Supporting information for

"Light Absorption of Secondary Organic Aerosol: Composition and Contribution of Nitro-aromatic Compounds"

Mingjie Xie^{†,‡,§}, Xi Chen[§], Michael D. Hays[§], Michael Lewandowski^I, John H. Offenberg^I, Tadeusz E. Kleindienst^I, Amara L. Holder^{§,*}

[†]School of Environmental Science and Engineering, Nanjing University of Information Science

& Technology, Nanjing 210044, China

[‡]Oak Ridge Institute for Science and Education (ORISE), [§]National Risk Management Research

Laboratory, ¹National Exposure Research Laboratory, Office of Research and Development, U.S.

Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Pak, NC

27711, USA

Correspondence to: Amara Holder E-mail: holder.amara@epa.gov; Tel: +1 919 541 4635; Fax: +1 919 541 0554; Mailing address: 109 T.W. Alexander Dr. RTP, NC, 27709, USA

Table Number: 12 Figure Number: 14 Page number: 50

METHODS

1. UV-vis analysis

A 1.5 cm² punch of each filter sample was extracted with 5 mL methanol (HPLC grade, Thermo Fisher Scientific) ultrasonically for 15 min, followed by filtration through a 0.2 µm pore size polytetrafluoroethylene (PTFE) filter head using a glass syringe. The light absorption (A_{λ}) of filtered extracts was measured with a UV-vis spectrometer at $\lambda = 200-900$ nm and resolution of 0.2 nm (V660, Jasco Inc., Easton, MD). This work focused on the light absorption at $\lambda = 300$ -550 nm, where most of the BrC absorption has been observed.¹ A reference cuvette containing methanol was used to eliminate the solvent effect on absorption. In addition, the light absorption of blank filter extract (close to 0) was used for correction. The wavelength accuracy and repeatability were monitored on a monthly basis to ensure the quality of collected data. The wavelength accuracy is less than ± 0.3 nm and the wavelength repeatability is less than ± 0.05 nm. Many studies have shown that methanol can extract organic aerosol at very high efficiencies (> 90%), and a large fraction of light absorption in the near-UV and visible range is ascribed to water insoluble organic materials.¹⁻³ As such, we assumed that the secondary organic aerosol (SOA) in each filter sample was totally dissolved in the methanol extract, of which the light absorption reflected the total light absorption of each sample.

2. Calculation of imaginary refractive index

The optical properties of organic aerosol (OA) is commonly parameterized as complex refractive index (m = n - ik) in climate models.^{4,5} The real (n) and the imaginary (k) parts of the refractive index reflect the scattering and absorbing properties, respectively. The imaginary part of the refractive index (k) of SOA generated from the chamber experiments were calculated from their spectroscopic data using eq. S1:^{6,7}

$$k = \frac{\rho \times \lambda \times \text{Abs}_{\lambda}}{4 \times \pi \times \text{OM}} = \frac{\rho \times \lambda \times \text{MAE}_{\lambda}}{4 \times \pi}$$
(S1)

where $Abs_{\lambda}(Mm^{-1})$ is the light absorption coefficient, $MAE_{\lambda}(m^2 g^{-1})$ is the bulk mass absorption efficiency, and OM (µg m⁻³) is the concentration of SOA and ρ (g cm⁻³) is the density of SOA. In this work, the density of SOA is assigned as 1.2 g cm⁻³ based on the estimate from Turpin and Lim⁸ for organic aerosols.

3. HPLC/DAD-Q-ToFMS method

Target compounds separation was fulfilled using a Zorbax Eclipse Plus C18 column (2.1×100 mm, 1.8 μ m particle size, Agilent Technologies) with an injection volume of 2 μ L and flow rate of 0.2 mL/min. The column temperature was kept at 40 °C, and the gradient separation was conducted with 0.2% acetic acid (v/v) in water (eluent A) and methanol (eluent B). The concentration of eluent B was 25% for the first 3 min, increased to 100% from 3 to 10 min, held at 100% from 10 to 32 min, and then decreased back to 25% from 32 to 37 min. The DAD monitored absorbance of each sample from 200 to 900 nm with a step of 2 nm. For ease of analysis, we focused on the signal at 365 ± 10 nm, which is a general measure of chromophore components in sample extracts.

The Agilent 6520 series Accurate Mass Q-ToFMS instrument was equipped with a multimode ion source operated under the electrospray ionization (ESI) negative (-) ion mode. The ion source conditions used a 2000 V capillary voltage, 140 V fragmentor voltage, 65 V skimmer voltage, 300 °C gas temperature, 5 L min⁻¹ drying gas flow rate and 40 psig nebulizer. The ESI-Q-ToFMS instrument acquired mass spectra from m/z 40 to 1000 at rate of 3 spectra s⁻¹. At the beginning of each batch analysis, the Q-ToFMS instrument was calibrated by a diluted commercial available tuning mixture (Agilent G1969-85020). The specific ions included in the tuning mixture were 112.985587, 301.998139, 601.978977, 1033.988109, 1333.968947,

1633.949786, 1933.930624 and 2233.911463. During the running of each sample, the Q-ToFMS was continuously tuned through the injection of purine and HP-0921 acetate adduct (Agilent G1969-85001). The Mass Hunter Version B.05.01 Build 5.01.5125.3 software was used to acquire the data.

4. MAE_{λ} calculation for standard compounds

Methanol solution of standard compounds were diluted in series and analyzed by UV-vis spectrometer (scan from 200 to 900 nm). The UV-vis spectra of standard compounds at around 1 ng μ L⁻¹ are shown in Figure S11. The 3,5-dinitrocatechol, a surrogate standard representing the light-absorbing characteristics of C₆H₄N₂O₆ in the identified compounds, could not be detected with HPLC/DAD-Q-ToFMS using the method in this work, which might be associated with its poor ionization efficiency. As such, it was not used for the quantification of C₆H₄N₂O₆. The MAE_{λ} (m² g⁻¹) for each standard compound could be calculated as:

$$MAE_{\lambda} = \frac{Abs_{\lambda}^{*}}{c_{l}}$$
(S2)

where Abs_{λ}^{*} (m⁻¹) is the light absorption coefficient of each standard compound in methanol solution; C_l (ng μ L⁻¹) is the concentration of each standard compound in methanol solution. The Abs_{λ}^{*} could be obtained from the following equation.

Abs_{$$\lambda$$}^{*} = $\frac{(A_{\lambda} - A_{700}) \times \ln(10)}{L}$ (S3)

Here, A_{λ} and A_{700} come from the UV-vis spectrometer; *L* is the optical path length of the quartz cuvette (0.01 m) in the UV-vis spectrometer.

Combining eqs. S2 and S3, $A_{\lambda} - A_{700}$ and C_l are linearly related as:

$$A_{\lambda} - A_{700} = MAE_{\lambda} \times C_l \times \frac{L}{\ln(10)}$$
(S4)

For most of the standard compounds, the Beer-Lambert law is valid in the whole concentration range, and the MAE_{λ} could be obtained from the slope of the linear regression between A_{λ} – A₇₀₀ and *C_l*.

However, the Beer-Lambert law is not valid for some standard compounds at high concentrations. Interestingly, $A_{\lambda} - A_{700}$ is still linearly related to C_l , but the intercept value is not 0. Then eq. S4 could be rewritten as:

$$A_{\lambda} - A_{700} = MAE_{\lambda}' \times C_l \times \frac{L}{\ln(10)} + b \times \frac{L}{\ln(10)}$$
(S5)

where $b \times L/\ln(10)$ (m⁻¹) is the intercept; the slope of the linear regression between $A_{\lambda} - A_{700}$ and C_l was assumed to be directly related to MAE_{λ}' . The MAE_{λ} values of standard compounds at different concentration ranges and wavelengths were provided in Table S4.

5. Abs_{*i*} attribution for identified compounds

To estimate the contribution of each identified nitro-aromatic compound to the total light absorption of each SOA sample, the Abs_{λ} (Mm⁻¹) of each identified compound was calculated using eq.1 of the manuscript.

$$Abs_{\lambda} = (A_{\lambda} - A_{700}) \times \frac{V_l}{V_a \times L} \ln(10)$$
(1)

where V_l (m³) is the volume of methanol (5 mL) used for extraction and V_a (m³) is the volume of the sampled air.

In the concentration range where the Beer-Lambert law is valid, the Abs_{λ} of each identified compound could be obtained by combining eqs. S4 and 1.

$$Abs_{\lambda} = MAE_{\lambda} \times C_{l} \times \frac{L}{\ln(10)} \times \frac{V_{l}}{V_{a} \times L} \ln(10) = MAE_{\lambda} \times C_{a}$$
(S6)

where C_a (ng m⁻³) is the concentration of identified compounds in the air.

While in the high concentration range of some compounds where the Beer-Lambert law is not valid, the Abs_{λ} of each identified compound could be obtained by combining eqs. S5 and 1.

$$Abs_{\lambda} = (MAE_{\lambda}' \times C_l \times \frac{L}{\ln(10)} + b \times \frac{L}{\ln(10)}) \times \frac{V_l}{V_a \times L} \ln(10) = MAE_{\lambda}' \times C_a + b \times \frac{V_l}{V_a}$$
(S7)

For simplicity, only 5 representative wavelength (365, 400, 450, 500, 550 nm) in the range of 300 - 550 nm were selected for Abs_{λ} attribution. The method used for Abs_{λ} attribution in this work presumes that the light absorption of each identified compound in sample extracts is not impacted by other components, which needs to be evaluated in further study.

Experiment ID	Filter ID	VOC type	Oxidant	Humidity (%)	Initial [NO _X] ppm	Initial [H ₂ O ₂] ppm	Initial [VOC] ppmC	ΔVOC ^a ppmC	SOA yield	V (m ³) ^b	SOA Conc. ^c (µg m⁻³)
ER605	GF2	α-Pinene	NO _X	18.5	0.25	/	1.61	1.35	0.056	26.5	31.6
ER618	GF4	a-Pinene	NO _X	10.1	0.30	/	2.88	2.78	0.095	18.4	103
ER636	GF2	α-Pinene	NO _X	18.4	0.20	/	1.43	1.21	0.046	29.7	22.4
ER726	GF2	α-Pinene	NOx	10.5	0.074	/	1.10	0.98	0.065	22.4	24.4
ER606	GF2	α-Pinene	H_2O_2	18.7	/	6.23	1.01	0.88	0.25	26.8	94.8
ER620	GF4	α-Pinene	H_2O_2	10.1	/	2.55	1.05	1.02	0.20	18.4	77.1
ER633	GF2	Isoprene	NOx	18.5	0.35	/	5.81	5.45	0.007	29.6	15.2
ER728	GF2	Isoprene	NOx	10.3	0.49	/	6.68	6.19	0.005	19.6	11.0
ER729	GF2	Isoprene	NOx	10.2	0.79	/	8.52	8.25	0.007	16.8	18.7
ER629	GF2	Isoprene	H_2O_2	18.6	/	4.79	5.45	3.67	0.025	29.6	38.5
ER630	GF2	Isoprene	H_2O_2	18.6	/	13.6	2.17	1.84	0.040	33.3	31.1
ER393	GF2	β-Caryophyllene	NOx	10.2	0.21	/	0.45	0.35	0.42	21.4	57.1
ER716	GF2	β-Caryophyllene	NO _X	9.82	0.099	/	0.73	N.A. ^d	N.A. ^d	16.8	123
ER533	GF3	β-Caryophyllene	H_2O_2	10.2	/	0.26	0.39	0.39	0.51	20.5	81.4
ER693	GF2	β-Caryophyllene	H_2O_2	20.7	/	12.7	0.51	0.49	0.86	23.4	180
ER538	GF2	1,3,5-Trimethylbenzene	NO _X	15.8	0.50	/	4.51	3.97	0.016	19.0	25.8
ER752	GF5	1,3,5-Trimethylbenzene	NO _X	13.1	0.36	/	7.56	2.80	0.074	17.1	82.2
ER536	GF2	1,3,5-Trimethylbenzene	H_2O_2	16.0	/	3.53	6.41	4.91	0.063	18.1	128
ER536	GF5	1,3,5-Trimethylbenzene	H_2O_2	16.0	/	1.76	6.54	4.43	0.031	18.3	57.3
ER388	GF5	1,2,4-Trimethylbenzene	NO _X	10.3	0.25	/	12.56	7.76	0.020	39.4	54.5
ER753	GF5	1,2,4-Trimethylbenzene	NO _X	12.1	0.39	/	7.13	3.20	0.047	17.1	58.5
ER435	GF2	1,2,4-Trimethylbenzene	H_2O_2	10.2	/	3.49	6.09	3.74	0.084	18.9	117
ER435	GF5	1,2,4-Trimethylbenzene	H_2O_2	10.2	/	6.98	6.21	4.89	0.12	18.6	215
ER435	GF8	1,2,4-Trimethylbenzene	H_2O_2	10.2	/	1.74	6.26	3.14	0.050	18.9	58.3

Table S1. Summary of experimental conditions and sample information in this work.

