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  Abstract

Word count: 343

 

Metastatic cancers require further diagnosis to determine their primary tumor sites. However, the tissue-of-origin for around 5%
tumors could not be identified by routine medical diagnosis according to a statistics in the United States.
With the development of machine learning techniques and the accumulation of big cancer data from TCGA and GEO, it is now
feasible to predict cancer tissue-of-origin by computational tools. Metastatic tumor inherits characteristics from its tissue-
of-origin, and both gene expression profile and somatic mutation have tissue specificity. Thus, we developed a computational
framework to infer tumor tissue-of-origin by integrating both gene mutation and expression (TOOme). Specifically, we first
perform feature selection on both gene expressions and mutations by a random forest method. The selected features are then
used to build up a multi-label classification model to infer cancer tissue-of-origin. We adopt a few popular multiple-label
classification methods , which are compared by the 10-fold cross validation process.
We applied TOOme to the TCGA data containing 7,008 non-metastatic samples across 20 solid tumors. 74 genes by gene expression
profile and 6 genes by gene mutation are selected by the random forest process, which can be divided into two categories: (1)
cancer type specific genes and (2) those expressed or mutated in several cancers with different levels of expression or mutation
rates. Function analysis indicates that the selected genes are significantly enriched in gland development, urogenital system
development, hormone metabolic process, thyroid hormone generation prostate hormone generation and so on. According to the
multiple-label classification method, random forest performs the best with a 10-fold cross-validation prediction accuracy of 96%. We
also use the 19 metastatic samples from TCGA and 256 cancer samples downloaded from GEO as independent testing data, for
which TOOme achieves a prediction accuracy of 89%. The cross-validation validation accuracy is better than those using gene
expression (i.e., 95%) and gene mutation (53%) alone.
In conclusion, TOOme provides a quick yet accurate alternative to traditional medical methods in inferring cancer tissue-of-origin.
In addition, the methods combining somatic mutation and gene expressions outperform those using gene expression or mutation
alone.

   

  Contribution to the field

Metastatic cancers require further diagnosis to determine their primary tumor sites. However, the tissue-of-origin for around 5%
tumors could not be identified by routine medical diagnosis according to a statistics in the United States. With the development of
machine learning techniques and the accumulation of big cancer data from TCGA and GEO, it is now feasible to predict cancer
tissue-of-origin by computational tools. Metastatic tumor inherits characteristics from its tissue-of-origin, and both gene
expression profile and somatic mutation have tissue specificity. Thus, we developed a computational framework to infer tumor
tissue-of-origin by integrating both gene mutation and expression (TOOme). TOOme provides a quick yet accurate alternative to
traditional medical methods in inferring cancer tissue-of-origin. In addition, the methods combining somatic mutation and gene
expressions outperform those using gene expression or mutation alone.
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Abstract 17 

Metastatic cancers require further diagnosis to determine their primary tumor sites. However, the 18 

tissue-of-origin for around 5% tumors could not be identified by routine medical diagnosis according to a 19 

statistics in the United States.  20 

With the development of machine learning techniques and the accumulation of big cancer data from 21 

The Cancer Genome Atlas(TCGA) and Gene Expression Omnibus(GEO), it is now feasible to predict 22 

cancer tissue-of-origin by computational tools. Metastatic tumor inherits characteristics from its 23 

tissue-of-origin, and both gene expression profile and somatic mutation have tissue specificity. Thus, we 24 

developed a computational framework to infer tumor tissue-of-origin by integrating both gene mutation 25 

and expression (TOOme). Specifically, we first perform feature selection on both gene expressions and 26 

mutations by a random forest method. The selected features are then used to build up a multi-label 27 

classification model to infer cancer tissue-of-origin. We adopt a few popular multiple-label classification 28 
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methods , which are compared by the 10-fold cross validation process.  29 

