Sigma Aldrich) at 2× and 5× the final concentration 

recommended by the manufacturer. After incubating the cells for 15 min/30 min (NCI60/CRC65) on ice, 

total cell lysates were cleared by centrifugation at 22,000 ×g for 60 min/30 min (NCI60/CRC65) at 4°C. 

The pellet was discarded and the protein concentration of the supernatant was determined using a Bradford 

assay (Pierce). 

Acetone precipitation and re-solubilization 

Total cell lysates of the CRC65 cell line panel were acetone-precipitated and re-suspended in urea buffer 

(40 mM Tris/HCl pH = 7.6, 8 M urea) containing protease (Complete mini without EDTA; Roche) and 

phosphatase inhibitors (Phosphatase Inhibitor cocktail 1 and 2; Sigma Aldrich) at 1× and 5× the final 



concentration recommended by the manufacturer, respectively, as well as 20 nM calyculin A as described 

previously2.  

Enzymatic Digestion 

For in‐solution digestion, we used 2 mg/3.5 mg of protein per cell line of the NCI60/CRC65 cell line panel, 

respectively. To reduce disulfide bonds, DTT was added to a final concentration of 10 mM followed by 

incubation for 40 min at room temperature on a thermoshaker at 700 rpm. Alkylation of cysteine residues 

was achieved by addition of chloroacetamide to a final concentration of 55 mM and incubation for 20 min 

at room temperature in the dark. Samples were diluted to a final concentration of 1.5 M urea by addition of 

40 mM Tris–HCl pH 7.6. 1 mM CaCl2 was added to each sample to improve trypsin digestion. 

Subsequently, proteins were digested overnight at 37°C and 700 rpm in a thermomixer using sequencing 

grade trypsin (Promega for NCI60; Roche for CRC65) or Glu-C (Promega) at a protease‐to‐protein ratio of 

1:50 (w/w). A second batch of trypsin was added to trypsin digests of the NCI60 panel at 1:50 protease-to-

protein ratio (w/w) after 4 h and digestion was continued overnight. 

The next day, the peptide digest was acidified using TFA to reach a final pH of 2-3. After centrifugation 

for 5 min at 5,000 ×g, desalting of the peptide mixture supernatant was achieved using Sep‐Pak cartridges 

(50 mg sorbent per cartridge; Waters) and a vacuum manifold according to the manufacturer's instructions. 

The SepPak eluate was adjusted to an ACN concentration of 30% and directly used for phosphopeptide 

enrichment. 

Phosphopeptide enrichment using Fe-IMAC 

Phosphopeptide enrichment was essentially performed as previously described using 2 mg and 3 mg of 

protein digest for the NCI605 and CRC656 panel, respectively. Briefly, we used a Fe-IMAC column (ProPac 

IMAC-10 column, 4 × 50 mm, Thermo Fisher Scientific) connected to an Aekta HPLC system, which was 

initially charged with FeCl3 and equilibrated with IMAC solvent A (30% ACN, 0.07% TFA). Afterwards, 



Sep-Pak-eluted peptides adjusted to a final concentration of 30% ACN were loaded onto the column. 

Subsequently, peptides were eluted in a step-wise gradient from 0% to 11.5% solvent B (0.3% NH4OH) in 

5 min and 11.5% to 26% solvent B in 19 min. A UV chromatogram at 214 nm and 280 nm was recorded 

for each enrichment run. Both the flow-through and the phosphopeptide elution fraction were collected, 

dried down and stored at -80°C. 

High pH reversed-phase fractionation 

High-pH reversed-phase (RP) tip fractionation of full proteome (NCI60) and phosphoproteome digests 

(NCI60 & CRC65) was essentially performed as previously described7. We used 50 μg dried full proteome 

digest and the entire phosphorylated fraction of peptides for the NCI60 panel (2 mg starting material) or 

one third of it for the CRC65 panel (3 mg starting material). Briefly, 200 μL pipette tips were packed with 

five C-18 extraction disks (Ø 1.5 mm, 3M Empore) and fixed in 1.5 mL microcentrifuge tubes. All solvents 

were passed through the tip by centrifugation (800 ×g, room temperature). First, tips were primed using 

250 μL of 100% ACN, followed by 250 μL of 50% ACN in 25 mM NH4COOH, pH 10 and 2 × 250 μL of 

25 mM NH4COOH, pH 10. Next, dried phosphopeptides or full proteome digest were re-solubilized in 

250 μL of 25 mM NH4COOH, pH 10 and loaded onto the C18 material. After re-application of the flow 

through, phosphopeptides were eluted using increasing concentrations of ACN (2.5% / 7.5% / 12. 5% / 

50% ACN in 25 mM NH4COOH). The previously stored flow through, which was desalted according to 

Rappsilber et al.8, was combined with the 50% ACN eluate, resulting in four fractions. Non-phosphorylated 

peptides were eluted using 5%, 10%, 15%, 20% and 50% ACN. Flow through and 20%, as well as 5% and 

50% fractions of each high pH-RP fraction were injected per full proteome/phosphoproteome sample (to 

avoid potential iron contamination, 50 mM citrate was added to the reconstitution solvent used for the 

phosphopeptide fraction). 



Quality control of the enrichment workflow 

As a means of quality control, a library of 60 phosphopeptides and their corresponding non-phosphorylated 

counterpart sequences (for a total of 120 peptides) were spiked into each batch of cell line lysate from the 

NCI60 panel prior to enzymatic digestion. To reach sufficient quantities for all 120 batches (NCI60 trypsin 

and Glu-C digests), we combined sixteen individual wells B2 of the phosphopeptide library synthesized by 

Marx et al.9. After desalting the pooled peptides using STAGETips8, the dried down eluates were 

reconstituted in 800 μL of 0.1% FA. We added 5 μL reconstituted spike-in peptides to each batch of cell 

line lysate. In addition to the synthetic phosphopeptides, we controlled our phosphopeptide enrichment 

workflow with HeLa cells, which were processed in the same way as the cell lines from the NCI60 and 

CRC65 cell line panels. They were included in the MaxQuant searches of our phosphoproteome data. We 

also measured the phosphoproteome of HeLa cells without high pH RP fractionation and compared the 

quantification of (spike-in) p-sites between the two workflows in order to make sure that high pH RP 

fractionation does not negatively affect our results (see Supplementary Figure 1C-D). 

LC-MS/MS data acquisition 

Peptides were delivered to a trap column (75 μm × 2 cm, packed in-house with 5 μm C-18 resin; Reprosil 

PUR AQ, Dr. Maisch) and washed using 0.1% formic acid at a flow rate of 5 μL/min for 10 min. 

Subsequently, peptides were transferred to an analytical column (75 μm × 45 cm, packed in-house with 3 

μm C-18 resin; Reprosil Gold, Dr. Maisch) and separated using a linear or stepwise gradient from LC 

solvent A (0.1% FA in 5% DMSO10) to LC solvent B (0.1% FA, 5% DMSO in ACN) at a flow rate of 

300 nL/min. The exact gradient composition was dependent on the sample type: trypsin/Glu-C full 

proteome digest fractions were separated in a linear gradient from 0% solvent B to 34% solvent B in 111 

min. Phosphopeptide fractions were separated in a step-wise gradient from 0% solvent B to 15% solvent B 

in 69 min followed by an increase to 27% solvent B in 30 min.  



 

The mass spectrometer was operated in positive ionization mode using data dependent acquisition, 

automatically switching between MS1 and MS2 spectra. Full scan MS1 spectra were recorded from 360 m/z 

to 1300 m/z at a resolution of 60,000 (at 200 m/z) using an AGC target value of 3e6 charges and a maximum 

injection time of 10 ms. Up to 20 (12 for phosphopeptide samples) sequentially selected precursors 

(isolation window 1.7 m/z) were fragmented via HCD using a normalized collision energy of 25%. For full 

proteome digests, MS2 spectra were recorded at a resolution of 15,000 using an AGC target value of 1e5 

(2e5 for Glu-C digests) and a maximum injection time of 25 ms (50 ms for Glu-C digests). MS2 spectra for 

phosphoproteome digests were recorded at a resolution of 30,000 with an AGC of 2e5 charges at a 

maximum injection time of 120 msec. All measurements had a fixed first mass set to 100 m/z and a dynamic 

exclusion of 30 sec. 