^a Reacted VOC concentration; ^b filter sample volume; ^c concentrations of SOA based on filter weight change and sample volume; ^d not available; ^e CH₃ONO was added and the concentration ranged from 0.072 to 0.083 ppmC.

Table S1. Continue

Experiment ID	Filter ID	VOC	Oxidant	Humidity (%)	Initial [NO _X] ppm	Initial [H ₂ O ₂] ppm	Initial [VOC] ppmC	ΔVOC ^a ppmC	SOA yield	V (m ³) ^b	SOA Conc. ^c (µg m ⁻³)
ER366	GF2	m-Xylene	NOx	10.5	0.42	/	12.3	6.96	0.051	17.3	130
ER610	GF2	m-Xylene	NO _X	19.0	0.27	/	5.27	3.28	0.058	26.9	69.9
ER695	GF2	m-Xylene	NO _X	20.7	0.34	/	7.45	5.21	0.045	23.5	97.3
ER751	GF5	m-Xylene	NOx	12.2	0.29	/	5.53	3.23	0.059	17.1	74.7
ER429	GF6	m-Xylene	H_2O_2	14.6	/	5.85	5.39	2.65	0.11	27.3	112
ER430	GF2	m-Xylene	H_2O_2	10.2	/	4.41	4.86	2.45	0.14	20.7	118
ER430	GF6	m-Xylene	H_2O_2	10.2	/	4.41	5.08	2.15	0.077	18.9	59.9
ER612	GF2	m-Xylene	H_2O_2	18.7	/	2.46	2.10	1.31	0.052	26.9	29.2
ER613	GF2	m-Xylene	H_2O_2	18.7	/	2.54	2.75	1.36	0.075	26.9	42.1
ER634	GF2	Toluene	NOx	18.9	0.32	/	7.11	2.82	0.094	29.7	109
ER634	GF4	Toluene	NOx	18.9	0.32	/	4.98	1.86	0.051	29.7	39.2
ER694	GF2	Toluene	NO _X	19.1	0.35	/	5.50	2.64	0.051	23.5	56.1
ER700	GF2	Toluene	NO _X	7.64	0.32	/	4.42	2.61	0.082	14.2	71.5
ER701	GF2	Toluene	NO _X	9.73	0.30	/	4.55	2.41	0.078	16.7	72.8
ER702	GF2	Toluene	NOx	8.09	0.31	/	4.29	2.90	0.090	12.3	71.1
ER744	GF2	Toluene	NOx	11.3	0.30	/	5.05	2.34	0.067	17.0	58.9
ER745	GF2	Toluene	NOx	9.44	0.19	/	5.13	3.19	0.079	12.1	70.3
ER755	GF5	Toluene	NO _X	12.3	0.30	/	6.05	2.53	0.12	17.1	117
ER433	GF2	Toluene	H_2O_2	10.2	/	6.17	5.46	2.29	0.20	18.9	170
ER541	GF2	Toluene	H_2O_2	15.8	/	3.10	2.18	0.97	0.085	30.3	33.4
ER553	GF2	Toluene	H_2O_2	16.0	/	11.1	2.90	1.41	0.078	21.3	42.8
ER772	GF5	Toluene	H_2O_2	11.7	/	7.92	6.09	1.70	0.16	18.3	101
ER390	GF3	Ethylbenzene	NO _X	10.2	0.22	/	11.0	3.76	0.056	21.4	78.3
ER754	GF8	Ethylbenzene	NO _X	12.3	0.27	/	6.37	1.99	0.13	17.1	98.5
ER759	GF2	Ethylbenzene	NO _X	19.1	0.23	/	4.08	0.82	0.075	17.1	26.1
ER760	GF2	Ethylbenzene	NOx	11.4	0.19	/	3.79	1.79	0.11	8.60	58.3
ER761	GF2	Ethylbenzene	NO _X	11.6	0.19	/	3.63	1.46	0.077	14.9	37.9
ER762	GF2	Ethylbenzene	NO _X	11.8	0.20	/	3.62	1.09	0.062	17.1	25.3
ER770	GF2	Ethylbenzene	H_2O_2	12.1	/	7.20	4.51	1.29	0.065	17.5	32.3
ER770	GF5	Ethylbenzene	H_2O_2	12.1	/	7.20	4.52	1.26	0.047	17.5	22.7
ER770	GF8	Ethylbenzene	H_2O_2	12.1	/	7.20	4.53	1.35	0.096	17.5	51.9
ER770	GF11	Ethylbenzene	H_2O_2	12.1	/	7.20	4.53	1.38	0.077	17.6	41.4
ER773	GF5	Ethylbenzene	H_2O_2	11.9	/	7.83	4.72	1.67	0.14	17.5	87.5

Table S1. Continue

Experiment ID	Filter ID	VOC type	Oxidant	Humidity (%)	Initial [NO _X] ppm	Initial [H ₂ O ₂] ppm	Initial [VOC] ppmC	ΔVOC ^a ppmC	SOA yield	V (m ³) ^b	SOA Conc. ^c (µg m ⁻³)
ER542	GF2	Benzene ^e	NOx	15.5	0.27	/	9.00	1.55	0.12	20.0	74.1
ER542	GF4	Benzene ^e	NO _X	15.5	0.27	/	9.41	1.92	0.061	30.2	47.2
ER543	GF2	Benzene ^e	NOx	15.5	0.27	/	7.00	1.23	0.041	36.3	20.8
ER615	GF2	Benzene ^e	NO _X	18.5	0.25	/	7.44	0.97	0.064	26.8	25.2
ER704	GF2	Benzene	NO _X	25.5	0.18	/	8.11	1.36	0.087	28.2	47.0
ER705	GF2	Benzene	NO _X	9.94	0.29	/	8.10	1.34	0.055	19.7	27.4
ER756	GF5	Benzene	NO _X	12.2	0.28	/	12.7	2.82	0.36	17.1	383
ER763	GF4	Benzene	NO _X	12.0	0.18	/	12.7	2.21	0.16	17.1	136
ER544	GF2	Benzene	H_2O_2	15.5	/	2.89	3.97	0.94	0.075	35.1	28.2
ER614	GF2	Benzene	H_2O_2	18.5	/	4.44	4.67	0.73	0.055	26.9	16.6
ER706	GF2	Benzene	H_2O_2	10.3	/	9.43	9.34	2.78	0.064	20.2	66.7
ER771	GF2	Benzene	H_2O_2	11.7	/	6.98	8.01	1.61	0.063	18.2	26.7
ER771	GF5	Benzene	H_2O_2	11.7	/	6.98	8.00	1.54	0.046	17.4	24.2
ER703	GF2	Napthalene	NOx	19.3	0.25	/	0.75	0.49	0.11	23.3	20.8
ER730	GF3	Napthalene	NOx	10.3	0.28	/	0.67	0.35	0.29	22.4	38.3
ER767	GF5	Napthalene	NO _X	11.8	0.21	/	1.31	0.46	0.41	17.1	70.5
ER460	GF5	Napthalene	H_2O_2	15.3	/	2.12	0.81	0.66	0.38	20.3	106
ER774	GF2	Napthalene	H_2O_2	11.8	/	8.05	1.57	1.16	0.39	17.2	173
ER774	GF5	Napthalene	H_2O_2	11.8	/	8.05	1.57	1.18	0.37	17.2	164
ER707	GF3	m-Cresol	NO _X	10.2	0.27	/	1.65	1.22	0.18	17.2	83.7
ER713	GF3	m-Cresol	NO _X	10.4	0.11	/	2.97	1.44	0.73	16.2	479
ER749	GF5	m-Cresol	NO _X	12.6	0.087	/	0.71	0.66	0.29	17.1	85.8
ER776	GF2	m-Cresol	H_2O_2	11.6	/	10.1	0.22	0.19	0.65	17.0	54.0
ER776	GF5	m-Cresol	H_2O_2	11.6	/	10.1	0.22	0.19	0.62	17.2	52.7

Table S2 Identified nitrogen-aromatic compounds by HPLC/ESI-Q-ToFMS from the oxidation of VOCs studied in
this work.

Suggested Formula	Theoretical m/z [M-H] ⁻	Measured m/z [M-H] ⁻	Proposed structure ^a	Quantified as ^b	Absorbing as ^c
$C_6H_5NO_3$	138.0196	138.0199	OH O'N'O	4-Nitrophenol (C ₆ H₅NO ₃)	4-Nitrophenol (C ₆ H ₅ NO ₃)
C7H7NO3	152.0353	152.0345	OH ↓ o ^{-,N} ≷o	2-Methyl-4-nitrophenol (CzHzNO ₂)	2-Methyl-4-nitrophenol (C7H7NO3)
$C_6H_5NO_4$	154.0145	154.0146	OH O ^{-N} ⁺ OH	4-Nitrocatechol (C ₆ H ₅ NO ₄)	4-Nitrocatechol (C ₆ H ₅ NO ₄)
C7H7NO4	168.0302	168.0300	OH OH OH	2-Methyl-4-nitroresorcinol	2-Methyl-4-nitroresorcinol
$C_6H_5NO_5$	170.0095	170.0094	HO UH OH	$(C_7H_7NO_4)$	$(C_7H_7NO_4)$
C ₈ H ₇ NO ₄	180.0302	180.0307		2-Methyl-5-nitrobenzoic acid (C ₈ H ₇ NO ₄)	2-Methyl-5-nitrobenzoic acid ($C_8H_7NO_4$)

^a Only one isomer of each formula was proposed for simplicity; ^b standard compounds used for the quantification of identified nitro-aromatic compounds; ^c standard compounds used to estimate the light absorption of quantified nitro-aromatic compounds.

Table S2. Continue.

