SUPPLEMENTARY INFORMATION

KRAS(G12C)–AMG 510 Interaction Dynamics Revealed by **All-atom Molecular Dynamics Simulations.**

Tatu Pantsar^{1,2,*}

¹ Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Tübingen, Germany ² School of Pharmacy, University of Eastern Finland, Kuopio, Finland

* tatu.pantsar@uef.fi

Content

Supplementary Figure S1
2D-depiction of observed interactions in KRAS(G12C)–AMG 510 crystal structure.
Supplementary Figure S2
Supplementary Figure S3
Supplementary Figure S4
Supplementary Figure S54 MSM metastable state <i>S</i> ₃ exhibits similar switch-I conformation as observed in SOS1–KRAS complex.
Supplementary Figure S6
Supplementary Figure S7

Supplementary Figure S1. 2D-depiction of observed interactions in KRAS(G12C)–AMG 510 crystal structure (PDB ID: 60im).

Supplementary Figure S2. Interaction frequencies observed in individual simulation replicas 1–5 (A–E) of Full (M1–H166) systems. Each replica consists of 10 μ s MD simulation data.

Supplementary Figure S3. Interaction frequencies observed in individual simulation replicas 1–5 (A–E) of NAc (AcT2–H166) systems. Each replica consists of 5 μ s MD simulation data.

Supplementary Figure S4. Helical switch-II conformation that is in perpendicular orientation to α2-helix is observed in many KRAS structures (PDB IDs: 6quu; 6gj7; 6mqg; 6bof; 6qux; 6quw; 6quv).

Supplementary Figure S5. MSM metastable state S_3 exhibits similar switch-I conformation as observed in SOS1–KRAS complex. KRAS from the SOS1-KRAS complex (PDB ID: 6epl) is illustrated in grey cartoon with switch-I and switch-II in red and blue, respectively. SOS1 in shown in yellow cartoon. Three conformations of S_3 are illustrated with orange cartoon.

Supplementary Figure S6. Transition probabilities among the metastable states. Conformational change pathways probability flux for each state transition based on transition pathway theory. Mean-first-passage-time of transition is shown for each flux and varies between 1.76 μ s and 16.79 μ s.

Supplementary Figure S7. Validation of Markov state model. (A) Implied relaxation timescales indicate that selected lag time ($\tau = 10$ ns) is suitable. (B) Spectrum of relaxation timescales at $\tau = 10$ ns. A clear separation is observed between the third and fourth slowest relaxation times, suggesting a four-state model. (C) Chapman-Kolmogorov test of the model indicate accurate prediction of the behaviour on longer timescales.