We applied TOOme to the TCGA data containing 7,008 non-metastatic samples across 20 solid 30 

tumors. 74 genes by gene expression profile and 6 genes by gene mutation are selected by the random 31 

forest process, which can be divided into two categories: (1) cancer type specific genes and (2) those 32 

expressed or mutated in several cancers with different levels of expression or mutation rates. Function 33 

analysis indicates that the selected genes are significantly enriched in gland development, urogenital 34 

system development, hormone metabolic process, thyroid hormone generation prostate hormone 35 

generation and so on. According to the multiple-label classification method, random forest performs the 36 

best with a 10-fold cross-validation prediction accuracy of 96%. We also use the 19 metastatic samples 37 

from TCGA and 256 cancer samples downloaded from GEO as independent testing data, for which 38 

TOOme achieves a prediction accuracy of 89%. The cross-validation validation accuracy is better than 39 

those using gene expression (i.e., 95%) and gene mutation (53%) alone.  40 

In conclusion, TOOme provides a quick yet accurate alternative to traditional medical methods in 41 

inferring cancer tissue-of-origin. In addition, the methods combining somatic mutation and gene 42 

expressions outperform those using gene expression or mutation alone. 43 

 44 

Introduction  45 

Metastatic cancer is a common clinical challenge for limited evidence to determine its primary origin. 46 

Patients with carcinoma of unknown primary (CUP) account for about 5% of total cancer patients[1]. CUP 47 

are usually heterogeneous, and can lead to dilemmas in diagnosing and treatment since the original tumor 48 

site is unknown [2]. Clinically, CUP patients are generally treated with non-selective empirical 49 

chemotherapy, which usually leads to low survival rates [3]. Thus, identifying cancer tissue-of-origin 50 

(TOO) is critical in improving the treatment of cancer patients and extending their surviving time [4-6]. 51 

There are several ancillary examinations in CUP identification, among which immunohistochemistry 52 

(IHC) is an important one. However, this method relies on the experiences of pathologists and is 53 

labor-intensive. As a result, it is inaccurate in most of the times[7-11]. Positron emission tomography (PET) 54 

and computed tomography (CT) are also commonly used in the identification of CUP[12-14]. The 55 

detection rate of conventional radiological imaging on primary carcinoma reach 20%–27%, and that of 56 

PET reach 24%–40% [15]. The detection accuracy of PET/CT is awfully low that it rarely brings help to 57 

identify the primary origin. Obstacles in image technology cause much difficulty of effective use of 58 
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relative Carcinoma image to help tracing cancer tissue origin.  59 

Molecular profiling of tissue-specific genes is also being used in CUP work-up. Quantities of 60 

large-scale profiles of different tumors have been used for diagnose. Molecular profiling is as well as or 61 

better than IHC, in terms of poorly differentiated or undifferentiated tumors [16]. Therefore, making use of 62 

molecular profiling has become a popular way for diagnosis of unknown origin. Comprehensive molecular 63 

profiles displayed in The Cancer Genome Atlas (TCGA) including copy number variation, somatic 64 

mutation, gene expression, microRNA expression, DNA methylation, and protein expression, are used to 65 

identifying human tumor types [17]. By analysis of tumor types from data of methylation and copy number 66 

variation, tissue of origin and molecular classification can be revealed [18]. The methylation profile of 67 

metastasis in a meningeal melanocytic tumor is similar to that of primary tumor, and it is suggest that 68 

particular copy number variations may be associated with metastatic behavior [19]. Methylation and copy 69 

number variation are DNA-level molecular profiling, which brought great help to identify tumor origins. 70 

