
Supplementary Material

Previous Methods

Many of the first and most popular TAD detection methods were based on the directionality index,
which is a function of the average upstream and downstream interactions. This metric was then
used as a parameter in a hidden Markov model to establish the location of TAD boundaries [1]. The
basis of this method was the fact that boundary regions are expected to interact with downstream
regions more than upstream regions. This method was followed by a number of methods designed to
calculate non-hierarchical TADs such as Armatus [2], HiCseg [3], TADLib [4], TopDom [5], Arrowhead
[6], TADbit [7] and RHiCDB [8]. Another intuitive metric, the insulation index [9], uses a sliding
window approach to sum up contacts within a given region surrounding each locus. As TADs are
regions of increased contacts, they can easily be identified via a contact count cutoff. Some tools,
such as the TADtool Python package [10], implement both metrics to call TADs. HiCDB uses an
extension of the conventional insulation index that corrects for background noise.

The detection of hierarchical TAD structures was first introduced by Fraser J. et al. [11] who used
single-linkage clustering to create a hierarchical structure of meta-TADs which contain smaller sub-
TADs. Since this discovery, there has been a lack of publicly available, user-friendly, hierarchical
TAD callers. A hierarchical TAD caller refers to a tool that finds TADs and sub-TADs contained
within them. To date, the choice of hierarchical TAD callers remains limited.

The first publicly available tool for hierarchical TAD calling, TADtree [12] worked by creating
TAD “forests” containing hierarchical “trees” of TADs. TADtool similarly provides hierarchical
TAD detection and visualization [10]. Other hierarchical TAD finders include HiTAD [13] and
IC-Finder [14] which take dynamic programming, hidden Markov model-dynamic programming
hybrid, and probabilistic approach, respectively. ClusterTAD [15] introduced a traditional hier-
archical clustering-based approach to TAD classification. Another method, rGMAP [16] has arisen
as a potentially useful tool for TAD detection. This method utilizes a Gaussian Mixture Model
and a z-test of proportions to identify TADs. The model is then run iteratively to partition TADs
into sub-TADs, but in practice is limited to two levels of TADs. CaTCH [17] is another approach
that uses a novel measure called reciprocal insulation (RI) and iteratively partitions TADs into a
hierarchy based on different thresholds of this value. More recently, a method called OnTAD was
proposed [18]. This method uses TopDom, a single-level TAD caller that uses a statistical test on
upstream and downstream contacts, to find all possible TAD boundaries and then to select a final
configuration using a dynamic programming algorithm [5]. Of these methods, TADtool, TADtree
and TADLib are Python-based. IC-Finder and ClusterTAD are MATLAB based with ClusterTAD
also including Java implementation while rGMAP and CaTCH are available as R packages. Although
some comparison of TAD detection tools has been performed [19–21], this diversity leaves the choice
of the most appropriate method uncertain.

Hi-C data, represented as an adjacency matrix, naturally lends itself to the use of graph theory
[22–24]. Arboretum-HiC first introduced the idea of using Laplacian-graph segmentation to find
structures in Hi-C data [25]. This method used a spectral clustering approach too simultaneously
find 3D structures between multiple matrices. Chen et al. [26] proposed a method that framed
the contact matrix as a weighted adjacency matrix and used recursive partitioning of the Fiedler
vector to identify TADs. MrTADFinder [27] and HiTAD [13] take a similar approach but address the
question as a community detection problem. Most recently, 3DNetMod was introduced, which treats
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the Hi-C matrix as a network and uses network modularity to cluster the TADs [28]. This method is
also designed to find hierarchies of TADs. Network theoretical, or more broadly graph-theoretical,
approaches have a promise to provide us with a data-driven method of identifying TADs that takes
the entire structure of loci-loci interactions into account.

R/Bioconductor is the de facto gold standard programming language for the genomics community
[29]. Currently, the number of TAD callers implemented in the R programming language are limited
and include HiCseg [3], TopDom [5], rGMAP[16], CaTCH [17] and HiCDB [8]. HiCseg is the only TAD-
calling specific R package available on CRAN or Bioconductor, while TopDom is a downloadable
R script. HiCDB, rGMAP and CaTCH are available on GitHub. Another tool, RobustTad, is in
development and currently only provides a metric for TAD calling. It will potentially provide a
new option for R users [30]. Additionally, the HiTC R package [31] has functionality for calculating
the directionality index but does not provide any tools for TAD identification. Neither TopDom nor
HiTC can operate on the commonly used n × n contact matrices in text format. TopDom requires
the data to be formatted as an n × n + 3 matrix with the first three columns corresponding to
the genomic coordinates. HiTC requires the user to transform the data into their package-specific
HTCexp object. HiCseg can be used to analyze n × n text matrices but forces users to assume a
distribution of contacts and estimate the number of TADs before running. These factors aren’t
always clearly apparent from the data and thus require constant tweaking to account for different
levels of noise, sparsity, and resolution of Hi-C data. Although HiCDB can process n × n contact
matrices, it requires matrices from multiple chromosomes, thus limiting the analysis of single-
chromosome data. Additionally, it requires data to have a resolution of 5kb, 10kb, or 40kb. The
aforementioned limitations limit the choice of R-based tools for direct comparison.