Cell viability assays 

In order to test our sensitivity predictions for 5FU and our activity-driven hypothesis that inhibitors 

targeting MET and MST1R can act synergistically in cell lines with high phosphorylation of these receptor 

tyrosine kinases, we performed in-vitro cell viability assays. These assays were performed as described 

previously2, with minor modifications. Briefly, we generated 10-point dose-response curves in technical 

and biological triplicates for single-compound and combination treatments (constant mixing ratios) in a 96-

well format. For 5FU (#1209, Selleckchem), we selected two cell lines predicted to be sensitive 

(RPMI8226, HCC2998) and two cell lines predicted to be resistant to the drug (CCRFCEM, KM12), 

making sure to include representatives in both categories for AML and CRC, respectively. For single-

compound and combination treatments with drugs targeting MET and MST1R, we selected Tepotinib 

(#7067, Selleckchem; MET inhibitor) and MK-2461 (#D2650, Sigma Aldrich; MST1R inhibitor) based on 

a recent large-scale study investigating the target landscape of kinase inhibitors11 and decided to treat HDC-

8 cells based on their high phosphorylation of these receptor tyrosine kinases. On day zero, 5x104 cells were 



seeded in 100 μL IMDM (#FG0465, Biochrom; RPMI8226, HCC2998, CCRFCEM and KM12) or DMEM 

(#FG0445, Biochrom; HDC-8) including stable glutamine and 10% FBS (#S0615, Biochrom). After 

incubating the cells overnight under standard cell culture conditions (37°C and 5% CO2), 50 μL of fresh 

medium containing either the respective drug or an equivalent amount of DMSO (#D2650, Sigma Aldrich) 

were added, resulting in one of ten different final drug concentrations (5FU: 30 μM, 10 μM, 3 μM, 1 μM, 

0.3 μM, 0.1 μM, 0.03 μM, 0.01 μM, 0.003 μM, 0 μM; Tepotinib: 1 μM, 0.3 μM, 0.1 μM, 

0.03 μM, 0.01 μM, 0.003 μM, 0.001 μM, 0.0003 μM, 0.0001 μM, 0 μM; MK-2461: 100 μM, 30 μM, 

10 μM, 3 μM, 1 μM, 0.3 μM, 0.1 μM, 0.03 μM, 0.01 μM, 0 μM). For combination treatments with 

Tepotinib and MK-2461, the drugs were combined at constant ratios over the entire concentration range 

used for single agent treatments (1:100 Tepotinib:MK-2461). Following 96h of incubation under standard 

cell culture conditions, 15 μL AlamarBlue (#DAL1100, Thermo Fisher Scientific) were added and after 

additional 3h of incubation at 37°C and 5% CO2 AlamarBlue fluorescence was quantified using a FLUOstar 

Omega plate reader (BMG Labtech). 

Immunostaining of breast cancer samples 

Immunohistochemical (IHC) staining of TMAs for PGR was part of routine diagnostic pathology. In 

addition, we performed triplicate staining of TMAs for PGR_pS162 for each patient. 

Immunohistochemistry was carried out on a BenchMark XT automated slide staining instrument (Ventana, 

Tucson, AZ) using a PGR (#PI633C01, clone 16, DCS) and a PGR_pS162 antibody (#GTX80351-50, Lot 

Nr. 821604961, Biozol) together with the ultraVIEW DAB Detection Kit (#760-500; all reagents from 

Ventana, Tucson, AZ). Briefly, the tissue sections were deparaffinized with EZ Prep at 75°C and 76°C, 

heat pretreated in Cell Conditioning 1 (CC1) for antigen retrieval at 76°C – 100°C and then incubated with 

the primary antibody diluted in antibody diluent at 1:50 (PGR) or 1:100 (PGR_pS162) for 32 min at 37°C 

after inactivation of the endogenous peroxidase activity using UV-inhibitor for 4 min at 37°C. 

Subsequently, the slides were incubated with an HRP Universal Multimer for 8 min. Antibody binding was 



detected using DAB as chromogen, followed by counterstaining with hematoxylin for 10 min with 

subsequent bluing in bluing reagent for 10 min. Slides were then dehydrated manually by alcohol washes 

of increasing concentration (70%, 96%, 100%) and xylene and finally coverslipped using Pertex® 

mounting medium (#00801, Histolab, Goteborg, Sweden). A board-certified pathologist with a special 

expertise in breast pathology (ED) evaluated the slides. Based on the PGR classification rules used in 

routine diagnostic pathology, a case was deemed PGR positive if any nuclear staining was seen, regardless 

of the strength of staining and the percentage of cells stained. For PGR_pS162, we scored both intensity of 

staining (none=0, weak=1, moderate=2, strong=3) as well as percentage of positive cells (from 0-100%). 

From both parameters, we calculated modified H-scores (0-300)12 for each patient by combining the IHC 

triplicates in the following way: 

ℎ =
1

3
(𝑠1 ∙ 𝑝1 + 𝑠2 ∙ 𝑝2 + 𝑠3 ∙ 𝑝3) (1) 

Here, 𝑠𝑖 is the staining intensity of replicate 𝑖 and 𝑝𝑖 is the percentage of stained cells of replicate 𝑖. We 

defined PGR_pS162 H-scores < 110 as pPGR=low and PGR_pS162 H-scores >= 110 as pPGR=high. 

Immunostaining of bone marrow samples 

Bone marrow samples from 79 AML patients were provided by the University Hospital Frankfurt, 

Germany. Tissues were fixed in 4% buffered formalin, decalcified in EDTA and embedded in paraffin. 

Immunohistochemical staining was performed as previously described13. Briefly, standardized pretreatment 

steps included deparaffinization, rehydration, and unmasking Trilogy (Cell Marque, USA) for 12 min. 

Subsequent staining included primary antibodies directed against adenylate kinase 1 (Anti-AK1, 

#OAAB17548, Aviva Systems Biology, USA) with a dilution of 1:50 and incubation time of 45 min. AK1 

KO cells were used as a negative control. Visualization was performed after applying a polymer kit 

(ZytoChem Fast AP, Zytomed Systems, Germany) with a Fast Red Substrate Kit (Zytomed System, 

Germany) and counterstaining with Meyer's hematoxylin (#K8008, DAKO). 



Two pathologists, who were blinded to clinical history and therapeutic response, independently scored the 

AK1 IHCs. They evaluated all tissue sections for positive staining using a four-stage staining score: 0 = 

negative; 1 = weak intensity in < 25% of blasts; 2 = weak intensity in ≥ 25% of blasts; 3 = strong intensity 

in ≥ 25% of blasts. IHC staining scores of 0 and 1 were defined as no or low expression and IHC staining 

scores of 2 and 3 were defined as high AK1 expression. 

In-vitro dephosphorylation of antimetabolites 

Antimetabolite dephosphorylation assays were performed as described earlier14, with minor modifications. 

Briefly, we prepared reaction mixtures (15 μL) using a Tris-based buffer (50 mM Tris-HCl pH 7.5, 10 mM 

MgCl2, 100 mM NaCl, 1 mM DTT), which contained 1 mM AMP (#01930, Sigma Aldrich) as phospho-

acceptor and either 1 mM ATP (#A6419, Sigma Aldrich; positive control) or 1 mM of the tri-

phosphorylated version of Cytarabine (ara-CTP; #NU-1170S, Jena Bioscience), Nelarabine (ara-GTP; #N-

1100, Trilink Biotechnologies), Zalcitabine (ddCTP; #N-4005, Trilink Biotechnologies) or Gemcitabine 

(dfCTP; #NU-1607S, Jena Bioscience) as phospho-donor. Reactions were started upon the addition of 

100 μg recombinant AK1 (#ab167983, Abcam) or an equivalent volume of buffer (mock) to the mixture. 