The copy number profile and gain or loss in specific chromosome regions have been researched by 71 

hybridization and cytogenetic-based methods [20, 21]. An IDH1 somatic mutation in genomic profiling 72 

was revealed to bring great benefit to the diagnosis of cholangiocarcinoma and trace the primary origin in 73 

a malignancy[22]. Marquard et al. obtained classification accuracy of 69% and 85% on 6 and 10 primary 74 

sited with somatic mutation respectively, based on PM and CN classifier(classifiers with both point 75 

mutations and copy number aberrations) with cross-validation[23]. Mutation of tumor-specific enrichment 76 

in certain genes, has been utilized to infer tumor localization, and Dietlein & Eschner developed a tool 77 

with mutation spectra to infer cancer origins with a prediction specificity of 79% [24, 25]. As a DNA-level 78 

molecular profiling, SNP, that is somatic mutation, can be used as a very useful tool to infer the tissue of 79 

origins. 80 

A lot of RNA-level gene expression profile have been explored to identify the cancer tissue of origin 81 

[26-30]. Erlander et al, have demonstrated that the gene expression value of samples detected in metastatic 82 

tumor is similar to that in the original tumor under condition of carcinoma of unknown primary [31]. 83 

Centeno et al, developed a hybrid model by integrating expression profiling and immunohistochemistry for  84 

microRNA-based qRT-PCR test on identification of cancer tissue origin, with 85% of the cases 85 

correctly identified [32]. Bloom, G et al, utilized artificial neural networks (ANNs) to predict the unknown 86 

cancer tissue origin with mean accuracy of 83-88% in different platforms[33].  87 

Numerous researches have utilized molecular profiles, such as copy number variation, somatic 88 
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mutation, gene expression, and so on for predicting cancer tissue origin. However, the accuracy of 89 

prediction was not satisfying. Identifying cancer tissue origin by combining somatic mutation and gene 90 

expression profiling on DNA level and RNA level respectively is first proposed in this study. Firstly, we 91 

obtained the data of somatic mutation and gene expression profiling from International Cancer Genome 92 

Consortium(ICGC) Database. Machine learning methods can help to improve the performance on 93 

prediction of cancer tissue origin. We aim to obtain better performance in predicting cancer tissue origin, 94 

by the combination of somatic mutation and gene expression profiling, based on random forest. Machine 95 

learning algorithm, such as logistic regression can be used to select gene [34]. However, random forest 96 

algorithm [35] was chosen as the gene selection algorithm in this study due to its advantage, good 97 

robustness and easy to use. Finally, we used random forest algorithm for classification of cancers. 98 

Experiment results showed that higher accuracy can be obtained by using the method proposed in this 99 

study.  100 

Materials and methods 101 

Gene expression data 102 

Gene expression profile was downloaded from ICGC Database version release-26 103 

(https://dcc.icgc.org/releases/release_26/). Each gene is named by Gene Symbol ID. The value of gene 104 

expression in each labeled sample is normalized by TPM. After deduplication, samples were extracted for 105 

combination with SNP samples.                                    106 

Somatic mutation data 107 

The somatic mutation data was downloaded from ICGC Database version release-28 108 

(https://dcc.icgc.org/releases/release_28/). Each gene is named by Ensembl Gene ID. For Gene Symbol ID 109 

is most widely used in paper, the Ensembl Gene ID of gene name in somatic mutation data was converted 110 

to Gene Symbol ID. The samples are deduplicated according to information of ICGC-donor-ID, 111 

chromosome, and locus in chromosome and gene-affected. Each sample was labeled by its type of cancer.   112 

Data combination 113 

The gene expression and somatic mutation data were merged into one feature matrix. For labeled samples 114 
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with gene expression array data only involves in 21 cancer types, and samples with Skin Cutaneous 115 

Melanoma(SKCM) were removed for it contributes to the major metastasis cancers. The sample with 116 

somatic mutation data whose label was not included in these 20 cancer types was removed. Then, the 117 

shared sample data was chosen, therefore the samples data after filtering is obtained from 20 different 118 

cancer types. An M*N matrix was generated, where M and N represents the number of sample and gene 119 

respectively. 120 

Gene selection 121 

Because gene sequencing and mutation detection are costly and time consuming, a scale reduction of gene 122 

number is necessary. There are many feature selection algorithms, like Lasso, PCA [36, 37] and etc. The 123 