Suggested Formula	Theoretical m/z [M-H] ⁻	Measured m/z [M-H] ⁻	Proposed structure	Quantified as	Absorbing as
C7H5NO5	182.0095	182.0098		2-Methyl-5-nitrobenzoic acid $(C_8H_7NO_4)$	2-Methyl-5-nitrobenzoic acid (C ₈ H ₇ NO ₄)
C ₈ H ₉ NO₄	182.0459	182.0454	OH ON O	2-Methyl-4-nitroresorcinol $(C_7H_7NO_4)$	2-Methyl-4-nitroresorcinol ($C_7H_7NO_4$)
C7H7NO5	184.0253	184.0255		2-Nitrophloroglucinol (C ₆ H ₅ NO ₅)	2-Nitrophloroglucinol (C ₆ H ₅ NO ₅)
$C_{10}H_7NO_3$	188.0353	188.0354		2-Nitro-1-naphthol (C ₁₀ H ₇ NO ₃)	2-Nitro-1-naphthol (C ₁₀ H ₇ NO ₃)
C ₉ H ₉ NO ₄	194.0458	194.0459	O OH	2,5-Dimethyl-4-nitrobenzoic acid	2,5-Dimethyl-4-nitrobenzoic acid
C ₈ H ₉ NO₅	198.0407	198.0412		$(C_9H_9NO_4)$ H_0 H_0 H_0 H_0 H_0 H_0 H_0 H_0 H_1 H_2 H_1 H_2 H_3 H_1 H_2 H_3 H_1 H_2 H_2 H_3 H_1 H_2 H	$(C_{9}H_{9}NO_{4})$ $(C_{9}H_{9}NO_{4})$ $(C_{9}H_{9}NO_{4})$ $(C_{9}H_{9}NO_{4})$ $(C_{9}H_{9}NO_{4})$ $(C_{9}H_{9}NO_{4})$ $(C_{9}H_{9}NO_{4})$ $(C_{9}H_{9}NO_{4})$

Table S2. Continue

Suggested Formula	Theoretical m/z [M-H] ⁻	Measured m/z [M-H] ⁻	Proposed structure	Quantified as	Absorbing as
$C_6H_4N_2O_6$	198.9997	198.9994		4,6-Dinitro-2-methylresorcinol $(C_7H_6N_2O_6)$	OH OH OH OH OH OH OH OH
C ₁₀ H ₇ NO ₄	204.0302	204.0300	OH O-N O	2-Nitro-1-naphthol (C ₁₀ H ₇ NO ₃)	2-Nitro-1-naphthol
C7H6N2O6	213.0157	213.0149	O ^T OH O ^T OH O ^T OH	4,6-Dinitro-2-methylresorcinol $(C_7H_6N_2O_6)$	4,6-Dinitro-2- methylresorcinol (C ₇ H ₆ N ₂ O ₆)

Standard compounds	Formula	<i>m/z</i> , [M-H] ⁻	Recovery ($N^a = 4, \%$)	Detection Limit (pg)
4-Nitrophenol	$C_6H_5NO_3$	138.0196	97.7 ± 0.92^{b}	4.25
2-Methyl-4-nitrophenol	C ₇ H ₇ NO ₃	152.0353	97.0 ± 0.78	2.31
4-Nitrocatechol	$C_6H_5NO_4$	154.0145	75.1 ± 0.48	4.79
2,6-Dimethyl-4-nitrophenol	$C_8H_9NO_3$	166.0510	100 ± 2.76	3.74
2-Methyl-4-nitroresocinol	C ₇ H ₇ NO ₄	168.0302	105 ± 2.52	0.70
2-Nitrophloroglucinol	$C_6H_5NO_5$	170.0095	92.9 ± 7.10	2.55
2-Methyl-5-nitrobenzoic acid	C ₈ H ₇ NO ₄	180.0302	106 ± 6.08	14.7
2-Nitro-1-naphthol	$C_{10}H_7NO_3$	188.0353	90.6 ± 6.56	16.1
2,5-dimethyl-4-nitrobenzoic acid	$C_9H_9NO_4$	194.0458	116 ± 4.52	17.6
4,6-Dinitro-2-methylresorcinol	$C_7H_6N_2O_6$	213.0157	113 ± 8.18	2.02

 Table S3 Recoveries and method detection limit (MDL) for standard compounds used for quantification.

^a Number of repetition; ^b mean ± standard deviation.

Compounds	Formula	m/z,	λ (nm)	Linear regression 1 (intercept = 0)			Linear regression 2 (intercept ≠ 0)				
Compoditas	Formula	[M-H] ⁻	л (нн)	Conc. range (ng µL ⁻¹) ^a	MAE (m ² g ⁻¹) ^b	r	Conc. range (ng µL ⁻¹)	MAE (m ² g ⁻¹)	b^{d}	r	
4-Nitrophenol	$C_6H_5NO_3$	138.0196	365	< = 4.28	2.44	1.00					
			400	< = 1.07	0.71	0.94					
			450	/ ^c	/	/					
			500	/	/	/					
			550	/	/	/					
2-Methyl-4-nitrophenol	C ₇ H ₇ NO ₃	152.0353	365	< = 4.76	3.15	1.00					
			400	< = 1.19	0.53	0.71					
			450	/	/	/					
			500	/	/	/					
			550	/	/	/					
4-Nitrocatechol	$C_6H_5NO_4$	154.0145	365	< = 11.4	7.02	1.00					
			400	< 0.29	6.95	0.99	> = 0.29 and < = 11.4	2.39	1.61	1.00	
			450	< 0.29	4.97	0.99	> = 0.29 and < = 11.4	1.11	1.36	1.00	
			500	< 0.29	1.34	0.75	> = 0.29 and < = 11.4	0.18	0.21	0.96	
			550	/	/	/					
2,6-Dimethyl-4-nitrophenol	C ₈ H ₉ NO ₃	166.0510	365	< = 4.00	3.20	1.00					
			400	< = 4.00	0.51	0.99					
			450	/	/	/					
			500	/	/	/					
			550	/	/	/					
2-Methyl-4-nitroresorcinol	C7H7NO4	168.0302	365	< = 33.3	12.9	1.00					
			400	< 1.11	4.49	0.99	> = 1.11 and < = 33.3	2.23	4.40	1.00	
			450	< 1.11	1.20	0.97	> = 1.11 and < = 33.3	0.30	1.77	0.97	
			500	/	/	/					
			550	/	/	/					
2-Nitrophloroglucinol	C ₆ H₅NO₅	170.0095	365	< = 3.72	14.0	1.00					
			400	< 0.93	14.1	1.00	> = 0.93 and < = 3.72	7.39	6.56	1.00	
			450	< 0.93	1.61	0.99	> = 0.93 and < = 3.72	0.87	0.78	1.00	
			500	/	/	/					
			550	/	/	/					

Table S4. Characteristics of linear regression between $A_{\lambda} - A_{700}$ and concentration of standard compounds.

^a Concentration ranges for linear relationship; ^b equals to slope x ln (10) x 100; ^c No absorption was observed at these wavelengths; ^d equals to intercept x ln (10) x 100.

Table S4. Continue

Compounds	Formula	MW	λ (nm)	Linear regression 1 (intercept = 0)		Linear reg	ression 2 (intercep	t≠0)		
				Conc. range (ng µL ⁻¹)	MAE (m ² g ⁻¹)	r	Conc. range (ng µL ⁻¹)	MAE (m ² g ⁻¹)	b	r
2-Methyl-5- nitrobenzoic acid	C ₈ H ₇ NO ₄	180.0302	365	< = 2.14	0.35	0.93				
			400	/	/	/				
			450	/	/	/				
			500	/	/	/				
			550	/	/	/				
2-Nitro-1-naphthol	$C_{10}H_7NO_3$	188.0353	365	< = 4.64	3.75	1.00				
			400	< = 4.64	6.17	1.00				
			450	< = 4.64	2.33	1.00				
			500	< 1.16	0.39	0.97	> = 1.16 and < = 4.64	0.18	0.25	0.99
			550	/	/	/				
2.5-dimethvl-4-		4040450	0.05	0.04	0.00					
nitrobenzoic acid	C ₉ H ₉ NO ₄	194.0458	365	< = 3.64	0.39	0.99				
			400	/	/	/				
			450	/	/	/				
			500	/	/	/				
			550	/	/	/				
3,5-Dinitrocatechol	$C_6H_4N_2O_6$	198.9997	365	< = 4.28	6.54	1.00				
			400	< = 4.28	7.00	0.99				
			450	< = 4.28	2.74	1.00				
			500	< = 4.28	0.58	0.98				
			550	< = 4.28	0.21	0.96				
4,6-Dinitro-2-		213 0153	365	z = 1.82	7.05	1.00				
methylresorcinol	0/11611206	210.0100	000	< = 1.02	7.00	1.00				
			400	< = 1.82	11.4	1.00				
			450	< = 1.82	6.29	1.00				
			500	< = 1.82	0.32	0.97				
			550	/	/	/				

	α-Pi	nene	Isop	prene	β-Caryo	ophyllene
	$NO_{X} (N = 4)$	$H_2O_2 (N = 2)$	$NO_{X} (N = 3)$	$H_2O_2 (N = 2)$	$NO_{X} (N = 2)$	H_2O_2 (N = 2)
λ (nm)				MAE		
365	0.026 ± 0.0058^{a} (0.023 - 0.033)	0.019 ± 0.0023 (0.017 - 0.022)	NA	NA	0.010 ± 0.0092 (0.0010 - 0.019)	0.029 ± 0.011 (0.011 - 0.032)
400	0.018 ± 0.0071 (0.014 – 0.027)	0.0082 ± 0.0006 (0.076 - 0.0088)	NA	NA	NA	0.015 ± 0.0088 (0.0067 - 0.024)
450	0.0057 ± 0.0039 (0.0036 - 0.0098)	0.0037 ± 0.0005 (0.031 - 0.0042)	NA	NA	NA	0.0090 ± 0.0080 (0.0010 - 0.017)
500	NA ^b	NA	NA	NA	NA	0.0076 ± 0.011 (0.0000 - 0.015)
550	NA	NA	NA	NA	NA	0.0045 ± 0.0044 (0.0001 - 0.0089)
				k		
365	0.0009 ± 0.0002 (0.0008 - 0.0011)	0.0007 ± 0.0001 (0.0006 - 0.0008)	NA	NA	0.0004 ± 0.0003 (0.0000 - 0.007)	0.0008 ± 0.0004 (0.0004 - 0.0011)
400	0.0007 ± 0.0003 (0.0005 - 0.0010)	0.0003 ± 0.0000 (0.0003 - 0.0003)	NA	NA	NA	0.0006 ± 0.0003 (0.0003 - 0.0009)
450	0.0002 ± 0.0002 (0.0002 - 0.0004)	0.0002 ± 0.0000 (0.0001 - 0.0002)	NA	NA	NA	0.0004 ± 0.0003 (0.0000 - 0.0007)
500	NA	NA	NA	NA	NA	0.0004 ± 0.0004 (0.0000 - 0.0007)
550	NA	NA	NA	NA	NA	0.0002 ± 0.0002 (0.0000 - 0.0005)
			Absorption Angstro	om Exponent calculat	tion	
Å _a	15.3 ± 16.2 (8.51 – 39.5)	8.91 ± 0.19 (8.72 – 9.10)	33.0 ± 50.7 (2.73 – 91.5)	3.41 ± 0.68 (2.73 – 4.09)	14.8 ± 5.64 (9.15 – 20.4)	7.08 ± 3.66 (3.43 – 10.7)
r	-0.82 ± 0.19 ^c (-0.880.55)	-0.92 ± 0.024 (-0.940.89)	-0.47 ± 0.21 (-0.68 – -0.24)	-0.57 ± 0.11 (-0.68 – -0.46)	-0.89 ± 0.06 (-0.950.83)	-0.96 ± 0.01 (-0.97 – -0.95)
% NA ^d	36.9 ± 43.1 (25.2 – 97.1)	16.9 ± 0.16 (16.7 – 17.2)	50.6 ± 42.3 (20.7 – 99.0)	84.6 ± 6.20 (78.4 – 90.8)	47.2 ± 26.2 (21.2 - 73.2)	14.0 ± 14.0 (0.00 - 28.0)

Table S5. Summary of average bulk MAE, *k* and Å_a values of SOA extracts and their ranges for different chamber experiments.

