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I. PHOTONIC STRUCTURES AND EVOLUTIONARY OPTIMIZATION

In the article, we state that "despite the apparent simplicity of the problem, no computational optimiza-

tion algorithm has ever yielded Bragg mirrors as a solution, not even early attempts with evolutionary

algorithms". We would like to develop this point here in more details.

Since the mid 90’s, several groups have attempted to use evolutionary algorithms to optimize complex

photonic structures, mainly focusing on multilayered structures because their properties are relatively

easy to compute19,34,39,48,49. The results produced by the algorithms were constantly disordered or "ape-

riodic". As a consequence, the architectures were de�nitively not physically intelligible and thus did not

attract much attention. Ten years ago, however, a work seemed to show that regularity could be made to

appear spontaneously16, with very little follow-up work.

We believe that two main reasons explain frequent failures at retrieving regular structures:

• The algorithms have improved a lot in the last two decades because the di�erent techniques and

operators (recombination, mutation) have been thoroughly tested and compared on well de�ned

test-cases. The original Genetic Algorithms, while de�nitely being inspired by natural evolutionary

strategies, relied on unnecessary ingredients (binary coding to mimic the DNA) making them less

relevant and requiring costly checks on the validity of the solutions generated. This made them less

e�cient25 despite some clear successes3. Speci�cally designed algorithms also su�er from many

drawbacks because they have not been tested on well known cases49. Evolutionary strategies have

since then been proven more e�cient, even on the early successes treated using GA44. One of the

leading evolutionary algorithms up to date is Di�erential Evolution41 (see below). It is the heir

of Genetic Algorithms, in the sense that it shares some of their philosophy (in particular cross-

overs which selects genes from the a parent and newly generated genes) but without using bit-

representation of �oating-point numbers as in the early times.

• The objective functions that were used may have complicated the task of the algorithms because

they were chosen arbitrarily and were hence likely to be not well adapted to the speci�c problem at

hand34. We stress that it is remarkable that the objective functions we use in the article are among

the simplest that can be imagined. We have often tried several objective functions to get closer to

natural structures – in each case, the simplest objective function gave the ’best’ results.

Since these early attempts, genetic or evolutionary algorithms have rather been (successfully) used

by members of the photonics community for problems presenting few degrees of freedom and a reduced
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search space. In such cases however, no periodicity could emerge due to the large number of degrees of

freedom required to see periodicity appear.

Our work suggests that there is no need to design speci�c algorithms for photonic structures, but that

only well known algorithms (like e.g. DE), that have been extensively tested on other kind of problems

have a chance to yield satisfactory results.

We underline that once an algorithm produces a solution, it is impossible to assess whether this solution

is optimal or not. In the case of photonic structures however, solutions that are not intelligible and do not

show any kind of regularity should be considered suspicious, as our results below indicate. The lack of

any kind of regularity is a clue that the solution is probably not fully optimal.

II. OPTIMIZATION AND MODULARITY

There are many works done to test optimization algorithms, most of them on arti�cial benchmarks21,42.

While there are fewer work focused on benchmarks rooted in real world problems, some studies exist4,15,17.

Looking further than simple tests of the algorithms, we �nd many applications in a wide range of domains:

physics, economics, biology, imagery, etc.

One of the many applications of stochastic optimization in biology1,2,8 is to identify and test models that

are best able to �t the real world. This can also serve to validate - or invalidate - hypotheses about a given

biological phenomenon. Here, we focus on one such phenomenon, regarding the properties exhibited by

the cuticles of beetles or the wings of butter�ies to re�ect light with a much better e�ciency than most

arti�cial dyes and structures can. Our hypothesis is that this problem is modular, and that this has an

impact on which algorithms can tackle it e�ectively. We �rst compare optimizers in terms of performance

on our test problems, and then discuss the speci�cities of our test case which might explain our results.

A. Optimization algorithms

The optimization problems that we consider have the following key characteristics: i) a gradient is

expensive and ii) the objective function is not convex. We therefore chose �ve (plus one variant) of the

most used optimizers in the literature in such a context:

1. (1 + 1)− ES, with a step-size updated according to the one-�fth rule38;

2. Covariance Matrix Adaptation Evolution Strategy (CMAES24), an algorithm based on the

adaptation of a covariance matrix used for generating new candidate solutions, where cumula-

tive step-size adaptation drives the mutation rate. Also, a variant of CMAES was used, where
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instead of drawing the mutations as a classical random Gaussian (independent, identically dis-

tributed) N (0, 1), they were generated as a quasi-random Gaussian sample43. We point out that

quasi-random samples are low discrepancy sequences, so that this variant ensures a better search

over each axis and each combination of axes - hence, combinations of mutations are more likely to

be evenly tested.