Random forest [35, 38] was a supervised learning algorithm, which is an ensemble learning algorithm 124 

based on decision tree and was used to select genes. Best performance was obtained by using 80 selected 125 

genes.  genes were used in a tree, where n represents the number of genes. At the process of splitting 126 

node, Gini index was used, which is calculated by formula:  127 

 128 

        (1) 129 

 130 

Where  represents the weight referring to frequencies of cancers in a node,  represents the number of 131 

cancers and  represents the weight of the  cancer. The variable importance measures of  gene 132 

in node , that is the Gini index variation after splitting of node , is calculated by formula: 133 

  134 

             (2) 135 

Where  is a node in , which is a set of nodes,  represents variable importance measures of 136 

 gene in node , the  represents the Gini index before splitting,  and  represents the 137 

Gini index of two new node after splitting respectively. The importance of the  gene , in the  tree is 138 

calculated by formula: 139 

               (3) 140 

Where  represents the importance of the  gene in the  tree. If the set of trees is , the 141 

importance of the  gene in all the tree is calculated by formula: 142 
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               (4) 143 

Where  is the importance of the  gene in all trees. We sorted the importance scores of all 144 

genes, then the top  genes were selected, where  is the variable number of genes that can be set to 145 

find the best result.  146 

Multi-classifier Random Forest 147 

The random forest is actually a special method of bagging that using the decision tree as a model in 148 

bagging[38, 39]. First, the bootstrap method is used to generate  training sets, which is a set of samples. 149 

Then, each training set is used to construct a tree.  genes are used in a tree, where n represents the 150 

number of selected genes. When splitting a node, not all the genes are used to optimize the metric Gini 151 

index used in this study, a part of genes is randomly extracted instead. An optimal solution can be found 152 

among the extracted genes, and applied to node splitting. Leaf node in the tree records which gene is used 153 

to determine the cancer type, and each leaf node represents the last judged cancer type. The predicted 154 

cancer type is given by maximum votes from decision tree. 155 

Statistical Analysis 156 

The metric of precision, recall and F1 score were used to evaluate the performance of the model. 157 

True-positive, false-positive, true-negative and false-negative are abbreviated as TP, FP, TN and FN 158 

respectively. Precision is calculated by , which indicates the ability of classifier to 159 

differentiate positive from negative cases. Recall is calculated by , which indicates the 160 

ability of classifier to recognize all positive cases. The F1 score is calculated 161 

by . Each individual cancer type is calculated by these 162 

metrics, and the cohort metric adopt the mean report. The entire cohort is calculated by accuracy, reported 163 

as . 10 times 10-fold cross validation is used to obtain the metric report, whose 164 

average is treated as the result metric.  165 

Gene annotation 166 

The functions annotation of specific gene set was given. Geno ontology [40, 41] was used as enrichment 167 

analysis database. Gene clustering and visualization was realized by R package cluaterProfiler and 168 
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gogadget[42, 43].  169 

Results  170 

The workflow of TOOme 171 

The complete workflow of prediction on cancer tissue origin is shown in Fig 1. The process can be split 172 

into three steps. At the first step, we download the raw data from ICGC Database, and extracted the 173 

effective information to obtain preliminary data of somatic mutation and gene expression profiling. At the 174 

second step, we filtered the data of somatic mutation and gene expression profiling respectively. Then, 175 

samples with both somatic mutation data and gene expression proofing were used to form feature matrix. 176 

As a result, the generated feature matrix was used for gene selection. At the third step, most of the samples 177 

were utilized to train the model with 10-time 10 folds cross validation by using random forest 178 

classification algorithm. We carried out numerous experiments to evaluate the performance of the 179 

proposed method.  180 

 181 

 182 

Fig 1. The complete workflow of prediction on cancer tissue origin. 183 

 184 

Data used in this study 185 
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We used ICGC version 26 and 28 databases, with Gene expression profile and somatic mutation 186 

information to classify tumor samples. The allele mutation in somatic mutation data can be A/G, C/T, C/A 187 

and etc. For it is hard to distinguish mutation types with limited relative information and tools, we consider 188 

all kinds of allele mutation as gene mutation and count the number of gene mutation of each sample. 189 

