FPGS relapse-specific mutations in relapsed childhood acute lymphoblastic leukemia

Sung-Liang Yu^{1,2,3,4,5,6*}, Hui Zhang^{7*}, Bing-Ching Ho¹, Chih-Hsiang Yu², Chia-Ching Chang², Yin-Chen Hsu², Yu-Ling Ni³, Kai-Hsin Lin⁸, Shiann-Tarng Jou⁸, Meng-Yao Lu⁸, Shu-Huey Chen⁹, Kang-Hsi Wu¹⁰, Shih-Chung Wang¹¹, Hsiu-Hao Chang⁸, Ching-Hon Pui¹², Jun J Yang¹³, Jinghui Zhang¹⁴, Dong-Tsamn Lin^{3,8}, Shu-Wha Lin², Xiaotu Ma¹⁴, Yung-Li Yang^{3,8}

¹Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan ²Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan

³Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan;

⁴Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan

⁵Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan

⁶Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan

⁷Department of Hematology & Oncology, Guangzhou Women and Children's Medical

Center, Guangzhou, Guangdong, China

⁸Department of Pediatrics, National Taiwan University Hospital and National Taiwan

University College of Medicine, Taipei, Taiwan;

⁹Department of Pediatrics, Taipei Medical University–Shuang Ho Hospital, Taipei, Taiwan;

¹⁰Division of Pediatric Hematology &Oncology, China Medical University Children's Hospital, Taichung, Taiwan;

¹¹Department of Pediatrics, Changhua Christian Hospital, Changhua, Taiwan.

¹²Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee,

USA

¹³Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis,

Tennessee, USA

¹⁴Department of Computational Biology, St. Jude Children's Research Hospital, Memphis,

Tennessee, USA

*These authors contributed equally to this work: Sung-Liang Yu and Hui Zhang

Corresponding author:

Yung-Li Yang

Department of Laboratory Medicine, National Taiwan University Hospital and National

Taiwan University College of Medicine, Taipei, Taiwan;

No. 7, Chung Shan S. Rd, Zhongshan S. Rd, Zhongzheng Dist, Taipei 100, Taiwan, R.O.C.

Tel.: +886-2-23123456-71712

Fax:+886-2-23224263

E-mail: yangyl92@ntu.edu.tw

Supplementary Table 1. Primer sequences

	Sequence (5' to 3')		
Custom TaqMan SNP assay			
FPGS_R419W forward primer	TTCGAGTCTTGCTCTTCAATGCTA		
FPGS_R419W reverse primer	TCACCTGCAGCAGCTTCA		
Reporter 1-FAM-NFQ	CCGGGTCCCGGTCC		
Reporter 1- VIC-NFQ	CCGGGTCCCAGTCC		
Artificial amplicon			
FPGS-F	GCCCCTCACCTGGTACCTG		
FPGS-R	AGAGGCAAACTGAGGCTCGG		
FPGS-mF	GCCGCCGGGTCCCaGTCc		
FPGS-mR	GGACtGGGACCCGGCGGC		
Sanger validation			
FPGS_R419W F	GGTCCTGAGTGTTGAGGGCGG		
FPGS_R419W R	AGGGGGAGGGGATTGGCACC		
FPGS_R141H/V136F F	GGGGCACCAGGAACAAACCG		
FPGS_R141H/V136F R	ACCTCCACCACTGCCAGGTC		
FPGS_K215_V218delinsSP F	GCGGGGCTTATGACTGCACC		
FPGS_K215_V218delinsSP R	TCCAGTCACACAGTGAAGCCAGG		
NT5C2_R39Q F	TCAAACAGCATGTCGTGTTATACATC		
NT5C2_R39Q R	GCTTCTGGCAGCCAAATACA		
NT5C2_R238W F	AGGTTCCCCCATTCCTGTTGTGG		
NT5C2_R238W R	AAGGGGTGTGACTGCTCAAGTTT		
NT5C2_R367Q F	GCTCTGGTCAGCACAGTGGAGC		
NT5C2_R367Q R	CCTGCCTTTTGACCACCTCTGACT		
PRPS1_P106A F	TCTGGGTACCATAGTGCCTTTAACA		
PRPS1_P106A R	ACTGCCTCCCTATCTAACCACCTG		
PRPS1_A190T F	TATTCTCCTCCCCAAAACAAGCCCA		
PRPS1_A190T R	TACCAGCCCCATCAATCCACACTTA		

		Age				Time to	Overall	
ID	Sex	at D0	Cytogenetics	Subtype	Mutation (MAF)	relapse	survival	Outcome
		ut 20				(month)	(month)	
584	F	4.16	52,XX,+3,+10,+14,+17,+21,+X	Hyperdiploidy	<i>FPGS</i> _p.R419W(15%)	37	57	Deceased
662	М	7.02	46,XY[5]	ETV6-RUNX1	<i>FPGS</i> _p.R141H(37%)	21	33	Deceased
162	М	4.16	48,XY, +der(7)t(7;22)(p13;q11),	Other	<i>FPGS_</i> p.V136F(29%);	31	66	Deceased
			dic(9:20)(p11;q11),+21,-22,		FPGS_p.K215_V218delinsSP(43%)			
			+mar1,+mar2[5]/49,idem,+21[1					
]/46,XY[2]					
196	F	3.50	i8q,-15q,-12p,i17q	Other	<i>NT5C2_</i> p.R39Q(11%)	24	35	Deceased
434	F	9.50	46,XX[18]/47,XX,+8[2]	TCF3-ZNF384	<i>NT5C2</i> _p.R39Q(26%)	33	38	Deceased
544	F	7.50	46,XX[8]	Other	<i>NT5C2</i> _p.R39Q(20%)	29	41	Deceased
717	Μ	13.14	No mitosis	T-ALL	<i>NT5C2_</i> p.R367Q(41%)	6	12	Deceased
17	Μ	2.28	46,XY[20]	Other	<i>NT5C2_</i> p.R238W(8%);	15	23	Deceased
					<i>PRPS1_</i> p.P106A(6%)			
68	Μ	7.56	46,XY,t(9;22)(q34;q11)[6]/46,X	BCR-ABL1	<i>PRPS1_</i> p.A190T(13%)	6	20	Deceased
			Y[2]/ 45,XY,idem,					
			der(20)t(20;21)(q13;q11),-21[2]					

Supplementary Table 3. Time to relapse, overall survival and MAF of relapsed childhood ALL patients with FPGS, NT5C2 or PRPS1 mutations

Supplementary Figure 1. *NT5C2* mutations in relapsed pediatric ALL. (a) Schematic representation of the structure of the NT5C2 protein. The haloacid dehydrogenase domain and substrate binding domain are indicated. *NT5C2* mutations identified in relapsed pediatric samples are shown. Filled circles represent heterozygous mutations.
(b) DNA sequencing chromatograms of paired diagnosis and relapse genomic ALL DNA samples showing representative examples of relapse-specific heterozygous *NT5C2* mutations, with the mutant allele sequence highlighted in red.

Supplementary Figure 2. *PRPS1* mutations in relapsed pediatric ALL. (**a**) Schematic representation of the structure of the PRPS1 protein. The N-terminal domain of ribose phosphate pyrophosphokinase and phosphoribosyl transferase (PRT)-type I domain are indicated. *PRPS1* mutations identified in relapsed samples are shown. Filled circles represent heterozygous mutations. (**b**) DNA sequencing chromatograms of paired diagnosis and relapse genomic ALL DNA samples showing representative examples of relapse-specific heterozygous *PRPS1* mutations, with the mutant allele sequence highlighted in red.