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Supplemental Table 1: Gene expression data from wt and Nrf2-/ or AMPK -/- MEFs after
treatment (4h) with DMSO or Sfn (5 uM) as obtained from an Affymetrix Clariom™ S Assay
and subsequent statistical analysis

Supplemental Table 2: List of Nrf2-regulated genes and Nrf2-and AMPK-regulated genes in
DMSO- and Sfn-treated MEF

Supplemental Materials and Methods
Expression of AMPK in AMPKal-/- MEFs

AMPK-/-MEFs were seeded into 12-well plates and transfected with an expression plasmid for
eGFP (Clontech) or GFP-AMPKal (pEGFP-CI-PRKAA1 #30305 from Addgene) using
Lipofectamine LTX and Plus reagent according to the manufacturers’ instructions. After 42 hours,
cells were lysed and probed for Bach1l, GFP or actin.
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Supplemental Figure 1: Pathway analysis of only Nrf2-regulated and of AMPK and Nrf2-
regulated genes using DAVID and Advaita analysis tools. (A) Pathways in bold were
consistently found to be enriched by the two analysis tools, pathways in black were only susceptible
to regulation by Nrf2, pathways in green are suggested to be under the control of both Nrf2 and
AMPK. (B) Bar graph presentation.
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Supplemental Figure 2. The investigated genes are Nrf2-dependently induced by Sfn. Wt and
Nrf2 -/- MEFs were treated with DMSO (0.1%) or sulforaphane (Sfn, 5 uM) for 4 h before RNA
was isolated, reversely transcribed and subjected to qPCR analysis for hmox1, akrici4, txnrdl,
gsta4, gclc and nqol as indicated (hprtl as reference gene). Bar graphs present the mean + 95% CI
(* p<0.05, ANOVA, Tuckey)
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Supplemental Figure 3. AMPK-/- cells show increased global histone H3 acetylation. Histones
3 and 4 from wt and AMPK-/- MEFs were tested for acetylation at specific lysine residues by

immunoblot. Compiled densitometric analyses are depicted (n=3, mean + SD; * p<0.05; ANOVA,
Tuckey).
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Supplemental Figure 4: Forced expression of AMPKal in AMPK-/- cells negatively
correlates with Bachl levels. AMPK-/- cells were transiently transfected with eGFP- or GFP-
AMPKal expression plasmids (independent experiments #1-3). After 42 hours, cell lysates were
probed for GFP, Bachl and actin, respectively.
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Supplemental Figure 5: bachl mRNA is AMPK-dependently suppressed and its half-life does
not differ between wt and AMPK -/- MEFs. (A) Wt and AMPK-/- cells were treated with 0.1%
DMSO or the AMPK inhibitor SBI0206965 (SBI, 30 uM) for the indicated time periods. Bachl
mRNA expression was then analyzed by qPCR (hprtl as reference). (n=3, * P<0.05 to to (wt),
ANOVA, Dunnett post-test). (B) Wt AMPK-/- cells were treated with actinomycin D (5 uM) for
the indicated periods of time before mRNA was extracted, and bachl mRNA levels were
determined by qPCR (actinb as reference gene, Qiagen) (n=2).