We incubated the reactions at 37°C and stopped them after 30 min by adding 15 μL pure ACN to the 

mixture in order to precipitate the recombinant protein. Afterwards, the samples were centrifuged for 

20 min at 4°C and 20,000 ×g and the supernatants were stored on ice until they were measured by LC-

MS/MS. 

MRM of ATP and antimetabolites 

AK1 reaction mixtures were subjected to LC-MS/MS analysis using a Prominence HPLC system 

(Shimadzu, Germany) and a 4000 QTRAP (Applied Biosystems, Forster City, USA). The separation was 

performed using a 150 x 2.1 mm inner diameter, 3.5 μm xBridge Amide HILIC column (Waters, Eschborn, 

Germany) with a flowrate of 400 μL/min. We used a linear gradient from 10% A (A: 5 mM ammonium 



acetate, pH 9.5, B: acetonitrile/water with 5 mM ammonium acetate in a 95/5 v/v mixture, pH 9.5) for 1 min 

to 100% A in 10 min, which was maintained for 5 min. Afterwards, the column was equilibrated to starting 

conditions. Ions were analyzed by MS in negative mode using a Turbo V Ion Source (Applied Biosystems). 

The ion spray voltage was set to -4500 V at a source temperature of 450°C using nitrogen as collision gas. 

The parameters for collision-activated dissociation (CAD) were: medium; curtain gas: 35 psi; ion source 

gas 1: 55 psi; ion source gas 2: 65 psi. Multiple reaction monitoring (MRM) conditions for ATP and 

(phosphorylated) antimetabolites are listed in Supplementary Table 11. 

Overexpression of AK1 in Jurkat cells 

In order to test our hypothesis that AK1 can dephosphorylate and thereby inactivate Cytarabine, we 

overexpressed AK1 in Cytarabine-sensitive Jurkat cells (as evaluated using ProteomicsDB15) and quantified 

the fraction of apoptotic cells over time using live-cell imaging in a 96-well format. We performed the assay 

in technical triplicates and repeated it thrice (biological triplicates). On day zero, we coated the 96-well 

plate with 50 μL Poly-L-Lysine (#L7240, Biochrom) for 45 min to ensure adherence of Jurkat cells. After 

washing the wells twice with 100 μL PBS (#D8662, Sigma Aldrich), 2x105 cells were seeded in 50 μL 

IMDM with stable glutamine and 10% FBS, followed by the addition of 50 μL Interferin-based (#409-10, 

Polyplus) transfection mix in OptiMem (#31985-062, Life Technologies) with or without AK1 expression 

vector (#RC515130, Origene) at a final concentration of 1 nM (prepared according to the manufacturer’s 

instructions). From then on, plates were incubated at 37°C and 5% CO2 in an IncuCyte S3 live-cell analysis 

system (IncuCyte), which monitored their confluence in the phase-contrast and apoptosis in the red channel 

every 2 h (excitation at 630 nm and emission at 650 nm; apoptosis reagent only added later). After 72 h of 

incubation, 50 μL IMDM containing stable glutamine and 10% FBS, as well as Caspase-3/7 reagent at a 

final concentration of 160 nM (#4704, IncuCyte) and Cytarabine (#S1648, Selleckchem) at one of four 

different final concentrations (1 μM, 0.3 μM, 0.1 μM, 0.03 μM) was added and the cells were incubated for 

additional 48 h at 37°C and 5% CO2. AK1 overexpression was verified five days post transfection by 



western blot using an anti-AK1 antibody (#OAAB17548, Aviva Systems Biology, USA) together with an 

anti-GAPDH antibody (#sc-365062, Santa Cruz Biotechnology, USA) to control for equal loading and 

employing standard protocols. 

Raw data processing 

Peptide and protein identification and quantification was performed using MaxQuant (version 1.5.5.1)16 by 

searching the MS2 data against all canonical protein sequences as annotated in the UniProt reference 

database (42,118 entries containing canonical human protein sequences/isoforms and spike-in 

phosphopeptide library sequences9; downloaded on 14th of November 2016) using the embedded search 

engine Andromeda16. Carbamidomethylated cysteine was set as a fixed modification and phosphorylation 

of serine, threonine, and tyrosine, oxidation of methionine, and N-terminal protein acetylation were allowed 

as variable modifications. Depending on the dataset, Trypsin/P or Glu-C was specified as the proteolytic 

enzyme and up to two missed cleavages were allowed. Precursor and fragment ion tolerances were 10 ppm 

and 20 ppm, respectively. We enabled iBAQ quantification only for full proteome data and used match-

between-runs for all analyses. The alignment time window was set to 20 min with a matching time window 

of 1 min. Search results were filtered for 1% PSM, peptide and protein FDR and a minimum peptide length 

of seven amino acids. We additionally excluded all modified peptides with Andromeda scores lower than 

40. Phosphorylation sites (p-sites) with a localization probability > 0.75 were treated as class I sites 

(Supplementary Figure 1E). Raw files of CRC65 full proteomes, acquired by Frejno et al.2 were 

downloaded and reprocessed using the exact same parameters as mentioned above. 

Data post-processing and filtering 

If not stated otherwise, we used the proteinGroups.txt and Phospho (STY)Sites.txt tables of the MaxQuant 

output for all our full proteome and phosphoproteome analyses, respectively. The abundance of proteins 

and p-sites was estimated using intensity-based absolute quantification (iBAQ)17 and MS1 precursor 



intensities (denoted as AU throughout this study). Reverse sequences in both datasets were excluded, 

followed by median-centering of all samples to the overall median of the respective dataset. Missing values 

in full proteome and phosphoproteome data were imputed using the protein-wise half-lowest method 

(analogous to the LOD2 method18) based on the rationale that the missing values in mass spectrometry 

experiments tend to accumulate at the lower end of the overall intensity distribution. Subsequently, the data 

were log10 transformed. If not stated otherwise, all comparisons throughout this manuscript are relative. If 

we state that a protein/phosphoprotein/p-site is high in a certain cell line, then it means that it’s abundance 

is higher compared to other cell lines without specifying any further metric or scale.  

 

In addition to our p-site data, we also rolled-up MS1-based phosphopeptide intensities to form 

phosphoprotein intensities analogous to what is commonly done for peptides to calculate protein intensities 

and acknowledging the limitations of this approach. Here, it is worth keeping in mind that the 

phosphorylation of different sites on the same protein is regulated by different kinases and phosphatases 

and can result in different effects on cellular signaling (e.g. activating versus inactivating p-sites). To do 

so, we used MaxQuant’s relational database output and mapped each phosphopeptide and its intensity in 

the evidence.txt output file to the protein group from the proteinGroups.txt output file to the quantification 

of which the respective phosphopeptide intensity would contribute. Afterwards, we summed up all 

phosphopeptide intensities for each cell line and protein group to yield phosphoprotein intensities. We 

restricted our analysis to the phosphoprotein group with the highest mean intensity per gene name. 

Phosphoprotein intensities were used for outlier analyses and sparse multiple-block partial least squares 

regression (SMBPLSR; see the SMBPLSR section). It is worth noting that we excluded CoCM-1 cells from 

all analyses because of a consistently lower amount of identified proteins and p-sites (Supplementary Figure 

1E). 



Drug target data 

We downloaded drug target data from Klaeger, Heinzlmeir, Wilhelm, et al.11, who profiled the target 

landscape of 243 clinical kinase inhibitors using Kinobeads19. The pKd (-log10-transformed Kd value) values 

were used without further processing. 

