Appendix: Details of Optimization

To minimize (10), we differentiate £(3,~) with respect to (3,). Then (B,’y) solves the
following estimating equations:
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where the involved partial derivatives can be computed recursively. Specifically, taking
partial derivatives on the both sides of (7) yields that, for t =0,..., 7 — 1,
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Here, %6(25) = B(t) x B(t), and -Z~(t) = v(t) x B(t), and

Oy
%i(()) = %i(()) 3—7"(0) = 8@ (0) = 0 by using the initial conditions.
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