^a For sample number N > 2, represent mean ± standard deviation; for sample number N=2, represent mean ± difference/2; ^b 0 or very small negative values (close to 0) were obtained for these measurements; ^c correlation coefficients for the linear regression between log (Abs_{λ}) and log (λ), λ ranges from 300 to 550 nm; ^d represent the percentage of A_{λ} - A_{700} measurements with small negative values (close to 0) in the λ range of 300 to 550 nm; ^e significant difference (p < 0.05) has been observed for MAE values at 365 nm between NO_X and H₂O₂ conditions.

Table S5. Continue

	1,3,5-Trin	nethylbenzene	1,2,4-Trime	thylbenzene	<i>m</i> -X	ylene	Tolu	iene ^e
	$NO_{X} (N = 2)$	$H_2O_2 (N = 2)$	$NO_X (N = 2)$	$H_2O_2 (N = 3)$	$NO_{X} (N = 4)$	$H_2O_2 (N = 5)$	$NO_{X} (N = 9)$	$H_2O_2 (N = 4)$
λ (nm)					MAE			
365	NA	0.030 ± 0.019 (0.011 – 0.049)	0.17 ± 0.072 (0.094 – 0.24)	0.088 ± 0.018 (0.071 – 0.11)	0.12 ± 0.048 (0.094 - 0.19)	0.079 ± 0.016 (0.063 – 0.10)	0.55 ± 0.17 (0.39 – 0.96)	0.17 ± 0.051 (0.11 – 0.23)
400	NA	NA	0.082 ± 0.04 (0.042 - 0.12)	0.036 ± 0.0088 (0.027 – 0.45)	0.054 ± 0.023 (0.041 - 0.088)	0.033 ± 0.012 (0.021 – 0.052)	0.31 ± 0.093 (0.22 -0.53)	0.089 ± 0.031 (0.051 – 0.12)
450	NA	NA	0.032 ± 0.019 (0.013 - 0.051)	0.0065 ± 0.0029 (0.0042 - 0.0097)	0.014 ± 0.0071 (0.0091 - 0.024)	0.010 ± 0.010 (0.0014 – 0.027)	0.13 ± 0.036 (0.099 – 0.22)	0.033 ± 0.012 (0.016 – 0.042)
500	NA	NA	0.014 ± 0.0086 (0.0049 - 0.022)	NA	0.0038 ± 0.0034 (0.0011 - 0.0085)	0.0057 ± 0.0050 (0.0012 – 0.011)	0.052 ± 0.015 (0.035 - 0.085)	0.015 ± 0.0061 (0.0077 – 0.022)
550	NA	NA	0.0043 ± 0.0030 (0.013 - 0.73)	NA	0.0027 ± 0.0015 (0.0012 - 0.0042)	0.0050 ± 0.0052 (0.0006 - 0.011)	0.021 ± 0.0091 (0.0074 – 0.039)	0.0062 ± 0.0020 (0.0033 - 0.0076)
					К			
365	NA	0.0010 ± 0.0007 (0.0004 - 0.0017)	0.0058 ± 0.0025 (0.0033 - 0.0083)	0.0031 ± 0.0006 (0.0025 - 0.0037)	0.0042 ± 0.0017 (0.0033 - 0.0067)	0.0028 ± 0.0006 (0.0022 - 0.0035)	0.019 ± 0.0061 (0.014 - 0.034)	0.0060 ± 0.0018 (0.0038 - 0.0080)
400	NA	NA	0.0031 ± 0.0015 (0.0016 - 0.0046)	0.0014 ± 0.0003 (0.0010 - 0.0017)	0.0021 ± 0.0009 (0.0016 - 0.0033)	0.0013 ± 0.0005 (0.0008 - 0.0020)	0.012 ± 0.0035 (0.0086 - 0.020)	0.0034 ± 0.0012 (0.0019 - 0.0048)
450	NA	NA	0.0014 ± 0.0008 (0.0005 - 0.0022)	0.0003 ± 0.0001 (0.0002 - 0.0004)	0.0006 ± 0.0003 (0.0004 - 0.0010)	0.0004 ± 0.0004 (0.0001 - 0.0011)	0.0057 ± 0.0016 (0.0042 - 0.0093)	0.0014 ± 0.0005 (0.0007 - 0.0018)
500	NA	NA	0.0006 ± 0.0004 (0.0002 - 0.0011)	NA	0.0002 ± 0.0002 (0.0001 - 0.0004)	0.0003 ± 0.0002 (0.0001 - 0.0005)	0.0025 ± 0.0007 (0.0017 - 0.0041)	0.0007 ± 0.0003 (0.0004 - 0.0011)
550	NA	NA	$\begin{array}{l} 0.0002 \pm 0.0002 \\ (0.01 \ - 0.0004) \end{array}$	NA	0.0001 ± 0.0001 (0.0001 - 0.0002)	0.0003 ± 0.0003 (0.0000 – 0.0006)	0.0011 ± 0.0005 (0.0004 - 0.0021)	0.0003 ± 0.0001 (0.0002 - 0.0004)
				Absorption Angstro	om Exponent calculatio	on		
Åa	33.1 ± 26.0 (7.10 – 59.0)	15.1 ± 3.69 (11.4 – 18.8)	8.58 ± 1.29 (7.29 – 9.88)	11.9 ± 1.57 (10.1 – 13.0)	10.7 ± 1.69 (9.09 – 12.4)	10.1 ± 2.76 (6.17 – 12.8)	6.89 ± 0.63 (6.32 - 8.30)	7.69 ± 0.76 (6.96 - 8.74)
r	-0.93 ± 0.03 (-0.96 – -0.90)	-0.96 ± 0.00 (-0.96 – -0.95)	-0.98 ± 0.00 (-0.990.98)	-0.97 ± 0.01 (-0.97 – -0.96)	-0.97 ± 0.01 (-0.98 – -0.96)	-0.97 ± 0.02 (-0.99 – -0.95)	-0.99 ± 0.012 (-0.99 – -0.95)	-0.99 ± 0.01 (-1.00 – -0.98)
% NA	46.1 ± 46.0 (0.080 – 92.2)	39.2 ± 30.0 (9.19 – 69.2)	0.36 ± 0.28 (0.08 - 0.64)	18.3 ± 13.8 (2.40 – 26.8)	7.87 ± 6.18 (1.92 – 16.5)	9.88 ± 12.7 (0.00 – 29.1)	0.053 ± 0.16 (0.00 – 0.48)	0.00

Table S5. Continue

	Ethylbe	enzene ^e	Ben	zene ^e	Naphth	nalene ^e	<i>m</i> -Cr	esol ^e
	$NO_{X} (N = 6)$	$H_2O_2 (N = 5)$	NO _X (<i>N</i> = 8)	$H_2O_2 (N = 5)$	$NO_{X} (N = 3)$	$H_2O_2 (N = 3)$	$NO_X (N = 3)$	$H_2O_2 (N = 2)$
λ (nm)				Л	MAE			
365	0.83 ± 0.26	0.32 ± 0.11	1.67 ± 0.66	0.36 ± 0.066	1.17 ± 0.088	0.62 ± 0.027	2.47 ± 1.05	0.24 ± 0.0003
	(0.63 - 1.35)	(0.15 – 0.43)	(1.12 – 2.79)	(0.31 - 0.45)	(1.07 – 1.23)	(0.60 - 0.65)	(1.30 – 3.26)	(0.24 - 0.24)
400	0.50 ± 0.14	0.18 ± 0.076	0.88 ± 0.21	0.21 ± 0.048	0.78 ± 0.074	0.35 ± 0.028	1.19 ± 0.37	0.11 ± 0.0009
	(0.36 - 0.77)	(0.070 - 0.25)	(0.70 – 1.28)	(0.17 – 0.27)	(0.70 – 0.84)	(0.33 – 0.38)	(0.78 – 1.50)	(0.11 - 0.12)
450	0.22 ± 0.061	0.078 ± 0.039	0.41 ± 0.064	0.097 ± 0.031	0.43 ± 0.034	0.17 ± 0.017	0.39 ± 0.056	0.043 ± 0.0015
	(0.14 – 0.33)	(0.021 - 0.12)	(0.34 – 0.53)	(0.068 – 0.13)	(0.40 - 0.46)	(0.15 – 0.19)	(0.34 – 0.45)	(0.041 – 0.044)
500	0.093 ± 0.026	0.034 ± 0.020	0.19 ± 0.032	0.042 ± 0.017	0.25 ± 0.015	0.081 ± 0.0098	0.17 ± 0.033	0.017 ±0.0029
	(0.057 - 0.14)	(0.0058 - 0.057)	(0.16 – 0.25)	(0.023 - 0.060)	(0.23 - 0.26)	(0.073 - 0.092)	(0.15 – 0.21)	(0.014 – 0.020)
550	0.039 ± 0.013	0.011 ± 0.0093	0.087 ± 0.015	0.017 ± 0.0085	0.12 ± 0.011	0.037 ± 0.0078	0.077 ± 0.014	0.0087 ± 0.0007
	(0.021 – 0.057)	(0.0003 - 0.023)	(0.071 – 0.12)	(0.0068 – 0.025)	(0.11 – 0.13)	(0.033 – 0.046)	(0.067 - 0.093)	(0.0080 - 0.0094)
					К			
365	0.029 ± 0.0091	0.011 ± 0.0039	0.058 ± 0.023	0.013 ± 0.0023	0.041 ± 0.0031	0.022 ± 0.0009	0.086 ± 0.037	0.0083 ± 0.0000
	(0.022 - 0.047)	(0.0053 - 0.015)	(0.039 - 0.097)	(0.011 – 0.016)	(0.037 - 0.043)	(0.021 - 0.023)	(0.045 - 0.11)	(0.0083 - 0.0084)
400	0.019 ± 0.0054	0.0069 ± 0.0029	0.034 ± 0.0080	0.0082 ± 0.0018	0.030 ± 0.0028	0.013 ± 0.0011	0.045 ± 0.014	0.0044 ± 0.0000
	(0.014 – 0.030)	(0.0027 - 0.0097)	(0.027 - 0.049)	(0.0065 - 0.010)	(0.027 - 0.032)	(0.013 – 0.015)	(0.030 - 0.057)	(0.0043 - 0.0044)
450	0.0096 ± 0.0026	0.0034 ± 0.0017	0.017 ± 0.0027	0.0042 ± 0.0013	0.019 ± 0.0015	0.0072 ± 0.0007	0.017 ± 0.0024	0.0018 ± 0.0001
	(0.0060 - 0.014)	(0.0009 - 0.0051)	(0.015 – 0.023)	(0.0029 - 0.0057)	(0.017 - 0.020)	(0.0066 - 0.0080)	(0.015 – 0.019)	(0.0018 - 0.0019)
500	0.0044 ± 0.0012	0.0016 ± 0.0009	0.0090 ± 0.0015	0.0020 ± 0.0008	0.012 ± 0.0007	0.0039 ± 0.0005	0.0081 ± 0.0016	0.0008 ± 0.0001
	(0.0027 - 0.0065)	(0.0003 - 0.0027)	(0.0076 - 0.012)	(0.0011 - 0.0029)	(0.011 - 0.013)	(0.0035 - 0.0044)	(0.0070 - 0.0099)	(0.0007 - 0.0010)
550	0.0020 ± 0.0007	0.0006 ± 0.0005	0.0046 ± 0.0008	0.0009 ± 0.0004	0.0062 ± 0.0006	0.0020 ± 0.0004	0.0040 ± 0.0007	0.0005 ± 0.0000
	(0.0011 - 0.0030)	(0.0000 - 0.0012)	(0.0038 - 0.0061)	(0.0004 - 0.0013)	(0.0058 - 0.0069)	(0.0017 – 0.0024)	(0.0035 - 0.0049)	(0.0004 - 0.0005)
				Absorption Angstron	m Exponent calculation			
Åa	6.39 ± 0.44	7.46 ± 1.32	5.84 ± 0.50	6.53 ± 0.72	4.92 ± 0.23	6.46 ± 0.25	6.86 ± 0.97	7.75 ± 0.24
	(5.80 - 7.09)	(6.29 – 9.64)	(5.24 – 6.63)	(5.88 - 7.45)	(4.71 - 5.16)	(6.17 – 6.63)	(5.82 - 7.70)	(7.51 – 7.99)
r	-0.99 ± 0.00	-0.99 ± 0.00	-0.98 ± 0.00	-0.99 ± 0.00	-1.00 ± 0.00	-1.00 ± 0.00	-0.98 ± 0.01	-1.00 ± 0.00
	(-0.99 – -0.98)	(-0.990.99)	(-0.980.98)	(-0.990.99)	(-1.00 – -0.99)	(-1.00 – -1.00)	(-0.98 – -0.96)	(-1.00 – -1.00)
% NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Suggested Formula	m/z	α-Pi	nene	Isopre	ne	β-Caryoph	yllene
Formula	[M-H] ^{- a}	NO_{X} (N = 4)	H_2O_2 (N = 2)	$NO_{X} (N = 3)$	$H_2O_2 (N = 2)$	NO _X (N = 2)	H_2O_2 (N = 2)
C ₆ H₅NO ₃	138.0196	/ ^b	/	/	/	/	/
C ₇ H ₇ NO ₃	152.0353	$0.0020 \pm 0.0013^{\circ}$ (0.0008 - 0.0038)	/	/	/	0.0020 ± 0.0005 (0.0014 - 0.0025)	/
$C_6H_5NO_4$	154.0145	/	/	/	/	/	/
C ₇ H ₇ NO ₄	168.0302	0.0024 ± 0.0019 (0.0007 - 0.0044)	0.0009 ± 0.0001 (0.0009 - 0.0010)	0.0089 ± 0.0083 (0.0031 - 0.015)	/	0.0072 ± 0.0051 (0.0021 - 0.012)	/
$C_6H_5NO_5$	170.0095	0.0078 ± 0.0022 (0.0059 - 0.010)	/	/	/	/	/
$C_8H_7NO_4$	180.0302	/	/	/	/	/	/
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/
$C_8H_9NO_4$	182.0459	/	/	/	/	/	/
C ₇ H ₇ NO ₅	184.0253	/	/	/	/	/	/
$C_{10}H_7NO_3$	188.0353	/	/	/	/	/	/
$C_9H_9NO_4$	194.0458	/	/	/	/	/	/
$C_8H_9NO_5$	198.0407	/	/	/	/	/	/
$C_6H_4N_2O_6$	198.9997	/	/	/	/	/	/
$C_{10}H_7NO_4$	204.0302	/	/	/	/	/	/
$C_7H_6N_2O_6$	213.0157	/	/	/	/	/	/