Calculation of selectivity scores 

Kinase inhibitors (KI) often target multiple kinases11, making it difficult to discern which target kinase is 

responsible for a phenotype (e.g. sensitivity to a KI) in a particular cell line. We combined the 

(phospho)proteome landscapes presented in this study with phenotypic data and the previously published 

target landscape of clinical kinase drugs11 to identify the target protein responsible for the observed 

phenotype. To facilitate this target deconvolution, we calculated a “selectivity score” S for every 

kinase/drug/cell line combination based on either median-centered protein or phosphoprotein intensities: 

𝑆 =
𝑇𝐾𝑃

𝑂𝐾𝑃
 (2) 

Here, 𝑇𝐾𝑃  is the (phospho)protein intensity of the kinase of interest in cell line P if the KI of interest K 

targets it, or otherwise zero. 𝑂𝐾𝑃  is the summed (phospho)protein intensity of the kinase of interest and all 

other kinases also inhibited by KI K in cell line P. Here, weakly binding off-targets with 𝐾𝑑𝑎𝑝𝑝  values lower 

than 1/10 of the 𝐾𝑑𝑎𝑝𝑝  value of the kinase of interest to KI K were excluded11. It is worth noting that 

researchers can dynamically explore the selectivity scores calculated based either on protein or 

phosphoprotein intensities in our ATLANTiC web application. In addition, users can examine selectivity 

plots in order to get a better understanding of the underlying data (see also Supplementary Figure 1F and 

G). Similarly, researchers can also use our web application to select an appropriate cell line model and/or 

KI to study the function of a particular kinase of interest. Here, one would select a cell line/KI combination 

with a high selectivity score for the kinase of interest.  



Dose-response modelling 

In this study, we integrated drug sensitivity information from six publicly available datasets: DTP20, 

CTRP21, GDSC22, CCLE23 and two small studies published by Medico et al.24 and Bracht et al.25. The DTP 

data and the data by Bracht et al. (GI50 values) were downloaded from “Cellminer 

[https://discover.nci.nih.gov/cellminerdata/rawdata/DTP_NCI60_RAW.zip]” on 28th of March 2017 and 

from Supplementary Table 2 of the corresponding publication on 2nd of July 2014, respectively. While the 

data by Bracht et al. was used as supplied, the DTP data was only -log10-transformed. The remaining four 

datasets were downloaded and re-processed as described earlier2. Briefly, we normalized the dose-response 

data into a range between 1 (no response or full viability) and 0 (full response or no viability) and 

subsequently fitted the classical symmetric four-parameter log-logistic model to each combination of drugs 

and cell lines in each dataset: 

𝑓(𝑥, (𝑏, 𝑐, 𝑑, 𝑒)) = 𝑐 + 
𝑑 − 𝑐

1 + exp (𝑏(log(𝑥) − log (𝑒)))
 (3) 

We estimated the four parameters c=“Lower Limit”, d=“Upper Limit”, b=“Slope” and e=“ED50” from the 

data and subsequently extracted them from the fitted model. Finally, we computed sensitivity scores for 

each model as sAUC=1-AUC, where AUC is the standardized area under the dose-response curve in log-

space, estimated using a modified computeAUC function from the drexplorer package v1.1.226 as described 

earlier2. The sAUC values from these four datasets or the -log10-transformed GI50 values from the DTP 

dataset were then used for all subsequent analyses. The compounds do not have a single experiment passed 

quality control20 were excluded.  We used 20,000 compounds from the DTP dataset for outlier analyses but 

restricted this dataset to a subset of drugs with either a known mode-of-action or clinical relevance for the 

sake of interpretability (in clinical trials or FDA approved; n=245) for correlation and elastic net analyses. 

The SMBPLSR analysis required further processing of the drug sensitivity data, which is described in the 

corresponding section. Dose-response experiments performed as part of this study were processed in the 

same way. In particular, departures from Loewe additivity27 for combination treatments of MET and 



MST1R (using Tepotinib and MK-2461, respectively) were quantified using the Combination Index (CI)28 

as implemented in the R package drc v3.0-129: 

𝐶𝐼 =
(𝐷𝐶)1

(𝐷𝑆)1
+

(𝐷𝐶)2

(𝐷𝑆)2
 (4) 

Here, (𝐷𝐶)1 and (𝐷𝐶)2 are the combination doses of drug 1 and 2 which result in a particular effect (e.g. 

50% growth inhibition), while (𝐷𝑆)1 and (𝐷𝑆)2 are the single doses of drug 1 and 2 which result in the 

same effect. A CI of less than 1 indicates synergy, a CI equal to 1 indicates additivity and a CI of more than 

1 indicates antagonism. Plotting the CI (and its confidence interval) versus different fractional effects (e.g. 

20%, 40%, 60%, 80% and 100% growth inhibition) results in the so-called CI plot (see Supplementary 

Figure 4B). See the section on Cell viability assays for the exact concentrations of Tepotinib and MK-2461 

used for single-compound and combination experiments. 

Correlation network analysis 

We used weighted gene correlation network analysis (WGCNA)30 as implemented in the WGCNA R 

package v1.51 in order to find groups of proteins and/or p-sites, the intensity profiles of which were highly 

correlated across cells in the NCI60 or CRC65 cell line panels and might therefore be functionally related. 

WGCNA was carried out separately for each cell line panel. First, we merged the protein and p-site 

abundance matrices and z-transformed the resulting matrix in order to be also able to find proteins with 

high correlation to p-sites and vice versa. Next, we calculated signed co-expression similarities between all 

pairs of proteins/p-sites using the following formula: 

𝑠𝑖𝑗 =
1 + 𝑐𝑜𝑟(𝑥𝑖 , 𝑥𝑗)

2
 (5) 

Here, sij is the signed co-expression similarity between a protein/p-site xi and a second protein/p-site xj 

based on their Pearson correlation. Proteins/p-sites with high similarities show either a strongly positive or 

a strongly negative correlation across cell lines in the corresponding panel. We only considered similarities 

based on at least seven pairwise-complete observations from the resulting similarity matrix (symmetrical 



along its diagonal). This ad-hoc cutoff was determined empirically by examining the distributions of 

similarities as a function of the number of pairwise-complete observations. Subsequently, we calculated 

several adjacency matrices 𝐴 = [𝑠𝑖𝑗] according to the following formula: 

𝑎𝑖𝑗 = 𝑠𝑖𝑗
𝛽
 (6) 

Here, aij is the adjacency between a protein/p-site xi and a second protein/p-site xj. The adjacency function 

parameter β was selected empirically by examining the scale-free topology of the resulting networks as a 

function of β as described previously30. We selected β to be 12 for the construction of signed co-expression 

networks for both the CRC65 and NCI60 cell line panel. Subsequently, we calculated the topological 

overlap matrix Ω = [𝜔𝑖𝑗] of these networks, which is a measure of how similar two nodes are with respect 

to their relative inter-connectedness: 

𝜔𝑖𝑗 =
𝑙𝑖𝑗 + 𝑎𝑖𝑗

𝑚𝑖𝑛{𝑘𝑖 , 𝑘𝑗} + 1 − 𝑎𝑖𝑗

 (7) 

Here, contrary to unweighted networks, 𝑙𝑖𝑗 = ∑ 𝑎𝑖𝑢𝑎𝑢𝑗𝑢  instead of the number of nodes to which both i and 

j are connected and 𝑘𝑖 = ∑ 𝑎𝑖𝑢𝑢  instead of the number of direct connections from i to other nodes. We then 

used the topological-overlap-based dissimilarity 𝐷 = [1 − 𝜔𝑖𝑗] as an input for hierarchical clustering with 

average linkage. Subsequently, correlation clusters consisting of proteins/p-sites were detected by 

employing adaptive branch pruning using the Dynamic Hybrid method and requiring at least 30 members 

per module, whilst respecting the dendrogram topology during PAM operations31. Afterwards, similar 

clusters (correlation of their first principal components bigger than 0.9) were merged, followed by the 

calculation of the enrichment of functional annotations from Corum32, GO33, KEGG34 and Reactome35 in 

each cluster using Fisher’s Exact Test. In order to associate both correlation clusters and functional 

categories with microsatellite instability (CRC65) or tissue of origin (NCI60), we aggregated protein/p-site 

intensities in these clusters/categories using gene set variation analysis as implemented in the GSVA R 

package v1.24.036. Subsequently, we tested for differential expression of correlation clusters or functional 

categories in each cell line group (e.g. MSI+ or Lung) relative to the mean of all other groups using the R 

package limma v3.32.237. We define full circles as groups of functionally and abundance-related 



proteins(/p-sites), which are both significantly differentially abundant between groups of MSI- and MSI+ 

cells and also have a significant overlap in terms of their protein members. We also directly tested for 

differential abundance of proteins/p-sites belonging to specific correlation clusters in each cell line group 

relative to the mean of all other groups using limma (related to Figure 2F). All p-values were adjusted for 

multiple testing by calculating FDRs38. 

