
Appendix: Details of Optimization

To minimize (10), we differentiate `(β,γ) with respect to (β,γ). Then (β̂, γ̂) solves the
following estimating equations:
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where the involved partial derivatives can be computed recursively. Specifically, taking
partial derivatives on the both sides of (7) yields that, for t = 0, . . . , T − 1,
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Here, ∂
∂ββ(t) = β(t)×B(t), and ∂

∂γ γ(t) = γ(t)×B(t), and
∂
∂β i(0) = ∂

∂γ i(0) = ∂
∂β r(0) = ∂

∂γ r(0) = 0 by using the initial conditions.
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