Different from somatic mutation data, Gene expression profile array data is directly used. The sample 190 

distribution of each cancer is showed in Table 1, where samples suffer from BRCA are much more than 191 

from other cancers. Considerable prediction results can be obtained by our model. The precision, recall and 192 

 score, showed in Table 2, reach 99.86%, 99.47% and 99.67% respectively.  193 

In this study, there are 371 samples with metastasis, where 352 samples are SKCM. To avoid 194 

unbalanced distribution of samples, we removed all the SKCM samples with metastasis. Only 19 samples 195 

with metastasis were used as test dataset. 196 

 197 

Table 1. Sample distribution of each cancer from ICGC database. 198 

Available Cancer Types Abbreviation 
samples  

Amount Percentage 

Bladder urothelial carcinoma BLCA 294 4.20% 

Breast invasive carcinoma BRCA 970 13.84% 

Cervical squamous cell carcinoma and endocervical 

adenocarcinoma 
CESC 241 3.44% 

Colon adenocarcinoma COAD 390 5.57% 

Glioblastoma multiforme GBM 148 2.11% 

Head and Neck squamous cell carcinoma HNSC 460 6.56% 

Kidney renal clear cell carcinoma KIRC 345 4.92% 

Kidney renal papillary cell carcinoma KIRP 216 3.08% 

Acute Myeloid Leukemia LAML 121 1.73% 

Brain lower grade glioma LGG 433 6.18% 

Liver hepatocellular carcinoma LIHC 282 4.02% 

Lung adenocarcinoma LUAD 475 6.78% 

Lung squamous cell carcinoma LUSC 411 5.87% 

Ovarian serous cystadenocarcinoma OV 185 2.64% 

Pancreatic adenocarcinoma PAAD 134 1.91% 

Prostate adenocarcinoma PRAD 374 5.34% 

Rectum adenocarcinoma READ 137 1.95% 

Stomach adenocarcinoma STAD 412 5.88% 

Thyroid carcinoma THCA 486 6.93% 

Uterine corpus endometrial carcinoma UCEC 494 7.05% 

Total  7008 100% 

 199 
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Performance evaluation 200 

The classification accuracies obtained by using data of somatic mutation, gene expression profiling and 201 

both of them, under condition of using different number of genes, have been compared in Fig 2. Motivated 202 

by Ma, Patel et al that 5 genes can be used to solve a 32-type classification problem[44], 5 was chosen as 203 

the minimum number of genes. For gene sequencing and mutation detection are costly and time consuming, 204 

120 was chosen as the maximum number of genes. A lot of experiments have been done using the prepared 205 

data between the interval from 5 to 120. For using small number of genes did not obtain satisfying 206 

classification performance, the interval between number of genes was set to 10 or even larger until the 207 

number of genes equals to 50. Then the interval was set to 5 for fine tuning, based on small fluctuation by 208 

changed number of genes. 209 

Results with 10-time 10 folds cross validation on training dataset are shown in Fig 2 that accuracy of 210 

using data of both somatic mutation and gene expression profiling is always higher than that of only using 211 

one of it. The best result of them are 95.77%, 53.51% and 89.28%, obtained by using 80, 120 and 105 212 

genes respectively. Results shows that gene expression can make much contribution to obtain higher 213 

accuracy than data of somatic mutation. However, a combination of them achieved best classification 214 

performance. 215 

 216 

Fig 2. The classification accuracy of using somatic mutation, gene expression and combination of somatic 217 

mutation and gene expression respectively. 218 
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 219 

As for the test dataset, we conducted experiments by using the chosen 80 genes in training model. 220 

