Supporting Information

Pyridine-2,6-dithiocarboxylic Acid and Its Metal Complexes: New Inhibitors of New Delhi Metallo β-lactamase-1

Chris S. Thomas,^a Doug R. Braun,^a Jose Luis Olmos, Jr.,^b Scott R. Rajski,^a George N. Phillips, Jr.,^{b,c} David Andes,^d and Tim S. Bugni^{a,*}

^aPharmaceutical Sciences Division, School of Pharmacy University of Wisconsin-Madison, Madison, Wisconsin 53705, USA ^bDepartment of Biosciences, Rice University, Houston, Texas 77005, USA ^cDepartment of Chemistry, Rice University, Houston, Texas 77005, USA ^dDepartment of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA

Table of Contents

Item Name	Contents/Description		
Figure S1	¹ H NMR spectrum and integration of synthetic PDTC		
Figure S2	Rate of CENTA hydrolysis in presence of PDTC alone	S3	
Figure S3	Mass Spectra of the PDTC with ZnSO ₄	S4	
Figure S4	Rate of CENTA hydrolysis by NDM-1 in assay buffer with ZnSO ₄	S4	
Figure S5	Rate of CENTA hydrolysis by NDM-1 in ZnSO₄ and EDTA	S4	
Figure S6	Mass Spectra of the PDTC complexes collected in ESI (-) mode	S5	
Table S1	PDTC complex and PDTC MIC data*	S6	
Table S2	Metal salt MIC data*	S6	
Table S3	Meropenem MIC data with metal salts*	S6	

* Organisms tested: E. coli 2692, E. coli BAA-2452, and K. pneumonieae BAA-2146

Figure S1. ¹H NMR spectrum and integration of synthesized PDTC. Inset expands the region between 8 and 8.3 ppm to highlight the second order coupling pattern – pattern identified as AB_2 .

Figure S2. Rate of CENTA hydrolysis in the presence of PDTC with no NDM-1.

Figure S3. Mass spectra acquired for PDTC in the presence of $ZnSO_4$, revealing a 2:1 PDTC₂-Zn complex for 228.8959 m/z [M-2H]⁻². Several 1:1 PDTC-Zn complexes were identified where able.

Figure S4. Rate of CENTA hydrolysis by NDM-1 at different concentrations of $ZnSO_4$ in the assay buffer. Optimal rate of hydrolysis takes place between 20 and 40 μ M.

Figure S5. Initial rates of CENTA hydrolysis by NDM-1 vs. EDTA concentration with (**a**) 10 μ M ZnSO₄, (**b**) 50 μ M ZnSO₄, (**c**) 100 μ M ZnSO₄ supplementing the reaction buffer. EDTA eliminates in a 1:1 equivalency with the amount of ZnSO₄ incorporated, as compared with PDTC, which reduced activity at 2 equiv. of ZnSO₄ (denoted by bold type on x axis).

Figure S6. Mass Spectra of the PDTC complexes collected in ESI (-) mode.

	Observed MIC (mM)		
	E. coli 2692	E. coli BAA-2452	K. pneumonieae BAA-2146
PDTC ₂ -Fe	>1.6	>1.6	1.6
PDTC ₂ -Co	>1.6	>1.6	1.6
PDTC-Ni	>1.6	>1.6	1.6
PDTC-Zn	0.2	0.2	0.4
PDTC (no metal)	0.4	0.4	0.4

Table S1. PDTC complex and PDTC MIC data. MICs shown are an average of 4 replicates.

Table S2. Metal salt MIC data. MICs shown are an average of 4 replicates.

	Observed MIC (mM)		
	E. coli 2692	E. coli BAA-2452	<i>K. pneumonieae</i> BAA-2146
ZnCl ₂	> 1.6	> 1.6	1.6
FeCl ₃	> 1.6	> 1.6	> 1.6
NiCl ₂	> 1.6	> 1.6	> 1.6
CoCl ₂	1.6	> 1.6	1.6

Table S3. Meropenem MIC data with metal salts. MICs shown are an average of 4 replicates.

	Observed Meropenem MIC (µg/mL)		
	E. coli 2692	<i>E. coli</i> BAA-2452	K. pneumonieae BAA-2146
(no salt)	64	16	128
ZnCl₂	64	32	128
FeCl₃	64	8	128
NiCl ₂	64	32	128
	64	10	64

Metal salts were screened at a constant concentration of 400 μ M, equivalent to 0.25 x MIC or the highest concentration tested for Table S2