Calculation of Pathway and ATLANTiC scores 

We used Pathway and ATLANTiC scores to rank pathways/kinases according to their importance in a given 

cell line. While Pathway scores reflect relative pathway activity, ATLANTiC scores integrate information 

on i) kinase abundance, ii) kinase phosphorylation and iii) kinase substrate phosphorylation to capture 

relative kinase activity. Below, we describe how Pathway scores were calculated and how the 

aforementioned sub-scores i-iii were computed and later aggregated to form ATLANTiC scores.  

Pathway scores were calculated by first annotating p-sites on parent proteins with pathways and cancer 

hallmarks these proteins are involved in according to MsigDB39. Subsequently, we rolled-up p-site 

intensities to Pathway scores using z-score summation40. Briefly, we first standardized p-site expression 

profiles into z-scores over samples before aggregating them to form Pathway scores by summation and 

subsequent division by the square root of the number of proteins annotated with the respective 

pathway/hallmark. Finally, we filtered out pathways/hallmarks with less than six annotated p-sites. 

For quantifying i) kinase abundance, we used MS1-based protein intensities from full proteome 

measurements after filtering out reverse hits as well as proteins, which were only identified by modification 

sites. Subsequently, we annotated each protein group with the gene name to which most of the detected 

peptides matched and log2-transformed the data. Next, we substituted missing values for each protein with 

half of the minimum intensity for this protein across the corresponding cell line panel (analogous to the 

LOD2 method18). Finally, we standardized the kinase abundance matrix into z-scores over samples. 



For quantifying ii) kinase phosphorylation, we rolled-up MS1-based phosphopeptide intensities as 

described in the section Data post-processing and filtering. Subsequently, we annotated each protein group 

with the gene name to which most of the detected phosphopeptides matched and log2-transformed the data. 

Next, we substituted missing values for each phosphoprotein with half of the minimum intensity for this 

phosphoprotein across the corresponding cell line panel (analogous to the LOD2 method18). Finally, we 

standardized the phosphoprotein abundance matrix into z-scores over samples. 

For quantifying iii) kinase substrate phosphorylation, we annotated p-sites on substrate proteins with the 

corresponding upstream kinase based on an integrated kinase substrate database (Supplementary Table 5) 

consisting of “KEA41 [http://www.maayanlab.net/KEA2/gsl/kinase-substrate_phospho-

site_level_set_library.tsv]” (downloaded on 2nd Aug 2016), “PhosphoELM42 

[http://phospho.elm.eu.org/dumps/phosphoELM_all_latest.dump.tgz]” (downloaded on 28th Apr 2015), 

“PhosphoNetworks43 [http://www.phosphonetworks.org/download/highResolutionNetwork.csv]” 

(downloaded on 2nd Aug 2016), “PhosphoSitePlus44 

[https://www.phosphosite.org/downloads/Kinase_Substrate_Dataset.gz]” (downloaded on 13th Apr 2016), 

“SIGNOR45 [https://signor.uniroma2.it/downloads.php]” (downloaded all data on 3rd Aug 2016) and 

“Uniprot46 [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/ 

taxonomic_divisions/uniprot_sprot_human.dat.gz]” (downloaded on 2nd Aug 2016; see also Supplementary 

Table 5). Kinases with less than six annotated substrates in the individual kinase substrate databases above 

and kinases not present in the “Uniprot kinase list [https://www.uniprot.org/docs/pkinfam.txt]” 

(downloaded on 16th Aug 2013) were excluded from the integrated kinase substrate database. Matching of 

p-sites to kinases was performed at the level of substrate proteins after mapping database-specific kinase 

accessions to gene names using a combination of Uniprot and manual curation. Subsequently, we rolled-

up p-site intensities to kinase-substrate-phosphorylation-scores using z-score summation as described 

above. Each of these scores was annotated with the corresponding kinase. Finally, we filtered out scores 

with less than six annotated p-sites. 



All of these sub-scores i-iii were filtered for kinases using a table provided by “Uniprot46  

[https://www.uniprot.org/docs/pkinfam]” (downloaded on 14th Aug 2013), followed by restriction to 

kinases present in all three sub-scores and rescaling to [0,1]. 

In order to calculate ATLANTiC scores from the three sub-scores i-iii mentioned above, we calculated the 

geometric mean between them for each kinase in each cell line, followed by rescaling to [0,1]. 

The resulting matrices of the NCI60 and CRC65 cell line panels for pathways, sub-scores i-iii and our 

ATLANTiC scores can be explored at http://atlantic.proteomics.wzw.tum.de/QueryLandscape.html. For 

visual clarity, we smoothed these heatmaps using a kernel smoother for irregular 2-d data from the R 

package fields v9.6. Users can draw rectangles around regions of interest and are presented with a table 

quantifying the relative activity in the selected area. We define relative activity based on the non-smoothed 

data in relation to the corresponding maximum in the selected area. Here, we only consider data points the 

smoothed intensity of which exceeds a user-defined quantile threshold (Sea level). 

Recapitulated biological pathways 

In order to find out which biological pathways are better recapitulated at the proteome or phosphoproteome 

level, we focused on functional associations between any two proteins recorded in pathway databases and 

compared the correlation of these two proteins across the NCI60 and CRC65 cell line panel at the protein 

and phosphoprotein level. Pathway databases were extracted from the R package ESEA v1.047, which 

included KEGG48, Biocarta, Reactome35, NCI PID49 and SPIKE50, HumanCyc51 and Panther52. We defined 

a functional association between two proteins from these databases to be “recapitulated” if the correlation 

coefficient across cell lines of the NCI60 or CRC65 panel was greater than 0.5 at the protein and/or 

phosphoprotein level. Since correlation coefficients calculated based only on a few cell lines tend to have 

higher variance, we restricted our analysis to correlations, which are based on at least seven cell lines. 

Finally, we tested for enrichment of functional associations in the set of edges recapitulated exclusively at 

the protein/phosphoprotein level or recapitulated at both levels using Fisher’s Exact Test. 



Outlier analysis 

We performed outlier analysis in order to find (phospho)proteins/p-sites with substantially higher 

abundance in a particular cell line compared to all other cell lines. It is well known that transcriptional 

outliers can be potential therapeutic targets24 and we postulate that such an analysis should be even more 

conclusive at the protein or p-site level. We classified (phospho)proteins/p-sites as outliers if one of the 

following criteria was met: 

1. The p-site in question is a phosphorylated tyrosine 

2. The maximal abundance of a particular (phospho)protein/p-site is at least five times higher in one 

cell line compared to the second highest abundance in all other cell lines of the same cell line panel 

3. A particular (phospho)protein/p-site is only identified in a single cell line and its abundance is 

higher than a specific threshold 

In order to determine this threshold, we first calculated empirical p-values quantifying the likelihood of 

measuring a (phospho)protein/p-site exactly once given its maximal abundance in one of our cell line 

panels. This is motivated by the fact that the number of missing values across cell lines and the maximal 

intensity of a (phospho)protein/p-site are negatively correlated. Briefly, for a (phospho)protein/p-site with 

a maximal abundance of 𝑖, all (phospho)proteins/p-sites with a maximal abundance in the range of 