3. Nelder-Mead36 (NM) (also known as the amoeba method), a simplex method where only one point

is moved at each generation, unless no better point could be generated, in which case almost all

points are moved.

4. Di�erential Evolution41 (DE), with the DE/currToBest/1 variant. Each mutation is (in the usual

version considered here) the product of a crossover between three individuals and the best one in

the current generation.

5. Particle SwarmOptimization28,40, an algorithm where individuals evolve according to their own

velocity, which is in�uenced by positions of known good individuals.

As DE will be central in the present work, we include a more precise de�nition: there is a population;

at each generation, each ’member’ x in the population generates an o�spring; this o�spring is a binary

crossover between x and some mutation y(x) of x. y(x) is obtained through mutations. In DE mutations

are extracted from di�erences between individuals. A key formula in DE de�nes how y(x) is de�ned

(Table II). There are several variants and we use DE/currToBest/1. Then a binary crossover combines x

and y(x) into an o�spring z(x). This binary crossover works as follows, for a problem with d variables:

• A randomly drawn variable CR in {1, 2, . . . , d} accepts y, i.e. z(x)CR = y(x)CR; this ensures that

z(x) contains at least one variable from y(x).

• For each other variable i 6= CR, independently, we randomly select xi or y(x)i, equally likely, for

z(x)i.

This o�spring z(x) replaces x in the next generation if and only if the objective function is better at z(x)

than at x. The complete pseudo-code is presented in Alg. I.

NM (a.k.a. simplex) is not evolutionary; it is based on averaging, symmetrizing or expanding a set

of candidate solutions - it is considered as a fast mathematical programming solution for unreliable

gradients11. CMAES (pseudocode in Table III) uses selection of the best, but also statistics on the global

population for guiding mutations, and no crossover (in the sense: no crossover which can take exactly as

a value of one variable (i.e. an allele) the value from one of the parents); and the population is reduced
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to a single individual by averaging before switching to the next iteration; it outperforms many mathe-

matical programming methods and evolutionary algorithms on a wide range of arti�cial non-modular

testbeds20,22. PSO (pseudocode displayed in Table IV) adds non-biological inertial forces to evolution,

leading to improved rates on at least partially separable functions. The one-plus-one evolution strategy

((1 + 1)-ES, Table V) is evolutionary, very simple, with blind mutations, but no crossover (not even

averaging of points); it works quite well on simple problems with good conditioning.

DE is the most evolutionary of these methods for various criteria: it has recombination (contrarily to

(1 + 1)-ES), this recombination is coordinate-wise so that we can modify di�erent parts of the genome

selectively (only tested algorithm with this property), and recombination involves a limited number of

parents. DE is recommended for real world problems involving complex structures12, which matches our

setting and, in general, biological settings.

For those optimizers, only defaults or classical parameters were used: we did not attempt to tune each

of them. In a work such as this one, that physicists or biologists would be interested in replicating, the

ease of use of those algorithms is probably at least as important as the performances themselves. Those

parameters were:

• (1 + 1)-ES: the step size is multiplied by r = 1.5 in case of a successful mutation, and divided by

r = 1.51/4 on a failure.

• CMAES: population size λ = 4 + b3 log(N)c, parent population size µ = λ/2.

• NM: Population is, by design, µ = N + 1, and mutation parameters are α = 1, γ = 2, ρ = −0.5

and σ = 0.5.

• DE: The DE/curr-to-best/1 variant was used (mutate the selected individual with the best one of

the generation) with mutation parameters f1 = 0.8, f2 = 0.8 and cr = 0.5.

• For PSO, the standard parameters are widely discussed (6,9,10,37,46,50): We used a population µ = 30,

with 10 neighbors and update parameters ω = 1
2×log(2) , Φp = 0.5 + log(2), Φg = 0.5 + log(2),

velocityinit = 1.0 and velocitymax = 1.5

In addition, we note the di�erent origins of those algorithms: two of them - CMAES and NM - come

more or less from applied mathematics, though CMAES uses selection as other evolution strategies. The

three others are more biology-related: (1 + 1) − ES can be seen as an asexual reproduction; DE is akin

to evolution through reproduction (albeit with more than two partners); �nally PSO mimics the �ight of

birds, or shoals of �sh, but is not related to evolution itself.
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All optimizers ran ten times for any given number of layers on each of the problems for multilayers.

In the case of the Morpho wing scale structures, the optimizers ran 100 times (for clarity of the �gures

we display only one run out of 4, after sorting by performance). In every instance, the maximum budget

was set at 104 evaluations of the objective function. For solving the quarter-wave stack and the chirped

dielectric mirror, the dimension of the problem was once or twice the number of layers of the mirror

(depending on whether the refractive index contrast is imposed or not). The last problem, reproducing

Morpho wing scale structures, is more complex: the overall dimension is then equal to four times the

number of blocks.