Table S6. Average and ranges of mass contribution (%) of identified nitro-aromatic compounds to SOA generated from chamber experiments.

^a The mass accuracy for all identified formula are within 10 ppm; ^b not detected; ^c for sample number *N*>2, represent mean ± standard deviation; for sample number *N*=2, represent mean ± difference/2;

Table S6. Continue

Suggested	m/z	1,3,5-Trim	ethylbenzene	1,2,4-Trimethylbe	enzene	m-Xy	/lene	Tol	uene
formula	[M-H] ⁻	NO _X (N = 2)	H_2O_2 (N = 3)	NO _X (N = 2)	H_2O_2 (N = 3)	NO _X (<i>N</i> = 4)	$ \begin{array}{c} H_2O_2\\ (N=5) \end{array} $	NO _X (N = 9)	$ \begin{array}{c} H_2O_2\\ (N=4) \end{array} $
$C_6H_5NO_3$	138.0196	/	/	/	/	/	/	/	/
C ₇ H ₇ NO ₃	152.0353	/	/	0.0019 ± 0.0001 (0.0019 - 0.0020)	/	0.0021 ± 0.0001 (0.0021 - 0.0022)	/	0.030 ± 0.010 (0.014 - 0.045)	0.0034 ± 0.0035 (0.0010 - 0.0074)
$C_6H_5NO_4$	154.0145	/	/	/	/	/	/	0.088 ± 0.036 (0.052 - 0.17)	0.0028 ± 0.0011 (0.0017 - 0.0038)
C ₇ H ₇ NO ₄	168.0302	/	/	0.012 ± 0.0078 (0.0044 - 0.020)	/	0.010 ± 0.0098 (0.0030 - 0.025)	/	0.29 ± 0.17 (0.082 – 0.62)	0.012 ± 0.016 (0.0022 - 0.030)
$C_6H_5NO_5$	170.0095	/	/	/	/	/	/	/	/
$C_8H_7NO_4$	180.0302	/	/	0.11 ± 0.0067 (0.10 - 0.12)	/	/	/	/	/
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/	/	/
$C_8H_9NO_4$	182.0459	/	/	0.011 ± 0.0030 (0.0075 - 0.014)	/	0.019 ± 0.0035 (0.016 – 0.024)	0.0006 ± 0.0001 (0.0006 - 0.0008)	0.0053 ± 0.0026 (0.0032 - 0.010)	/
$C_7H_7NO_5$	184.0253	/	/	/	/	/	/	0.030 ± 0.011 (0.014 - 0.044)	/
$C_{10}H_7NO_3$	188.0353	/	/	/	/	/	/	/	/
$C_9H_9NO_4$	194.0458	/	/	0.062 ± 0.031 (0.031 - 0.092)		0.0085 ± 0.0033 (0.0049 - 0.013)	1	/	/
$C_8H_9NO_5$	198.0407	/	/	/	/	0.0032 ± 0.0011 (0.0025 - 0.0045)	/	0.0076 ± 0.0034 (0.0032 - 0.013)	/
$C_6H_4N_2O_6$	198.9997	/	/	/	/	/	/	/	/
$C_{10}H_7NO_4$	204.0302	/	/	/	/	/	/	/	/
$C_7H_6N_2O_6$	213.0157	/	/	/	/	/	/	0.19 ± 0.093 (0.072 – 0.34)	/

Table S6. Continue

Suggested	m/z	Ethylbe	enzene	Benz	ene	Naphtha	lene	<i>m</i> -Creso	bl
formula	[M-H] ⁻	NO _X (N = 6)	H ₂ O ₂ (N =5)	NO _X (N = 8)	H ₂ O ₂ (N =5)	NO _x (N = 3)	H_2O_2 (N = 3)	NO _X (N = 3)	H_2O_2 (N = 2)
$C_6H_5NO_3$	138.0196	0.0048 ± 0.0020 (0.0030 - 0.0078)	/	0.0068 ± 0.0046 (0.0024 - 0.013)	/	/	/	/	/
C ₇ H ₇ NO ₃	152.0353	/	/	1	/	0.0083 ± 0.0015 (0.0073 - 0.0094)	/	0.062 ± 0.051 (0.027 - 0.12)	/
$C_6H_5NO_4$	154.0145	0.23 ± 0.10 (0.15 – 0.40)	0.012 ± 0.0036 (0.0076 - 0.017)	4.65 ± 3.78 (1.05 – 12.0)	0.051 ± 0.043 (0.020 - 0.12)	0.094 ± 0.090 (0.039 - 0.20)	/	0.055 ± 0.017 (0.036 -0.069)	/
C ₇ H ₇ NO ₄	168.0302	0.0054 ± 0.0048 (0.0015 - 0.013)	/	/	/	0.0060 ± 0.0038 (0.0023 - 0.0099)	/	8.34 ± 5.87 (3.03 – 14.6)	/
$C_6H_5NO_5$	170.0095	0.0079 ± 0.0029 (0.0044 - 0.012)	/	1.08 ± 0.39 (0.64 – 1.71)	/	1	/	0.016 ± 0.0079 (0.011 - 0.022)	/
$C_8H_7NO_4$	180.0302	0.27 ± 0.21 (0.12 - 0.62)	/	/	/	0.47 ± 0.39 (0.075 – 0.85)	/	0.20 ± 0.12 (0.12 - 0.29)	/
$C_7H_5NO_5$	182.0095	0.21 ± 0.095 (0.11 – 0.33)	/	1	/	0.26 ± 0.076 (0.19 - 0.34)	/	/	/
$C_8H_9NO_4$	182.0459	0.32 ± 0.26 (0.16 - 0.78)	/	/	/	/	/	/	/
$C_7H_7NO_5$	184.0253	/	/	0.015 ± 0.0069 (0.0056 - 0.026)	/	1	/	1.43 ± 0.69 (0.84 – 2.19)	/
$C_{10}H_7NO_3$	188.0353	/	/	/	/	4.05 ± 1.37 (3.20 – 5.63)	1.37 ± 1.55 (0.43 – 3.16)	/	/
$C_9H_9NO_4$	194.0458	/	/	/	/	/	/	/	/
$C_8H_9NO_5$	198.0407	0.052 ± 0.028 (0.032 - 0.10)	/	/	/	0.14 ± 0.089 (0.041 – 0.22)	/	0.21 ± 0.083 (0.11 – 0.27)	/
$C_6H_4N_2O_6$	198.9997	/	/	0.045 ± 0.039 (0.014 - 0.13)	/	/	/	/	/
$C_{10}H_7NO_4$	204.0302	/	/	1	/	1.39 ± 0.37 (1.06 – 1.79)	0.25 ± 0.28 (0.085 - 0.58)	/	/
C ₇ H ₆ N ₂ O ₆	213.0157	/	/	/	/	1	/	0.032 ± 0.019 (0.018 - 0.054)	/

Cummente d fermule	m/z	<i>α-</i> P	inene	Isop	orene	β-Caryo	phyllene
Suggested formula	[M-H] ⁻	$NO_{X} (N = 4)$	$H_2O_2 (N = 2)$	$NO_{X} (N = 3)$	$H_2O_2 (N = 2)$	$NO_{X} (N = 2)$	$H_2O_2 (N = 2)$
$C_6H_5NO_3$	138.0196	/ ^a	/	/	/	/	/
C ₇ H ₇ NO ₃	152.0353	0.29 ± 0.23 ^b (0.11 – 0.55)	/	/	/	2.42 ± 2.01 (0.41 - 4.43)	/
$C_6H_5NO_4$	154.0145	/	/	/	/	/	/
C ₇ H ₇ NO ₄	168.0302	1.10 ±1.31 (0.28 – 2.60)	0.64 ± 0.13 (0.51 – 0.77)	/	/	/	/
$C_6H_5NO_5$	170.0095	4.65 ±1.84 (3.41 – 6.76)	/	/	/	/	/
$C_8H_7NO_4$	180.0302	/	/	/	/	/	/
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/
$C_8H_9NO_4$	182.0459	/	/	/	/	/	/
C7H7NO5	184.0253	/	/	/	/	/	/
$C_{10}H_7NO_3$	188.0353	/	/	/	/	/	/
$C_9H_9NO_4$	194.0458	/	/	/	/	/	/
$C_8H_9NO_5$	198.0407	/	/	/	/	/	/
$C_6H_4N_2O_6$	198.9997	/	/	/	/	/	/
$C_{10}H_7NO_4$	204.0302	/	/	/	/	/	/
$C_7H_6N_2O_6$	213.0157	/	/	/	/	/	/

Table S7. Average and ranges of contribution (%) of identified nitro-aromatic compounds to light absorption at 365 nm (Abs₃₆₅) of SOA generated from chamber experiments.