The overall classification accuracy is 89.47%. Table 3 shows the prediction probabilities of each sample on 221 

each cancer. The value on the table highlighted by color of green, yellow and pink presents high, middle 222 

and low probabilities respectively of predicting a sample to a cancer type. We obtained considerable 223 

prediction accuracy on sample with BRCA and THCA. Each sample was correctly predicted to the same as 224 

the true label. A sample whose true label is CESC was predicted to UCEC. A sample whose true label is 225 

BRCA was predicted to LGG with a terrible probability 1.65%. In this condition, we considered that little 226 

error on classification is tolerable. 227 

 228 

Table 2. Performance of classification of combination of somatic mutation and gene expression by using 229 

80 genes. 230 

Cancer Type Precision Recall F1-score Support Specificity 

BLCA 0.8906 0.9354 0.9124 294.0000 0.9950 

BRCA 0.9987 0.9947 0.9967 970.0000 0.9998 

CESC 0.9148 0.8859 0.9001 241.0000 0.9971 

COAD 0.7548 0.9644 0.8468 390.0000 0.9815 

GBM 0.9940 1.0000 0.9970 148.0000 0.9999 

HNSC 0.9916 1.0000 0.9958 460.0000 0.9994 

KIRC 0.9850 0.9516 0.9680 345.0000 0.9992 

KIRP 0.9344 0.9630 0.9485 216.0000 0.9979 

LAML 1.0000 1.0000 1.0000 121.0000 1.0000 

LGG 0.9926 0.9977 0.9952 433.0000 0.9995 

LIHC 0.9925 0.9844 0.9884 282.0000 0.9997 

LUAD 0.9358 0.9448 0.9403 475.0000 0.9953 

LUSC 0.9408 0.9000 0.9199 411.0000 0.9965 

OV 1.0000 0.9946 0.9973 185.0000 1.0000 

PAAD 0.9378 0.9552 0.9464 134.0000 0.9988 

PRAD 0.9973 1.0000 0.9987 374.0000 0.9998 

READ 0.7569 0.1591 0.2627 137.0000 0.9990 

STAD 0.9947 0.9976 0.9961 412.0000 0.9997 

THCA 1.0000 0.9979 0.9990 486.0000 1.0000 

UCEC 0.9673 0.9816 0.9744 494.0000 0.9975 

Accuracy 0.9577 0.9577 0.9577 0.0000  

 231 

232 
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 233 

Table 3. Prediction probabilities of each samples on each cancer. 234 

Cancer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

BLCA 0.0005 0.0015 0.0005 0 0.1825 0.162 0.0665 0.0155 0.002 0.001 0.034 0 0 0 0 0.0015 0.0005 0 0 

BRCA 0.993 0.9675 0.9995 0.999 0.6375 0.1195 0.045 0.066 0.0015 0.0005 0.0085 0.001 0.0005 0 0 0 0 0 0 

CESC 0.0005 0.004 0 0 0.047 0.101 0.8 0.086 0.0275 0.002 0.1115 0 0 0 0 0.0015 0 0 0.001 

COAD 0 0.001 0 0.0005 0.005 0.01 0.008 0.002 0.7015 0.001 0.009 0 0 0 0 0.001 0 0 0 

GBM 0 0 0 0 0.001 0.0035 0 0 0 0 0.001 0 0 0 0 0 0.0005 0 0 

HNSC 0.0005 0 0 0 0.0065 0.011 0.0055 0.0015 0 0.993 0.754 0 0 0 0 0 0 0 0.001 

KIRC 0 0 0 0 0.0015 0.0535 0.001 0.003 0.0005 0 0.001 0 0.0005 0 0 0.0015 0.001 0 0 

KIRP 0 0 0 0 0.004 0.038 0.001 0.0045 0.0005 0 0 0 0 0 0 0.0005 0.0015 0 0 

LAML 0 0.006 0 0 0.0155 0.0055 0 0.005 0.001 0 0.0005 0 0 0 0 0 0 0 0 

LGG 0 0 0 0 0.0125 0.165 0.0055 0.01 0.0005 0.0005 0.0035 0 0 0 0 0.001 0 0 0.0005 

LIHC 0 0.0005 0 0 0.003 0.0365 0.0045 0.0045 0.0095 0 0.001 0 0 0 0 0 0 0 0 

LUAD 0.0025 0.006 0 0 0.011 0.0225 0.009 0.012 0.001 0 0.0055 0.0065 0 0 0 0.0025 0.001 0.001 0.001 

LUSC 0.001 0.008 0 0.0005 0.017 0.0735 0.0375 0.008 0 0 0.024 0.001 0.0005 0 0 0.0015 0.0005 0.0005 0.002 