[𝑖 − 𝜃, 𝑖 + 𝜃] were grouped into a set 𝜑. The constant 𝜃 was used to control the number of 

(phospho)proteins/p-sites in 𝜑. In our analysis, 𝜃 was set to 0.05 for protein and p-site data and to 0.2 for 

phosphoprotein data. The empirical p-value 𝑝𝑠𝑖 for a single maximal abundance is then calculated as 𝑝𝑠𝑖 =

𝑛1

𝑛
, where 𝑛1 is the number of proteins measured only once across all cell lines in set 𝜑 and 𝑛 is the total 

number of (phospho)proteins/p-sites in set 𝜑. Next, we trained LOcally WEighted Scatterplot Smoothing 

(LOWESS) models53 using 𝑖, the maximal abundance of (phospho)proteins/p-sites, as the independent 

variable and 𝑝𝑠𝑖 as the dependent variable. In general, the number of missing values and the maximal 

abundance of (phospho)proteins/p-sites are anti-correlated, resulting in monotonically decreasing fitted 



models. Finally, we used these LOWESS models to predict the maximal abundance corresponding to 𝑝𝑠𝑖 =

0.1, which we subsequently used as the aforementioned threshold. In the CRC65 dataset, these thresholds 

were 7.17 (quantile = 42%), 23.31 (quantile = 21%) and 5.52 (quantile = 23%) for p-sites, phosphoproteins 

and proteins, respectively. In the NCI60 dataset, the corresponding thresholds were 7.30 (quantile = 50%), 

24.40 (quantile = 30%) and 5.96 (quantile = 21%). 

 

A compound in the DTP dataset was selected as an outlier if the GI50 value of the most sensitive cell line 

was 1000 times lower compared to all other cell lines of the same cell line panel. 

Simple correlation and elastic net analyses 

We applied 1) simple correlation analysis and 2) elastic net regression54 to discover proteins and p-sites 

predicting drug response: 

1) For any given drug, we calculated correlation coefficients between the corresponding drug response data 

and the abundance data for all proteins/p-sites across the respective cell line panel. Here, we excluded pair-

wise incomplete observations and refrained from imputing missing values in both drug response and 

protein/p-site data. In addition, we only considered drug-protein/p-site pairs with more than seven pair-wise 

complete observations in order to avoid artificially high/low correlations due to low sample size. All p-

values displayed in our ATLANTiC web portal were adjusted for multiple testing by calculating FDRs38. 

2) To identify linear combinations of multiple proteins/p-sites predicting drug response, we applied elastic 

net regression as described earlier2. Briefly, elastic net regression combines L1 and L2 penalties in order to 

alleviate problems commonly encountered while modelling (prote)omics data, such as large numbers of 

predictors p (proteins/p-sites) and small numbers of samples n (p>>n). On the one hand, the L2 penalty 

shrinks most of the regression coefficient towards zero, but rarely to exactly zero. In contrast, the L1 penalty 

reduces most regression coefficients to exactly zero and only keeps a few predictors with non-zero 

coefficients, which improves the biological interpretability of the final model. Elastic net regression takes 



advantage of both penalties and therefore forces most of the correlation coefficients to zero and – at the 

same time – selects only a subset of predictors showing high correlation to the dependent variable (drug 

response). Double shrinkage of coefficients is prevented by the introduction of a scaling factor54 while the 

hyperparameter 𝛼 ∈ [0, 1] is used to control the balance between the L2-penalty (α=0) and the L1-penalty 

(α=1). In addition, a second hyperparameter λ controls the degree of regularization55. In our analysis, α was 

set to 0.05 and λ was optimized using leave-one-out cross-validation with mean-squared-error as the loss 

function. We used a bootstrapping approach to select robust (phospho)proteomic biomarkers predicting 

drug sensitivity or resistance. To do so, 100 bootstrap samples of cell lines were generated for each drug, 

followed by model fitting as described above. Subsequently, the results were summarized using two 

statistics: the regression coefficient referred to as “effect size” and the selection frequency, which is 

essentially the number of times a protein/p-site was part of the fitted models. Since these models were 

trained independently on each drug, we z-transformed the effect sizes in order to facilitate the comparison 

of effect sizes between different models. Elastic net regression models were fit using the R package glmnet 

v2.0-1655. We used drug sensitivity information for both cell line panels and imputed missing values as 

described earlier. Drugs for which we had less than 12 response measurements in a cell line panel were 

excluded in order to avoid the selection of non-robust biomarkers. 

For the evaluation of general markers (related to Figure 4A), we calculated weighted sum scores. We 

defined the primary score for a sensitivity marker as 𝑠+ = 𝑓+ ∙ 𝑛+ and the primary score for a resistance 

marker as 𝑠− = 𝑓− ∙ 𝑛−, where 𝑓 is the effect size and 𝑛 is the selection frequency in elastic net regression 

models of a particular drug sensitivity dataset. The weight for primary scores is defined as 𝑤 =

|𝑙𝑜𝑔2 (
|𝑠+|+𝛼

|𝑠−|+𝛼
)|. Here, an offset 𝛼 = 100 was added to the log-ratio in order to avoid extreme values 

resulting from very small denominators. The weighted sum scores for sensitivity and resistance markers 

were defined as 𝑠+ ∙ 𝑤 and 𝑠− ∙ 𝑤, respectively. 



Network analysis using STRING 

Proteins associated with resistance to Arsenic trioxide that were included in more than 50 bootstrap models 

were selected and uploaded to the STRING database56. The corresponding sub-network is shown in Figure 

4B. 

Random forest models predicting 5FU response 

We downloaded drug response data for 77 CRC cell lines from the supplement of a study focusing on 5-

fluorouracil (5FU)25, which is a commonly used chemotherapeutic in colorectal cancer. Subsequently, we 

modeled the response to 5FU of 60 of these cell lines (the intersection with the CRC65 cell line panel) as a 

function of the abundance of proteins involved the metabolism of 5FU: TYMP, TK1, UMPS, PPAT, UPP1, 

UCK2, UCK1, RRM1, RRM2, TYMS and DPYD, as well as three drug transporters SLC29A1, ABCC3, 

ABCC4. 

We used the R package randomForest v4.6-1257 to fit random forest models using combinations of at least 

two and up to 14 (all) proteins to the data. For each model, 10 trees were grown (ntree=10) and leave-one-

out cross-validation was used to evaluate the prediction accuracy as measured by the sum of squared errors, 

i.e. cross-validation error. We observed that, comparing to signatures combining two proteins, the cross-

validation error decreased dramatically when three proteins are included and stopped decreasing when more 

than seven proteins are included. Therefore, we selected the top five models from all combinations of three 

to seven proteins and aped them to predict the sensitivity towards 5FU for all NCI60 cell lines. 

Analysis of similar drug response profiles 

We extended sparse multi-block partial least squares regression (SMBPLSR)58 in order to take advantage 

of the correlation structure of the drug sensitivity datasets we integrated with our (phospho)proteomics data. 

Sparse partial least square regression (SPLSR) can be used to select a set of independent variables 



predicting multiple (correlated) dependent variables. However, our phosphoproteomics data is biased by 

our proteomics data in the sense that p-sites often correlate well with the corresponding protein abundance, 

which may in turn bias SPLSR models towards selecting multiple p-sites from the same protein. To solve 

this problem, we rolled-up phosphopeptide abundances to phosphoprotein abundances (see the “Data 

processing and filtering” part for more details). Next, we correlated the phosphoprotein intensity to the 

intensities of all matching p-sites across both cell line panels. In cases where this correlation was low 

(Pearson’s R<0.5), we labelled the respective p-site as divergent. Both phosphoprotein intensities and 

intensities of divergent p-sites were used in this analysis. This resulted in two input matrices, one for 

phosphoproteins and one for divergent p-sites. Multi-block Partial Least Squares regression (MBPLSR) 

can now be used to perform predictive modelling of one dependent dataset (drug response) as a function of 

multiple independent datasets (phosphoproteins and divergent p-sites). MBPLSR is a generalization of 

partial least squares regression (PLSR) and aims at linking multiple independent datasets with one 

dependent dataset as opposed to considering only a single independent dataset. A recent extension of 

MBPLSR called sparse MBPLSR (SMBPLSR) added regularization for feature selection58, which improves 

the interpretability of fitted models. Here, we briefly introduce SMBPLSR, and subsequently present an 

additional extension of it. 