^a No absorption could be estimated, since the compound could not be detected or the compound has no absorption at the given wavelength (λ); ^b for sample number *N* > 2, represent mean ± standard deviation; for sample number *N*=2, represent mean ± difference/2.

Table S7. Continue

Suggested	m/z	1,3,5-Trime	ethylbenzene	1,2,4-Trimeth	nylbenzene	<i>m</i> -Xy	lene	Tol	uene
formula	[M-H] ⁻	$NO_{X} (N = 2)$	$H_2O_2 (N = 3)$	NO _X (N = 2)	$H_2O_2 (N = 3)$	$NO_X (N = 4)$	$H_2O_2 (N = 5)$	$NO_{X} (N = 9)$	$H_2O_2 (N = 4)$
$C_6H_5NO_3$	138.0196	/	/	/	/	/	/	/	/
C ₇ H ₇ NO ₃	152.0353	/	/	0.045 ± 0.018 (0.027 – 0.063)	/	0.069 ± 0.0007 (0.068 - 0.070)	/	0.18 ± 0.081 (0.10 – 0.33)	0.050 ± 0.045 (0.020 - 0.10)
$C_6H_5NO_4$	154.0145	/	/	/	/	/	/	1.12 ± 0.20 (0.92 – 1.56)	0.13 ± 0.037 (0.10 – 0.17)
C ₇ H ₇ NO ₄	168.0302	/	/	0.85 ± 0.24 (0.61 - 1.09)	/	0.92 ± 0.52 (0.39 - 1.64)	/	6.68 ± 3.09 (2.73 – 11.2)	0.72 ± 0.84 (0.15 – 1.69)
$C_6H_5NO_5$	170.0095	/	/	/	/	/	/	/	/
$C_8H_7NO_4$	180.0302	/	/	0.28 ± 0.11 (0.17 - 0.38)	/	/	/	/	/
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/	/	/
$C_8H_9NO_4$	182.0459	/	/	0.88 ± 0.15 (0.74 – 1.03)	/	2.08 ± 0.38 (1.58 – 2.41)	0.12 ± 0.035 (0.088 – 0.16)	0.12 ± 0.052 (0.078 – 0.21)	/
$C_7H_7NO_5$	184.0253	/	/	/	/	/	/	0.77 ± 0.28 (0.49 – 1.36)	/
$C_{10}H_7NO_3$	188.0353	/	/	/	/	/	/	/	/
$C_9H_9NO_4$	194.0458	/	/	0.14 ± 0.011 (0.13 – 0.15)	/	0.028 ± 0.0073 (0.021 - 0.038)	/	/	/
$C_8H_9NO_5$	198.0407	/	/	/	/	0.36 ± 0.032 (0.32 - 0.39)	/	0.19 ± 0.071 (0.12 – 0.35)	/
$C_6H_4N_2O_6$	198.9997	/	/	/	/	/	/	/	/
$C_{10}H_7NO_4$	204.0302	/	/	/	/	/	/	/	/
$C_7H_6N_2O_6$	213.0157	/	/	/	/	/	/	2.43 ± 1.08 (1.31 – 4.55)	/

Table S7. Continue

Suggested	m/z	Ethylber	izene	Benze	ne	Naphth	alene	<i>m</i> -Cre	esol
formula	[M-H] ⁻	$NO_{X} (N = 6)$	H ₂ O ₂ (N =5)	NO _X (N = 8)	H ₂ O ₂ (N =5)	$NO_X (N = 3)$	$H_2O_2 (N = 3)$	$NO_X (N = 3)$	$H_2O_2 (N = 2)$
$C_6H_5NO_3$	138.0196	0.014 ± 0.0059 (0.0094 - 0.025)	/	0.0090 ± 0.0050 (0.0045 - 0.019)	/	1	/	1	/
C ₇ H ₇ NO ₃	152.0353	/	/	/	/	0.023 ± 0.0022 (0.021 - 0.024)	/	0.075 ± 0.038 (0.041 – 0.12)	/
$C_6H_5NO_4$	154.0145	1.91 ± 0.52 (1.17 – 2.57)	0.27 ± 0.069 (0.20 - 0.35)	17.5 ± 9.28 (6.53 – 33.0)	1.07 ± 1.01 (0.32 – 2.62)	0.55 ± 0.50 (0.23 – 1.12)	/	0.20 ± 0.16 (0.078 – 0.38)	/
C7H7NO4	168.0302	0.074 ± 0.047 (0.024 - 0.13)	/	/	/	0.067 ± 0.041 (0.024 - 0.11)	/	40.5 ± 15.2 (30.6 – 57.9)	/
$C_6H_5NO_5$	170.0095	0.13 ± 0.054 (0.082 – 0.21)	/	10.1 ± 4.22 (3.22 – 15.5)	/	/	/	0.14 ± 0.14 (0.045 – 0.24)	/
$C_8H_7NO_4$	180.0302	0.11 ± 0.079 (0.051 – 0.25)	/	/	/	0.15 ± 0.13 (0.021 - 0.28)	/	0.023 ± 0.011 (0.015 - 0.031)	/
$C_7H_5NO_5$	182.0095	0.082 ± 0.023 (0.048 - 0.10)	/	/	/	0.077 ± 0.021 (0.055 - 0.096)	/	/	/
$C_8H_9NO_4$	182.0459	4.53 ± 2.38 (1.52 – 7.46)	/	/	/	/	/	/	/
$C_7H_7NO_5$	184.0253	/	/	0.14 ± 0.063 (0.048 – 0.24)	/	/	/	8.25 ± 1.79 (6.19 – 9.41)	/
$C_{10}H_7NO_3$	188.0353	/	/	/	/	13.2 ± 5.62 (9.74 – 19.7)	8.09 ± 8.84 (2.62 – 18.3)	/	/
$C_9H_9NO_4$	194.0458	/	/	/	/	/	/	/	/
$C_8H_9NO_5$	198.0407	0.84 ± 0.26 (0.54 - 1.13)	/	/	/	1.7 ± 1.18 (0.46 – 2.82)	/	1.18 ± 0.17 (0.99 - 1.33)	/
$C_6H_4N_2O_6$	198.9997	/	/	0.17 ± 0.17 (0.040 - 0.54)	/	1	/	/	/
$C_{10}H_7NO_4$	204.0302	/	/	/	/	4.52 ±1.56 (3.22 – 6.25)	1.49 ± 1.61 (0.51 – 3.35)	/	/
$C_7H_6N_2O_6$	213.0157	/	/	/	/	1	/	0.094 ± 0.040 (0.053 - 0.13)	/

	m/z	α-Pir	nene	Iso	orene	β-Cary	ophyllene
Suggested formula	[M-H] ⁻	$NO_{X} (N = 4)$	$H_2O_2 (N = 2)$	$NO_X (N = 3)$	$H_2O_2 (N = 2)$	NO _X (<i>N</i> = 2)	$H_2O_2 (N = 2)$
C ₆ H ₅ NO ₃	138.0196	/ ^a	/	/	/	/	/
C ₇ H ₇ NO ₃	152.0353	0.072 ± 0.059^{b} (0.031 - 0.14)	/	/	/	/	/
$C_6H_5NO_4$	154.0145	/	/	/	/	/	/
C ₇ H ₇ NO ₄	168.0302	0.57 ± 0.68 (0.12 – 1.35)	0.51 ± 0.0063 (0.50 – 0.51)	/	/	/	/
$C_6H_5NO_5$	170.0095	6.88 ± 2.87 (4.66 – 10.1)	/	/	/	/	/
$C_8H_7NO_4$	180.0302	/	/	/	/	/	/
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/
C ₈ H ₉ NO ₄	182.0459	/	/	/	/	/	/
C ₇ H ₇ NO ₅	184.0253	/	/	/	/	/	/
$C_{10}H_7NO_3$	188.0353	/	/	/	/	/	/
C ₉ H ₉ NO ₄	194.0458	/	/	/	/	/	/
$C_8H_9NO_5$	198.0407	/	/	/	/	/	/
$C_6H_4N_2O_6$	198.9997	/	/	/	/	/	/
$C_{10}H_7NO_4$	204.0302	/	/	/	/	/	/
$C_7H_6N_2O_6$	213.0157	/	/	/	/	/	/

Table S8. Average and ranges of contribution (%) of identified nitro-aromatic compounds to light absorption at 400 nm (Abs₄₀₀) of SOA generated from chamber experiments.

^a No absorption could be estimated, since the compound could not be detected or the compound has no absorption at the given wavelength (λ); ^b for sample number *N* > 2, represent mean ± standard deviation; for sample number *N*=2, represent mean ± difference/2.

Table	S8.	Cor	ntin	ue
-------	-----	-----	------	----

Suggested	m/z	1,3,5-Trime	ethylbenzene	1,2,4-Trimeth	ylbenzene	m-Xy	lene	То	luene
formula	[M-H] ⁻	$NO_X (N = 2)$	$H_2O_2 (N = 3)$	$NO_{X} (N = 2)$	$H_2O_2 (N = 3)$	$NO_{X} (N = 4)$	$H_2O_2 (N = 5)$	NO _x (<i>N</i> = 9)	$H_2O_2 (N = 4)$
$C_6H_5NO_3$	138.0196	/	/	/	/	/	/	/	/
$C_7H_7NO_3$	152.0353	/	/	0.016 ± 0.0076 (0.0087 – 0.024)	/	0.027 ± 0.0015 (0.025 - 0.028)	/	0.055 ± 0.025 (0.030 – 0.10)	0.016 ± 0.014 (0.0063 - 0.032)
$C_6H_5NO_4$	154.0145	/	/	/	/	/	/	1.96 ± 0.40 (1.55 – 2.78)	0.25 ± 0.061 (0.20 – 0.32)
C ₇ H ₇ NO ₄	168.0302	/	/	0.61 ± 0.13 (0.43 - 0.74)	/	0.72 ± 0.40 (0.32 – 1.26)	/	4.10 ± 1.94 (1.65 – 7.01)	0.47 ± 0.54 (0.10 - 1.09)
$C_6H_5NO_5$	170.0095	/	/	/	/	/	/	/	/
$C_8H_7NO_4$	180.0302	/	/	/	/	/	/	/	/
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/	/	/
$C_8H_9NO_4$	182.0459	/	/	0.65 ± 0.15 (0.50 - 0.81)	/	1.65 ± 0.32 (1.21 – 1.96)	0.11 ± 0.036 (0.067 – 0.13)	0.076 ± 0.035 (0.043 - 0.13)	/
$C_7H_7NO_5$	184.0253	/	/	/	/	/	/	1.36 ± 0.49 (0.85 – 2.33)	/
$C_{10}H_7NO_3$	188.0353	/	/	/	/	/	/	/	/
$C_9H_9NO_4$	194.0458	/	/	/	/	/	/	/	/
$C_8H_9NO_5$	198.0407	/	/	/	/	0.80 ± 0.080 (0.72 - 0.87)	/	0.34 ± 0.12 (0.20 - 0.60)	/
$C_6H_4N_2O_6$	198.9997	/	/	/	/	/	/	/	/
$C_{10}H_7NO_4$	204.0302	/	/	/	/	/	/	/	/
$C_7H_6N_2O_6$	213.0157	/	/	/	/	/	/	6.90 ± 3.06 (3.68 – 12.4)	/