OV 0 0 0 0 0.002 0.0005 0 0.001 0 0 0 0 0 0 0 0 0.002 0 0 

PAAD 0 0.0005 0 0 0.0095 0.0775 0.004 0.0045 0.0075 0 0.001 0 0 0 0 0.0005 0 0 0 

PRAD 0 0.0005 0 0 0.003 0.004 0.002 0.001 0 0 0.0005 0 0 0 0 0 0 0 0.001 

READ 0 0.002 0 0 0.0005 0.001 0.003 0.0005 0.242 0.0005 0.0065 0 0 0 0 0 0 0 0 

STAD 0 0 0 0 0.0055 0.0025 0.0005 0.0005 0.0045 0 0.004 0 0 0 0 0 0 0 0 

THCA 0 0 0 0 0.0015 0.0035 0 0.0065 0 0 0.0005 0.991 0.9985 1 1 0.9875 0.9925 0.9985 0.992 

UCEC 0.002 0.0025 0 0 0.034 0.1095 0.007 0.768 0.0005 0.0015 0.034 0.0005 0 0 0 0.001 0.0005 0 0.0015 

LOW_CONFIDENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

predicted_label BRCA BRCA BRCA BRCA BRCA LGG CESC UCEC COAD HNSC HNSC THCA THCA THCA THCA THCA THCA THCA THCA 

true_label BRCA BRCA BRCA BRCA BRCA BRCA CESC CESC COAD HNSC HNSC THCA THCA THCA THCA THCA THCA THCA THCA 

correct 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

 235 

Mean value of gene expression and somatic mutations on each cancer 236 

We plotted the heatmap of mean value of gene expression and somatic mutations on each cancer. In Fig 3, 237 

the rows represent 74 genes of gene expression and columns denote the cancers. In Fig 4, the rows 238 

represent 6 genes of somatic mutation and columns represent the cancers. The mean value of gene 239 

expression and somatic mutation on a logarithmic scale was plotted with relative color. A color bar was 240 

used to display the value difference. Cancers that fell into cluster at horizontal axis had a similar value 241 

between gene expression or mutation number. The genes were also clustered at vertical axis based on the 242 

similarity between cancers. 243 

 244 

In review



 

12 

 

 245 

Fig 3. Heatmap of mean value of gene expression on each cancer. 246 

 247 

Fig 4. Heatmap of mean value of somatic mutations on each cancer. 248 

 249 
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Discussion 250 

Data of somatic mutation and gene expression profiling can be used to identify the primary site of tumors. 251 

However, it was the first time to identify the cancer tissue origin by using both data of somatic mutation 252 

and gene expression profiling. We carried out experiments by using 7008 samples with combination of 253 

data of somatic and gene expression profiling among 20 cancers. By comparing the performance of them, 254 

we obtained highest accuracy by leveraging both of the data of somatic mutation and gene expression 255 

profiling.  256 

The primary analysis tool we used was random forest [35, 38], a machine learning algorithm that can 257 

be used for gene selection and tumor classification. We chose top-rank 80 genes, where 6 genes and 74 258 

genes are corresponding to mutation and expression respectively, for classification. Therefore, it showed 259 

that data of somatic mutation performs worse than gene expression profiling on prediction of cancer tissue 260 

origin. Our method obtained 96% overall accuracy on the training dataset. The performance is maintained 261 

considerably on the external cohorts, and the overall accuracy on sample with metastatic disease is 89%. 262 