 

As an input, SMBPLSR requires a set of omics datasets 𝐗𝟏, … , 𝐗𝐛, … , 𝐗𝐁 with rows corresponding to 

samples (cell lines) and columns corresponding to measured biomolecules (proteins and divergent p-sites) 

and a phenotypic dataset 𝐘 with rows corresponding to the same samples in 𝑿s and columns corresponding 

to (quantitative) phenotypic variables (drug responses). We aim at using divergent p-sites and 

phosphoproteins (variables in 𝐗s) to predict drug responses (variables in 𝐘), thereby associating a small 

number of candidate p-sites and/or phosphoproteins with multiple drugs having correlated responses across 

our cell line panels. SMBPLSR solves this problem by optimizing the following loss function: 

𝑀 = min
𝑤,𝑐

| |𝐌 − 𝐰𝐜′| |𝐹
2 + 𝑃𝛌(𝐖) (8) 



Here, 𝐌 = 𝐗′𝐘 while 𝐗 results from concatenating all 𝐗s, i.e. 𝐗 = [𝐗𝟏, … , 𝐗𝒃 , … , 𝐗𝑩]. In addition, 𝐰 and 

𝒄 denote the loading weights (similar to regression coefficients in ordinary least squares regression) of 𝐗 

and 𝐘, respectively. We denote the matrix consisting of 𝐰 and 𝐜 as 𝐖 and 𝐂 (see below). It is worth 

mentioning that ||. . ||𝐹 is the Frobenius norm and 𝑃𝛌(𝐖) is the penalty factor introducing sparsity in 𝐰 

(regularization). As a result, most loading weights of variables in 𝐗 are 0, meaning that they do not influence 

the final model. Variables with non-zero loading weights are selected and contribute to the final model. 

 

We extended SMBPLSR with a second penalty  𝑃𝜃(𝐂), which also leads to sparsity in 𝒄 (drug response 

matrix). Since we do not assume that a small number of p-sites and/or phosphoproteins is able to predict 

the response of cell lines to all drugs, we aimed at only selecting the drugs showing the highest correlation 

to variables in 𝐗s. We hypothesized that drugs selected this way might have similar modes of action. This 

resulted in the extended loss function below: 

𝑀 = min
𝑤,𝑐

| |𝐌 − 𝐰𝐜′| |𝐹
2 + 𝑃𝛌(𝐖) + 𝑃𝛉(𝐂) (9) 

To implement this new loss function, we modified the algorithm in table 2 from an earlier publication58 as 

follows: 

Original: 

(𝑣𝑖𝑖𝑖)  𝐜𝑎 = 𝐘𝑎−1
′ 𝐭𝑎/||𝐓𝑎

′ 𝐮𝒂|| (10) 

Our modification:  

(𝑣𝑖𝑖𝑖)  𝐜𝑎 = ST(𝐘𝑎−1
′ 𝐭𝑎/||𝐓𝑎

′ 𝐮𝒂||) (11) 

Here, ST is the soft-thresholding operator. 

 

We only focused on solid tumors in this analysis since the phosphoproteomic and drug response data of 

leukemia cell lines were very different from the rest of the cell lines in the NCI60 panel. Otherwise, most 

of the loading weights (components) would be purely driven by these cell lines. In addition, we excluded 

drugs to which all the remaining cell lines showed substantial resistance (-log10(GI50) < 1.5), which retained 



172 drugs. It is worth noting that we z-score transformed all input matrices (drug responses, 

phosphoproteins and p-sites) prior to model fitting. We used 5-fold cross validation to optimize the number 

retained variables from our input matrices. Possible numbers of variables to keep were 2, 4, 6, 8, 10, 12, 

14, 16, 18 and 20 for drugs and 50, 100, 200 and 400 for phosphoproteins and p-sites, respectively. 

Survival analysis 

In order to determine the effect of AK1 on patient survival, we stratified the AML cohort into AK1 positive 

and negative patients. Overall survival (OS) of these groups was estimated using the Kaplan–Meier method, 

followed by a comparison of the two curves using a two-sided log-rank test. We used Cox proportional 

hazards models to evaluate the association of AK1 and other potential confounding clinical factors with 

OS. For the breast cancer cohort, we used H-scores to stratify patients into groups based on their pPGR 

status. Overall survival was estimated as described above for AK1. We optimized the H-score threshold 

above which patients were considered pPGR positive to minimize the p-value of the two-sided log-rank 

test comparing the survival of the two groups. As described for AK1, we used Cox proportional hazards 

models to evaluate the association of PGR/pPGR and other potential cofounding factors with OS. 

Statistics 

All statistical tests performed in this study were two-sided if applicable. In box plots, the lower and upper 

boundary of boxes indicate the 25% and 75% quantile, respectively. Whiskers represent 1.5x the 

interquartile range and any data point outside of this range is considered an outlier and plotted individually. 



SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Exploratory analysis of (phospho)proteomes of 125 cancer cell lines. (A) & 

(B) Boxplots showing the distribution of log-transformed p-site abundance in the (A) NCI60 (n=60 cell 

lines) and (B) CRC65 dataset (n=65 cell lines). Cell lines are colored by tissue of origin as in Figure 1. (C) 

& (D) Comparison of p-site abundance from measurements of a fractionated sample and a single-shot 



measurement without fractionation of HeLa cells. The overall correlation is high for (C) all p-sites (n=4,935 

p-sites) and (D) spike-in p-sites (n=34 p-sites), suggesting that fractionation of phosphopeptides does not 

interfere with the quantification of p-sites. (E) Bar plot visualizing the number of quantified class-I p-sites 

(at least 75% localization probability, Supplementary Methods) across both cell line panels (n=125 cell 

lines). Bars are split into p-sites identified by match-between-runs or MS/MS. Combined bars visualize the 

sum of p-sites within each tumor entity and are colored by tissue of origin as in Figure 1. (F) Example use 

case for the online ATLANTiC web application. The (phospho)proteome landscapes of cell lines generated 

in this work can be combined with phenotypic drug effects on cell lines and the previously published target 

landscape of kinase inhibitors to identify the target protein responsible for the observed phenotype. For 

example, SR cells are very sensitive to Crizotinib. To identify the most likely protein target responsible for 

the phenotype, the targets of Crizotinib are ordered by decreasing selectivity score (Supplementary 

Methods). ALK has a selectivity score of 0.999 towards Crizotinib in SR cells. (G) The selectivity plot 

enables further evaluation of the selectivity score. In this plot, the targets of Crizotinib are ordered by 

binding strength (expressed by their pKd
app; -log10 of the apparent Kd values; black dots; right bottom y-

axis). The shaded areas enclose kinases whose pKd
app values are within 10-fold (dark gray) or 100-fold 

(light gray) of the pKd
app of the most potent Crizotinib target ALK (Supplementary Methods for additional 

details). The left y-axis shows the z-scored intensities of kinases targeted by Crizotinib across the NCI60 

panel as bars and their log2-transformed intensities as red triangles (right top y-axis). It is apparent that 

ALK is relatively more abundant than the next best Crizotinib targets MET and MAP4K2. In fact, ALK 

accounts for 99.9% of the proteomic abundance of the top three Crizotinib targets (expressed as a selectivity 

score), making ALK inhibition by far the most likely molecular target explaining the sensitivity of SR cells 

towards Crizotinib. A related analysis provided by the ATLANTiC web application is to select a protein of 

interest first, and the output is a set of kinase inhibitors and cell lines along with the same selectivity score, 

which can guide the selection of a suitable cell line to study the drug/protein interaction in more detail. (H) 

Multiple co-inertia analysis of the phospho- and full proteome data of the CRC65 panel (blue=MSI- or 

microsatellite instability negative, n=17, red=MSI+ or microsatellite instability positive, n=47 cell lines). 