Tabl	le S	8. C	ont	inue
		••••	• • • • •	

Suggested m/z		Ethylben	zene	Benze	ne	Naphtha	lene	<i>m</i> -Cre	esol
formula	[M-H] ⁻	$NO_{X} (N = 6)$	H ₂ O ₂ (<i>N</i> =5)	NO _X (N = 8)	H ₂ O ₂ (N =5)	$NO_{X} (N = 3)$	$H_2O_2 (N = 3)$	$NO_{X} (N = 3)$	$H_2O_2 (N = 2)$
$C_6H_5NO_3$	138.0196	0.0070 ± 0.0032 (0.0044 - 0.013)	/	0.0050 ± 0.0030 (0.0022 - 0.010)	/	/	/	/	/
C ₇ H ₇ NO ₃	152.0353	/	/	/	/	0.0058 ± 0.0004 (0.0055 - 0.0061)	/	0.026 ± 0.015 (0.015 - 0.043)	/
$C_6H_5NO_4$	154.0145	3.10 ± 0.83 (2.04 – 4.18)	0.50 ± 0.17 (0.34 - 0.75)	17.9 ± 6.57 (10.5 – 29.8)	1.88 ± 1.84 (0.53 – 4.71)	0.80 ± 0.73 (0.33 - 1.64)	/	0.37 ± 0.23 (0.17 – 0.62)	/
C ₇ H ₇ NO ₄	168.0302	0.044 ± 0.029 (0.013 - 0.076)	/	/	/	0.035 ± 0.021 (0.012 - 0.054)	/	21.7 ± 3.73 (17.4 – 24.1)	/
$C_6H_5NO_5$	170.0095	0.21 ± 0.082 (0.13 – 0.34)	/	18.0 ± 6.80 (7.09 – 28.6)	/	/	/	0.25 ± 0.21 (0.099 – 0.39)	/
$C_8H_7NO_4$	180.0302	/	/	/	/	/	/	/	/
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/	/	/
$C_8H_9NO_4$	182.0459	2.59 ± 1.39 (0.93 – 4.54)	/	/	/	/	/	/	/
$C_7H_7NO_5$	184.0253	/	/	0.25 ± 0.11 (0.11 - 0.41)	/	/	/	14.2 ± 0.80 (13.6 – 15.1)	/
$C_{10}H_7NO_3$	188.0353	/	/	/	/	32.8 ± 14.7 (23.7 – 49.7)	22.9 ± 24.3 (7.77 – 50.9)	/	/
$C_9H_9NO_4$	194.0458	/	/	/	/	/	/	/	/
$C_8H_9NO_5$	198.0407	1.39 ± 0.41 (0.96 – 1.83)	/	/	/	2.61 ± 1.84 (0.69 – 4.36)	/	2.40 ± 0.52 (2.04 – 3.00)	/
$C_6H_4N_2O_6$	198.9997	/	/	0.34 ± 0.33 (0.10 - 1.06)	/	/	/	/	/
$C_{10}H_7NO_4$	204.0302	/	/	/	/	11.2 ± 4.11 (7.84 – 15.8)	4.22 ± 4.42 (1.52 – 9.32)	/	/
$C_7H_6N_2O_6$	213.0157	/	/	/	/	/	/	0.31 ± 0.15 (0.19 – 0.48)	/

Our manage of farmer of a	m/z [M-H] ⁻	α-Pinene		Isoj	orene	β -Caryophyllene		
Suggested formula		$NO_{X} (N = 4)$	$H_2O_2 (N = 2)$	$NO_{X} (N = 3)$	$H_2O_2 (N = 2)$	$NO_{X} (N = 2)$	$H_2O_2 (N = 2)$	
$C_6H_5NO_3$	138.0196	/ ^a	/	/	/	/	/	
C ₇ H ₇ NO ₃	152.0353	/	/	/	/	/	/	
$C_6H_5NO_4$	154.0145	/	/	/	/	/	/	
C7H7NO4	168.0302	0.15 ± 0.18 ^b (0.031 – 0.36)	0.14 ± 0.0017 (0.13 – 0.14)	/	/	/	/	
$C_6H_5NO_5$	170.0095	0.79 ± 0.33 (0.53 – 1.16)	/	/	/	/	/	
$C_8H_7NO_4$	180.0302	/	/	/	/	/	/	
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/	
$C_8H_9NO_4$	182.0459	/	/	/	/	/	/	
C ₇ H ₇ NO ₅	184.0253	/	/	/	/	/	/	
C ₁₀ H ₇ NO ₃	188.0353	/	/	/	/	/	/	
$C_9H_9NO_4$	194.0458	/	/	/	/	/	/	
$C_8H_9NO_5$	198.0407	/	/	/	/	/	/	
$C_6H_4N_2O_6$	198.9997	/	/	/	/	/	/	
$C_{10}H_7NO_4$	204.0302	/	/	/	/	/	/	
$C_7H_6N_2O_6$	213.0157	/	/	/	/	/	/	

Table S9. Average and ranges of contribution (%) of identified nitro-aromatic compounds to light absorption at 450 nm (Abs₄₅₀) of SOA generated from chamber experiments.

^a No absorption could be estimated, since the compound could not be detected or the compound has no absorption at the given wavelength (λ); ^b for sample number *N* > 2, represent mean ± standard deviation; for sample number *N*=2, represent mean ± difference/2.

Suggested	m/z	1,3,5-Trimethylbenzene		1,2,4-Trime	thylbenzene	m-X	ylene	Toluene		
formula	[M-H] ⁻	$NO_X (N = 2)$	$H_2O_2 (N = 3)$	$NO_{X} (N = 2)$	$H_2O_2 (N = 3)$	$NO_X (N = 4)$	$H_2O_2 (N = 5)$	$NO_{X} (N = 9)$	$H_2O_2 (N = 4)$	
C ₆ H₅NO ₃	138.0196	/	/	/	/	/	/	/	/	
C ₇ H ₇ NO ₃	152.0353	/	/	/	/	/	/	/	/	
$C_6H_5NO_4$	154.0145	/	/	/	/	/	/	1.40 ± 0.29 (1.11 – 1.99)	0.18 ± 0.044 (0.14 - 0.23)	
C ₇ H ₇ NO ₄	168.0302	/	/	0.16 ± 0.035 (0.13 – 0.20)	/	0.19 ± 0.11 (0.085 - 0.34)	/	1.10 ± 0.52 (0.44 – 1.87)	0.12 ± 0.14 (0.027 – 0.29)	
$C_6H_5NO_5$	170.0095	/	/	/	/	/	/	/	/	
$C_8H_7NO_4$	180.0302	/	/	/	/	/	/	/	/	
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/	/	/	
$C_8H_9NO_4$	182.0459	/	/	0.17 ± 0.041 (0.13 – 0.22)	/	0.44 ± 0.085 (0.32 - 0.52)	0.029 ± 0.0095 (0.018 - 0.036)	0.020 ± 0.0095 (0.011 – 0.036)	/	
C7H7NO₅	184.0253	/	/	/	/	/	/	0.16 ± 0.056 (0.097 – 0.27)	/	
$C_{10}H_7NO_3$	188.0353	/	/	/	/	/	/	/	/	
$C_9H_9NO_4$	194.0458	/	/	/	/	/	/	/	/	
$C_8H_9NO_5$	198.0407	/	/	/	/	0.092 ± 0.0091 (0.082 - 0.10)	/	0.039 ± 0.014 (0.023 - 0.069)	/	
$C_6H_4N_2O_6$	198.9997	/	/	/	/	/	/	/	/	
$C_{10}H_7NO_4$	204.0302	/	/	/	/	/	/	/	/	
$C_7H_6N_2O_6$	213.0157	/	/	/	/	/	/	3.80 ± 1.69 (2.03 - 6.82)	/	

Table S9. Continue

Suggested	m/z	Ethylbenzene		Benze	ene	Naphtha	alene	<i>m</i> -Cresol		
formula	[M-H] ⁻	$NO_{X} (N = 6)$	$H_2O_2 (N = 5)$	$NO_{X} (N = 8)$	$H_2O_2 (N = 5)$	$NO_X (N = 3)$	$H_2O_2 (N = 3)$	$NO_X (N = 3)$	$H_2O_2 (N = 2)$	
$C_6H_5NO_3$	138.0196	/	/	/	/	/	/	/	/	
C ₇ H ₇ NO ₃	152.0353	/	/	/	/	/	/	/	/	
$C_6H_5NO_4$	154.0145	2.22 ± 0.59 (1.46 – 2.99)	0.36 ± 0.12 (0.24 – 0.54)	10.7 ± 3.22 (7.50 – 15.0)	1.34 ± 1.31 (0.38 – 3.37)	0.58 ± 0.52 (0.24 – 1.17)	/	0.26 ± 0.16 (0.12 - 0.44)	/	
C ₇ H ₇ NO ₄	168.0302	0.012 ± 0.0078 (0.0036 - 0.020)	/	/	/	0.0093 ± 0.0057 (0.0033 - 0.015)	/	4.87 ± 1.32 (3.68 – 6.30)	/	
$C_6H_5NO_5$	170.0095	0.024 ± 0.0093 (0.015 - 0.039)	/	2.05 ± 0.78 (0.81 – 3.27)	/	/	/	0.028 ± 0.024 (0.011 - 0.045)	/	
$C_8H_7NO_4$	180.0302	/	/	/	/	/	/	/	/	
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/	/	/	
$C_8H_9NO_4$	182.0459	0.69 ± 0.37 (0.25 – 1.21)	/	/	/	/	/	/	/	
$C_7H_7NO_5$	184.0253	/	/	0.029 ± 0.012 (0.012 - 0.047)	/	/	/	1.64 ± 0.073 (1.50 – 1.73)	/	
$C_{10}H_7NO_3$	188.0353	/	/	/	/	12.4 ± 5.55 (8.93 – 18.8)	8.64 ± 9.18 (2.93 – 19.2)	/	/	
$C_9H_9NO_4$	194.0458	/	/	/	/	/	/	/	/	
$C_8H_9NO_5$	198.0407	0.16 ± 0.047 (0.11 – 0.21)	/	/	/	0.30 ± 0.21 (0.079 – 0.50)	/	0.27 ± 0.059 (0.23 – 0.34)	/	
$C_6H_4N_2O_6$	198.9997	/	/	0.13 ± 0.13 (0.040 - 0.41)	/	/	/	/	/	
$C_{10}H_7NO_4$	204.0302	/	/	/	/	4.23 ± 1.55 (2.96 – 5.96)	1.59 ± 1.67 (0.58 – 3.52)	/	/	
$C_7H_6N_2O_6$	213.0157	/	/	/	/	/	/	0.17 ± 0.084	/	