Our model cannot provide good performance on physiologically proximal cancers, such as uterine corpus 263 

endometrial carcinoma and cervical squamous cell carcinoma and endocervical adenocarcinoma. The 264 

endometrial and ovarian endometrioid carcinomas evolve from similar precursor endometrial epithelial 265 

cells; many researches are involved in the molecular pathogenesis of the endometrial and ovarian 266 

endometrioid carcinomas[45]. 267 

 268 
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 269 

Fig 5. Selected top-rank 80 genes enriched in cellular component, biological process and molecular 270 

function. 271 

 272 

We studied the role that gene plays in cellular component, biological process and molecular function. 273 

Fig 5 shows the top-rank 80 genes selected by random forest algorithm. The selected genes were enriched 274 

in hormone metabolic process, tissue and organ development and hormone-mediated signaling pathway, 275 

specifically in gland development, urogenital system development, hormone metabolic process, 276 

morphogenesis of a branching epithelium, morphogenesis of a branching structure, endocrine system 277 

development, branching morphogenesis of an epithelial tube，thyroid hormone metabolic process, thyroid 278 

hormone generation and prostate gland development. For example, APC plays a significant role in 279 

discovering pathogenesis of soft tissue tumors[46]. Birnbaum et al investigated what role the APC gene 280 

play in colorectal cancer, at the investigation of 183 colon adenocarcinomas, point mutations were found in 281 

73% of cases[47]. We obtained the similar conclusion that mutation of APC gene may be the important 282 

impact of colorectal cancer, as heatmap shown in Fig 4 that the mean number of APC gene mutation in 283 

colorectal cancer is more than that in other cancers except rectum adenocarcinoma. It can be explained that 284 

they are two physiologically proximal cancers. Mutation in IDH1 gene can reduce cell survival, 285 

proliferation and invasion of human glioma [48]. Mutation in IDH1 gene is an oncogenic driver in a 286 

majority of lower-grade gliomas and have an impact on brain lower grade glioma with different genetic 287 

pathway [49-51]. The same conclusion was acquired in Fig 4 that the mean number of IDH1 gene mutation 288 
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in Brain lower grade glioma is more than that in other cancers. 289 

ACPP gene plays a vital key in prostate adenocarcinoma [52-54]. From the heatmap, it is clear that 290 

the level of ACPP gene expression in prostate adenocarcinoma is higher than that in other cancers. The 291 

expression levels of TG were found to be altered in all kinds of thyroid carcinomas [55]. From Fig 3, we 292 

obtained similar results that the level of TG gene expression in thyroid carcinomas is higher than that in 293 

other cancers. 294 

Molecular profiling of tissue-specific genes can be utilized to identify the primary site of tumor. 295 

Combination of data of somatic mutation and gene expression profiling were first proposed in this study to 296 

predict the primary origin. We obtained considerable prediction performance, and therefore this research 297 

can bring great help to the identification of cancer tissue origin. However, we did not carry out research to 298 

discover the relationship between data of gene expression and somatic mutation. Our method cannot 299 

classify physiologically proximal cancers yet. And it is also a future work to employing other machine 300 

learning algorithms that can improve the classification performance.  301 

Conclusion 302 

Identification of cancer tissue origin is a challenging work recently and in the future. With a lot of 303 

molecular profiling available, we can make use of them alone and combine some of them to improve 304 

performance of identification primary site of tumor. Machine learning algorithm is also an effective tool to 305 

help classifying the cancers. The prediction performance can be tremendously affected by the number of 306 

features used. 307 

In this study, we used both molecular data of somatic mutation and gene expression profiling to 308 

generate a feature matrix. Then the optimal number of genes was obtained and the data was trained, based 309 

on random forest algorithm. The performance of using our method was also compared to only by using 310 

data of somatic mutation or gene expression profiling. Our method achieved highest accuracy. Experiment 311 

results shows that our method can be an effective tool for primary origin tracing. 312 
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