Identification and removal of gaps

We define gaps as regions where there is no coherent connectivity structure. There are two types
of gaps, those with no contacts at all (centromeres and unsequenced regions), and regions where
contacts exist but TADs are not present. The first category of gaps is removed by simply getting rid
of loci with more than 95% zero contacts. Since there are situations when TADs span unsequenced
regions, we allow TADs to start on one side of a gap and end on another. This is done by essentially
treating regions on either side of a gap as being adjacent. The second category of gaps is detected
using the silhouette score. Regions where contacts are present but no TADs exist will frequently
have low silhouette scores due to the poor similarity between each locus within the region. As a
result, we can detect this type of gap by treating it as a potential TAD then filter it out if its
silhouette score is lower than .25.

Simulating levels of noise, sparsity, and sequencing depth

Simulated contact matrices [20] (Supplementary Table S4) were modified to simulate various levels
of noise, sparsity, and sequencing depth. The noise was added by randomly selecting a percentage
(4%, 8%, 12%, 16%, and 20%) of entries in the matrix and adding a constant of two to these entries.
Entries were sampled with replacement meaning certain entries may have received more noise than
others. In summary, we used five replicates at each noise level, totaling 25 simulated matrices.

We created two extra sets of contact matrices for simulating sparsity and sequencing depth. To
mimic sparsity, we took the five simulated matrices with the minimum level of noise (4%) and
introduced 90%, 75%, 50%, 25%, or 10% of zeros uniformly at random, totaling 25 matrices. To
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simulate changes in sequencing depth, we took the same five minimum noise matrices and applied
the downsampling procedure adapted from [32]. Briefly, the full contact matrix was converted into
a vector of pairwise individual intra-chromosomal contact counts. The vector was downsampled
uniformly at random proportional to the level of downsampling (1/2, 1/4, 1/8, and 1/16). Following
downsampling, the vector was re-binned to the original contact matrix. This procedure produced a
set of 20 matrices (five matrices, each modified by four levels of downsampling) with varying levels
of downsampling.

Choosing TAD caller parameters

HiCseg

Following the suggestions in the HiCseg manuscript [3] regarding unnormalized data, we use a
Poisson distribution. To allow for the detection of all possible changepoints, we set the maximum
number of changes (TADs) to be equal to the rows of the contact matrix divided by 3. This is in
line with the optimal parameters laid out in [20]. Since we are using traditional contact matrices,
a block diagonal model is used.

TopDom

For all analysis between 10kb and 50kb, including simulations, we use the suggested window size
of 5 [5]. As we get into more high resolution, a window size of 5 and a window size of 20 was
tested. The best results from the two are reported. The reasoning behind the large window size
is to account for the fact that the optimal window size was never determined for high-resolution
data. By choosing the maximum window size of 20, we are allowing for more bins to be included
in a TAD, giving more realistic results.

OnTAD

We set parameters such that the minimum TAD size is 5 bins, and the maximum is equal to
2mb/resolution. These parameters are in line with those used for SpectralTAD. Additionally, we
use a penalty term of .1 to filter out weak TADS. This was chosen according to the suggested
penalty listed in the OnTAD vignette (https://github.com/anlin00007/OnTAD).

rGMAP

For rGMAP, we use the suggested default parameters with resolution set to the resolution of the
data. Maximum distance is set to 2mb with a minimum window size of 25 bins and a maximum of
100 bins.

Normalization of Hi-C data

Normalization of Hi-C data matrices is a common step in Hi-C data analysis [33–39]. To test for the
effect of normalization on the detection of TADs, we applied iterative correction and eigenvector
decomposition (ICE) [34], Knight-Ruiz (KR) [35, 40] normalization, and the Square Root Vanilla
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Coverage (sqrtVC) [40] to the simulated and experimental Hi-C matrices. ICE was implemented
using the ICE function from the dryHiC R package version 0.0.0.9000. KR-normalization [41] was
performed using Juicer [6], and sqrtVC normalization was performed using a function written by
the authors.