Table S9. Continue

Suggested	N/1\A/	Toluene		Ethylbenzene		Benzene		Naphthalene		<i>m</i> -Cresol	
formula	[M-H]-	NO _X (N = 9)	$\begin{array}{c} H_2O_2\\ (N=4) \end{array}$	NO _X (N = 6)	H_2O_2 (N = 5)	NO _X (N = 8)	H_2O_2 (N = 5)	NO_X (N = 3)	H_2O_2 (N = 3)	NO _X (N = 3)	H_2O_2 (N = 2)
$C_6H_5NO_3$	138.0196	/ ^a	/	/	/	/	/	/	/	/	/
C7H7NO3	152.0353	/	/	/	/	/	/	/	/	/	/
$C_6H_5NO_4$	154.0145	0.38 ± 0.078^{b} (0.30 - 0.54)	0.048 ± 0.012 (0.038 - 0.061)	0.60 ± 0.16 (0.066 – 0.15)	0.097 ± 0.034 (0.39 - 0.81)	2.11 ± 0.79 (1.22 – 3.80)	0.36 ± 0.35 (0.10 – 0.91)	0.16 ± 0.14 (0.064 – 0.32)	/	0.071 ± 0.044 (0.033 – 0.12)	/
C ₇ H ₇ NO ₄	168.0302	/	/	/	/	/	/	/	/	/	/
$C_6H_5NO_5$	170.0095	/	/	/	/	/	/	/	/	/	/
C ₈ H ₇ NO ₄	180.0302	/	/	/	/	/	/	/	/	/	/
$C_7H_5NO_5$	182.0095	/	/	/	/	/	/	/	/	/	/
C ₈ H ₉ NO ₄	182.0459	/	/	/	/	/	/	/	/	/	/
C7H7NO₅	184.0253	/	/	/	/	/	/	/	/	/	/
$C_{10}H_7NO_3$	188.0353	/	/	/	/	/	/	2.07 ± 0.93 (1.50 -3.14)	1.36 ± 1.38 (0.49 – 2.96)	/	/
C ₉ H ₉ NO₄	194.0458	/	/	/	/	/	/	/	/	/	/
C ₈ H ₉ NO ₅	198.0407	/	/	/	/	/	/	/	/	/	/
$C_6H_4N_2O_6$	198.9997	/	/	/	/	0.028 ± 0.028 (0.0085 - 0.088)	/	/	/	/	/
$C_{10}H_7NO_4$	204.0302	/	/	/	/	/	/	0.71 ± 0.26 (0.50 -1.00)	0.27 ± 0.28 (0.096 - 0.60)	/	/
$C_7H_6N_2O_6$	213.0157	0.19 ± 0.086 (0.10 – 0.35)	/	/	/	/	/	/	/	0.0087 ± 0.0043 (0.0052 - 0.013)	/

Table S10. Average and ranges of contribution (%) of identified nitro-aromatic compounds to light absorption at 500 nm (Abs₅₀₀) of SOA generated from chamber experiments.

^a No absorption could be estimated, since the compound could not be detected or the compound has no absorption at the given wavelength (λ); ^b for sample number *N* >2, represent mean ± standard deviation; for sample number *N*=2, represent mean ± difference/2.

Suggested	MW	Benze	ene
formula	[M-H] ⁻	$NO_X (N = 8)$	$H_2O_2 (N = 5)$
C ₆ H ₅ NO ₃	138.0196	/ ^a	/
$C_7H_7NO_3$	152.0353	/	/
$C_6H_5NO_4$	154.0145	/	/
C ₇ H ₇ NO ₄	168.0302	/	/
$C_6H_5NO_5$	170.0095	/	/
$C_8H_7NO_4$	180.0302	/	/
$C_7H_5NO_5$	182.0095	/	/
$C_8H_9NO_4$	182.0459	/	/
$C_7H_7NO_5$	184.0253	/	/
$C_{10}H_7NO_3$	188.0353	/	/
$C_9H_9NO_4$	194.0458	/	/
$C_8H_9NO_5$	198.0407	/	/
$C_6H_4N_2O_6$	198.9997	0.010 ± 0.010^{b} (0.0031 - 0.032)	/
$C_{10}H_7NO_4$	204.0302	/	/
$C_7H_6N_2O_6$	213.0157	/	/

Table S11. Average and ranges of contribution (%) of identified nitro-aromatic compounds to light absorption at 550 nm (Abs₅₅₀) of SOA generated from chamber experiments.

^a No absorption could be estimated, since the compound could not be detected or the compound has no absorption at the given wavelength (λ); ^b for sample number *N*>2, represent mean ± standard deviation; for sample number *N*=2, represent mean ± difference/2.

	365 nm			400 nm			450 nm		
VOUS -	Bulk ^a	Species ^b	S/B (%) ^c	Bulk	Species	S/B (%)	Bulk	Species	S/B (%)
1,3,5-Trimethylbenzene	0.017	/ ^d	/	0.0064	/	/	0.011	/	/
1,2,4-Trimethylbenzene	0.078	0.0036	4.66	0.080	0.0010	1.28	0.045	0.0003	0.60
<i>m</i> -Xylene	0.043	0.0041	9.60	0.055	0.0020	3.57	0.021	0.0006	2.66
Toluene	0.37	0.062	16.7	0.44	0.046	10.31	0.22	0.020	9.15
Ethylbenzene	0.51	0.067	13.1	0.60	0.039	6.39	0.32	0.016	4.96
Benzene	1.31	0.48	36.7	1.51	0.32	21.0	0.67	0.11	16.6
Naphthalene	0.55	0.17	31.1	0.59	0.26	44.1	0.43	0.096	22.1
<i>m</i> -Cresol	2.23	1.32	59.0	2.41	0.47	19.6	1.07	0.085	7.93

Table S12. Average MAE differences (m² g⁻¹) between NO_X and H₂O₂ reaction conditions derived from sample extracts and contributions of nitro-aromatic compounds.

^a Difference of average bulk MAE value of sample extracts between NO_x and H_2O_2 reactions; ^b difference of average MAE contributed by identified nitro-aromatic compounds between NO_x and H_2O_2 reactions; ^c species/bulk × 100%, the differences of MAE in sample extracts accounted for by that in contributions from nitro-aromatic compounds; ^d no nitro-aromatic compounds has been detected.

Figure S1. Extracted ion chromatograms (EICs) and Q-ToF MS/MS spectra for standard compounds, (a, A) 4-Nitrophenol, (b, B) 2-Methyl-4-nitrophenol, (c, C) 4-Nitrocatechol and (d, D) 2,6-Dimethyl-4-nitrophenol.

Figure S1. Continue, (e, E) 2-Methyl-4-nitroresorcinol, (f, F)2-Nitrophloroglucinol and (g, G) 2-Methyl-nitrobenzoic acid.

Figure S1. Continue, (h, H) 2-Nitro-1-naphthol, (i, I) 2, 5-Dimethyl-4-nitrobenzoic acid, and (j, J) 2,6-Dinitro-methylresorcinol.

Figure S2. Extracted ion chromatograms (EICs) and Q-ToF MS/MS spectra of the $C_7H_7NO_4$ compounds (a, b, A-C) generated from *m*-cresol/NO_X reactions (Sample ER713 GF2), and (c) UV/Vis detector chromatogram (DAD signal) for this sample.

Figure S3. Extracted ion chromatogram (EIC) and Q-ToF MS/MS spectra of the $C_7H_7NO_5$ compounds (a, A-C) generated from *m*-cresol/NO_X reaction (Sample ER713 GF2), and (b) UV/Vis detector chromatogram (DAD signal) for this sample, omitting $C_7H_7NO_4$ signals.

Figure S4. Extracted ion chromatogram (EIC) and Q-ToF MS/MS spectra of the $C_8H_9NO_5$ compounds (a, A, B) generated from *m*-cresol/NO_X reaction (Sample ER713 GF2). These compounds have low abundance and their absorbance at 365 nm could not be observed in UV/Vis detector chromatogram (DAD signal).

Figure S5. Extracted ion chromatograms (EICs) and Q-ToF MS/MS spectra of the $C_{10}H_7NO_3$ (a, A) and $C_{10}H_7NO_4$ (b, B, C) compounds generated from naphthalene/NO_X reaction (Sample 703 GF2), and (c) UV/Vis detector chromatogram (DAD signal) for this sample.

Figure S6. Extracted ion chromatograms (EICs) and Q-ToF MS/MS spectra of the $C_6H_5NO_4$ (a, A) and $C_6H_5NO_5$ (b, B) compounds generated from benzene/NO_X reaction (Sample ER542 GF4), and (c) UV/Vis detector chromatogram (DAD1) for this sample.

Figure S7. Extracted ion chromatograms (EICs) and Q-ToF MS/MS spectra of the $C_6H_5NO_3$ (a, A) and $C_6H_4N_2O_6$ (b, B) compounds generated from benzene/NO_X reaction (Sample ER542 GF4).

Figure S8. Extracted ion chromatogram (EIC) and Q-ToF MS/MS spectra of the $C_8H_9NO_4$ (a, A-C) compounds generated from ethylbenzene/NO_X reaction (Sample ER754 GF8), and (b) UV/Vis detector chromatogram (DAD signal) for this sample.

Figure S9. Extracted ion chromatograms (EICs) of (a) $C_8H_7NO_4$, (b) $C_7H_5NO_5$, and (c) $C_9H_9NO_4$ generated from ethylbenzene/NO_X reaction (Sample ER754 GF8).

Figure S10. Extracted ion chromatograms (EICs) and Q-ToF MS/MS spectra of the $C_7H_7NO_3$ (a, A), $C_7H_7NO_4$ (b, B; MS/MS spectrum for compound eluting at 6.18 min), and $C_7H_6N_2O_6$ (c, C, D) compounds generated from toluene/NO_X reaction (Sample ER744 GF2), and (d) UV/Vis detector chromatogram (DAD sample) for this sample. Plot D is a magnification from m/z 110 to 220 of plot B.

Figure S11. UV/Vis spectra ($A_{300-550} - A_{700}$) of standard compounds in methanol at around 1 ng μL^{-1} .

Figure S12. Average mass contributions (%) of nitro-aromatic compounds to total SOA generated from benzene/NO_X experiment under two different conditions. Four samples were collected from reactions with methyl nitrite, and the other four were collected from reactions without methyl nitrite.

Figure S13. Average contributions (%) of nitro-aromatic compounds to Abs₄₀₀ of total SOA generated in different chamber experiments.

Figure S14. Average contributions (%) of nitro-aromatic compounds to Abs₄₅₀ of total SOA generated in different chamber experiments.

References

- (1) Chen, Y.; Bond, T. C. Light absorption by organic carbon from wood combustion. *Atmos. Chem. Phys.* **2010**, *10* (4), 1773-1787.
- (2) Updyke, K. M.; Nguyen, T. B.; Nizkorodov, S. A. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. *Atmos. Environ.* **2012**, *63*, 22-31.
- (3) Cheng, Y.; He, K.-b.; Du, Z.-y.; Engling, G.; Liu, J.-m.; Ma, Y.-l.; Zheng, M.; Weber, R. J. The characteristics of brown carbon aerosol during winter in Beijing. *Atmos. Environ.* **2016**, *127*, 355-364.
- (4) Feng, Y.; Ramanathan, V.; Kotamarthi, V. R. Brown carbon: a significant atmospheric absorber of solar radiation? *Atmos. Chem. Phys.* **2013**, *13* (17), 8607-8621.
- (5) Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon. *Atmos. Chem. Phys.* **2014**, *14* (20), 10989-11010.
- (6) Liu, J.; Lin, P.; Laskin, A.; Laskin, J.; Kathmann, S. M.; Wise, M.; Caylor, R.; Imholt, F.; Selimovic, V.; Shilling, J. E., Optical properties and aging of light-absorbing secondary organic aerosol. *Atmos. Chem. Phys.* **2016**, *16* (19), 12815-12827.
- (7) Lu, Z.; Streets, D. G.; Winijkul, E.; Yan, F.; Chen, Y.; Bond, T. C.; Feng, Y.; Dubey, M. K.; Liu, S.; Pinto, J. P.; Carmichael, G. R. Light absorption properties and radiative effects of primary organic aerosol emissions. *Environ. Sci. Technol.* **2015**, *49* (8), 4868-4877.
- (8) Turpin, B. J.; Lim, H.-J. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. *Aerosol Sci. Tech.* **2001**, *35* (1), 602-610.