The first two components are shown. Bases of arrows represent the full proteome and ends of arrows 

represent the phosphoproteome of a given cell line. Short arrows indicate a good correlation between 

phospho- and full proteomes. Related to Figure 1A and 1D. Source data are provided as a Source Data file. 



 



Supplementary Figure 2. Related to Figure 1E – Baseline (phospho)proteomes recapitulate distinct 

biological pathways. (A) Venn diagram showing shared and unique interactions recapitulated at the protein 

and phosphoprotein level in the CRC65 cell line panel. We defined a functional association between two 

proteins to be recapitulated if their intensities were correlated at either the protein or phosphoprotein level 

(Pearson correlation coefficient > 0.5 across at least seven cell lines; Supplementary Methods). (B-D) 

Biological pathways significantly (Fisher’s exact test; Benjamini-Hochberg corrected P < 0.05) enriched in 

interactions (B) exclusive to the protein level, (C) detected at both levels and (D) exclusive to the 

phosphoprotein level (R – Reactome; K – KEGG; N – NCI; B – Biocarta). (E-H) The same as in panels A-

D but for the NCI60 panel. Representative pathways are shown in Figure 1E. Source data are provided as 

a Source Data file. 

  



 



Supplementary Figure 3. Related to Figure 2 – Activity landscapes and correlation networks. (A) 

Activity landscape of cellular pathways for the NCI60 panel (Supplementary Methods; n=60 cell lines) and 

(B) of kinases for the CRC65 panel (n=64 cell lines).  Relative activity ranges from 0 to 1 representing 

minimal and maximal relative activity, respectively. Areas of high activity are highlighted (Supplementary 

Methods). (C) Hive plot showing significant associations between groups of functionally related proteins/p-

sites, cell lines from the same tissue of origin and groups of abundance-related proteins/p-sites (highly 

correlated proteins and p-sites) identified by weighted gene correlation network analysis in the NCI60 

dataset (Supplementary Methods). Colored edges (colored according to tissue of origin as in Figure 1) 

represent significant associations between corresponding nodes on all three axes. The title of each sub-

panel indicates the tissue of origin and includes a representative annotation. There was no full circle in 

highly heterogeneous tumor types (e.g. breast cancer and lung cancer), indicating that groups of functionally 

related proteins/p-sites enriched in groups of abundance-related proteins/p-sites cannot be explained by the 

tissue of origin in these cases. However, groups of abundance-related proteins/p-sites highly abundant in 

more homogeneous tumor subtypes (e.g. leukemia and melanoma) are often dominated by proteins/p-sites 

with functions related to their tissues of origin. For example, the functional annotation Melanocyte 

differentiation is enriched in a group of abundance-related proteins/p-sites, which are themselves highly 

abundant in melanoma cell lines. These results suggest that highly correlated proteins/p-sites reflect the 

tissue-specific biology of tumor cell lines derived from homogenous tissues. However, they do not reflect 

the tissue-specific biology of heterogeneous tissues (see also Figure 1D). Source data are provided as a 

Source Data file. 

  



 

Supplementary Figure 4 – Outlier proteins and p-sites and their indications for drug responses. (A) 

Beeswarm plots highlighting outlier cell lines expressing high levels of selected kinases (ABL1, NTRK1, 

FGFR2 and ALK). The abundance of the gene products is compared at the mRNA (the average z-score of 

5 platforms in CELLMINER20), protein, p-site and phosphoprotein levels (ABL1 mRNA n= 61; Protein, 

P-site, P-protein n=60 cell lines; NTRK1 mRNA n=61; Protein, P-site, P-protein n=60 cell lines; FGFR2 

mRNA n=57; Protein, P-site, P-protein n=65 cell lines; ALK mRNA: n= 61; Protein, P-site, P-protein n=60 

cell lines. (B) Combination index (CI) plot visualizing the CI as a function of the Fraction affected for the 

combination treatment of HDC-8 cells with Tepotinib (targeting MET) and MK-2461 (targeting MST1R; 

Supplementary Methods). Error bars represent the 95% confidence interval of the CI. The area shaded in 

purple indicates synergistic effects of the two drugs, the orange dotted line indicates additive effects and 

the green area indicates antagonistic drug effects. (C) The multi-drug resistance score (MDR) of NCI60 

cell lines as measured by the “NCI [https://discover.nci.nih.gov/cellminer/celllineMetadata.do]”. 

NCIADRRES is one of the two high MDR score cell lines (left panel; n=58 cell lines), which can potentially 

be explained by very high expression of the multi-drug exporter ABCB1 (right panel; n=58 cell lines). Cell 



lines are colored by tissue of origin as in Figure 1. (D) MOLT4 is an outlier cell line when considering 

response to Bendamustine in the NCI60 panel (left panel; n=60 cell lines; GI50=growth inhibitory 

concentration analogous to an IC50). Cell lines are colored by tissue of origin as in Figure 1. The right 

panel shows a histogram visualizing the distribution of intensities from our Glu-C digests in the NCI60 

panel. The abundance of SLC10A16, which was exclusively identified in MOLT4, is indicated by a light 

blue line and might explain MOLT4’s response to Bendamustine. (E) Histogram showing the distribution 

of the number of pairwise-complete observations based on which correlations for p-site-drug combinations 

were calculated (n=3,417,931 p-site-drug combinations). Source data are provided as a Source Data file. 

  



 

Supplementary Figure 5 – Correlation-based markers and their indication for drug sensitivity. (A) 

Volcano plot showing that SLFN11 is a sensitivity marker (red) for multiple inhibitors targeting DNA, such 

as Triethylenemelamine, Gemcitabine, Irinotecan and Chlorambucil. (B) SLFN11 abundance in the NCI60 

panel is significantly (Pearson correlation test; P < 0.05) positively correlated with Triethylenemelamine 

sensitivity (right panel; n=59 cell lines; GI50=growth inhibitory concentration analogous to an IC50). Cell 

lines are colored by tissue of origin as in Figure 1. (C) Volcano plot highlighting that EHPA2 is a resistance 

marker (blue) for Cetuximab (left panel). (D) EPHA2 abundance in the NCI60 panel is significantly 

(Pearson correlation test; P < 0.05) negatively correlated with Cetuximab sensitivity (right panel; n=65 cell 

lines; sAUC=1-standardized area under the dose-response curve). Cell lines are colored by tissue of origin 

as in Figure 1. (E) Volcano plot showing that ADK is the top selected sensitivity marker for 

Triciribine-5’-monophosphate (left panel). (F) ADK protein abundance in the NCI60 panel is significantly 



(Pearson correlation test; P < 0.05) positively correlated with Triciribine-5’-monophosphate sensitivity 

(right panel; n=59 cell lines). Cell lines are colored by tissue of origin as in Figure 1. (G) Volcano plot 

depicting drugs associated with BRAF_pS151. These include Linsitinib and BMS-754807. (H) Linsitinib 

is significantly (Pearson correlation test; P < 0.05) negatively correlated with BRAF_pS151 intensity (right 

panel; n=60 cell lines). Cell lines are colored by tissue of origin as in Figure 1. (I) Correlating the abundance 

of activity-regulating kinase p-sites with drug sensitivity can suggest potential combination treatments of 

drugs with specific kinase inhibitors. The heatmap shows the correlation coefficients of p-site abundances 

and drug sensitivity across the NCI60 panel (significant Pearson correlations are labeled with S; Benjamini-

Hochberg corrected P < 0.05). For example, the abundance of the activity-inhibiting p-site S186 on CHEK1 

is positively correlated with Artesunate sensitivity (zoom in panel; n=60 cell lines; cell lines are colored by 

tissue of origin as in Figure 1), which suggests synergy between Artesunate and CHEK1 inhibitors. Source 

data are provided as a Source Data file. 
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