Measuring association of TAD boundaries with genomic annotations

To test for the enrichment of a genomic annotation at a given TAD boundary, we measure the
total number of annotations within 50kb of the boundary point on either side. The flanking
region accounts for the fact that a TAD boundary is a single point. Flanking also helps to correct
for impreciseness due to issues like overlapping TAD boundaries and differences in resolutions.
We specifically choose 50kb for comparison of genomic features because it allows for at least one
bin of wiggle room for all resolutions used in this paper. By keeping the size of the flanking
region consistent across resolutions, we can directly compare enrichment at TAD boundaries across
resolutions.

A permutation test was used to quantify the enrichment of overlap of TAD boundaries with ge-
nomic annotations. Briefly, the difference in the mean number of genomic annotations within 50kb
of each boundary and that of for all other regions was calculated (observed enrichment). Two sets
of bins, one the size of the TAD boundaries and another the size of all other regions were sampled
without replacement, and the difference in the mean number of genomic annotations in the cor-
responding sets was calculated (expected enrichment). This procedure was repeated 10000 times.
We determined the permutation p-value by taking the number of expected mean differences that
were greater than the observed difference in means between TAD boundaries and all other regions
of the chromosome, and dividing by 10000. α = 0.05 was set to assess statistical significance. For
all hierarchical TAD callers, only the first level of TAD boundaries was used.

Jaccard and its modified version as a measure of similarity between
TADs

Traditionally, Jaccard is used as a measure of overlap between sets. We use it as a measure of
overlap between TAD boundaries. Given a set of TAD boundaries A and B, we define the Jaccard
as:

J = A ∩B
A ∪B

In plain terms, this is the set of shared boundaries divided by the total number of unique boundaries.

While we expect TADs called at different resolutions of the same Hi-C data to be nearly identical,
TADs called from a higher-resolution data may be finer partitioned than those called from lower-
resolution data. The traditional Jaccard measure will penalize for these finer TADs even though
the original boundaries were detected. We introduce a modified Jaccard score of Ja, which accounts
for the difference between TADs detected across resolutions.

Ja = A ∩B
min(|A|, |B|)
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Here, A and B are two sets of TAD boundaries and |A| and |B| indicates the size of sets (Supple-
mentary Figure S1). This method is identical to the Jaccard statistic, but instead of dividing by
the union of A and B we divide by the smallest size. A score of 1 indicates that all of set A is
contained in a subset of B or vice-versa. This is in contrast to traditional Jaccard where a score of
1 indicates that all boundaries in A and B are identical.

Modified Jaccard with a flank

The modified Jaccard can be extended to account for the impreciseness of TAD callers or differences
in the resolution which make finding identical TADs impossible. For instance, half of the loci in
a 25kb resolution contact matrix aren’t actually in the 50kb resolution version of the same matrix
but in one of the neighboring bins. This “off-by-one” error is accounted for by extending TAD
boundary points at higher resolution by flanking regions of size f . Consequently, the modified
Jaccard formula becomes:

Ja = A ∩B
min(|A|, |B|)

where A = {A,A+ f,A− f} and B = {B,B + f,B − f}.

When comparing the 50kb and 25kb resolution matrices, we can set f = 25000 to make up for
any difference in resolution. Note that modified Jaccard is used only when comparing boundaries
between different resolutions; otherwise, the traditional Jaccard statistic is used.

Runtime analysis

One general drawback of spectral clustering is the fact that it scales poorly to large matrices.
Traditionally, the three main bottlenecks are 1) the creation of the distance matrix, 2) the creation
of the Laplacian matrix, and 3) the eigenvalue decomposition. Letting n equal the number of loci
in the genome, the distance matrix creation has a complexity of O(n3). The Laplacian matrix
creation involves two matrix multiplication steps. The traditional multiplication step costs O(2n3),
and the eigendecomposition step costs O(n3). In total, these bottlenecks result in computational
complexity of O(4n3) or more simply O(n3), cubic complexity.

Our method manages to avoid all of these bottlenecks. The first bottleneck is avoided because the
contact matrix is itself an adjacency matrix and doesn’t require transformation to a distance matrix.
The second bottleneck is solved by calculating relatively small Laplacian matrices for each window
instead of calculating the Laplacian matrix of the entire contact map. The total number of windows
for a given chromosome of size n with window size w is equal to ∼ n

w with some discrepancy for
rounding and variable TAD size. Accordingly, the computational complexity of Laplacian matrix
creation over a given number of windows is equal to O(w3 n

w ) or more simply O(n). The third
bottleneck is similarly addressed by the windowed approach. The window makes the computation
complexity of the eigendecomposition equal to O(Kw2nm), where K is the number of eigenvalues
and m is the number of iterations for convergence of the eigensolver. This reduces to O(n). As
a result of these steps, the windowed spectral clustering algorithm reduces to the computational
complexity of O(2n), or simply linear complexity O(n).
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