B. Comparing performances

The optimizer that worked best is Di�erential Evolution (Fig. 3g), an optimizer inspired by sexual

reproduction and natural evolution. While optimizers like CMAES or NM performed well at times, they

were never able to really challenge DE. CMAES performed well on the simplest problem (common Bragg

stack), not too badly on chirped structures, but got poor results on the challenging task of recovering the

Morpho wing scale structures. The performances of the Quasi-Random variant however were in each and

every case better than the vanilla version on the �rst and second problems. On the last one, even if it was

not the case for each computed statistic, it was always the case for the best run. In fact, where the vanilla

version did not reach the optimum a single time, the QR version got it in all but one case (the last one,

with 12 layers), and even then, it was not far. (1 + 1)−ES and PSO are a bit in the middle: they were not

able to perform as well as DE, but still got good results for the most part.

C. Modularity

Complex real-world structures often have some kind of modularity. Modularity can be de�ned in

various ways; we here focus on strong links inside groups of variables, at various levels of a hierarchy.

We have many layers, de�ned by several variables each, and not all these layers interact equally strongly.

Therefore it makes sense to have an optimization algorithm that takes this structure into account - namely,

algorithms with crossovers which select variables randomly in one or another of the parents rather than

considering a middle point between the parents.

In all our runs, whether multilayered or more complex structures are considered, DE, the only algo-

rithm based on gene-mixing sexual reproduction, has outperformed the other algorithms. In more classical

numerical problems used to compare optimization algorithms, in particular those in which modularity is
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absent, these algorithms do not necessarily fare better. One way to explain this success of algorithms

using gene-mixing sexual reproduction is that real world problems, including biological problems such as

the present ones, do not mix all variables by arti�cial rotational invariance23 and have a naturally modu-

lar structure - therefore, methods combining modules perform best, as in topology optimization26 (not so

many algorithms can optimize the shape if a chair in a non-parametric way!), control27, planning5, where

they routinely win competitions. One of the claims of the present work is that real world problems, at

least those considered here, contain a form of modularity which is

• neither (almost) full separability, for which PSO typically performs best22;

• neither (almost) full rotation i.e. no modularity at all, for which CMAES typically performs best20,22;

• �t for crossovers and in particular DE.

A colorful analogy, for the relevance of gene-mixing crossovers, is that a gira�e and a horse both make

sense, so that we can pick up either the gene “long neck” or the gene “short neck”, but an intermediate

neck is pointless - and averaging reduces the diversity to such an intermediate point. In addition, at the

level of crossovers, it makes sense to check random combinations of several genes, rather than adding a

random noise on a middle point of all genes - this is not only a chemical constraint of DNA crossover in

nature, it is also a suitable feature for modular problems.

More broadly, it is striking to see that DE in its "current to best" variant, the most successful algorithm

for our problems and whose operators have been designed independently of this work aimed at mimicking

biological structures, �nally looks like a potpourri of all the strategies of sexual evolution (selection, impact

of the herd leader on reproduction, and crossover). Incidentally, CMAES was clearly improved by quasi-

random mutations, which are aimed at correctly searching combined mutations - a step in the direction

of modularity.

III. THE QUARTER-WAVE STACK

The quarter-wave stack33 is a structure that has been known for decades30–32. When we asked the

evolutionary algorithms to maximize the re�ection coe�cient of a multilayered structures with arbitrary

indices and thicknesses the results pointed towards the quarter-wave stack beginning with the higher

index, exactly as explained in textbooks33.

The objective functions were computed using a scattering matrix algorithm for the multilayered struc-

tures – the program Moosh13. It constitutes the fastest unconditionally stable method to compute the
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Randomly draw the population x1,. . . ,x30 in the search space.

while There is time do

{// This is one iteration}

for each x in the population do

Randomly draw a, b, c and d in the population.

Compute y using one of the equations in Table II.

Randomly draw CR in {1, . . . , d}. {// d is the dimension}

for each i in {1, . . . , d} do

if i = CR or with probability 1
2 then

zi ← yi.

else

zi ← xi.

end if

if z has better �tness than x then

x is replaced by z in the population.

end if

end for

end for

end while

Table I. Pseudo-code of DE.

optical properties of any multilayer (re�ection coe�cient, propagation in the structure, absorption by sil-

icon and short-circuit current in that case). The code has been recently published and is freely available13.

The objective function is 1 − r(λ)to retrieve the Bragg mirror and the Bragg mirror with a thicker top

layer, where r(λ) is the energy re�ection coe�cient at a wavelength λ in nanometers.

The initial individuals are chosen randomly, with a thickness comprised between 10 and 300 nm, and an

index (when it is not �xed) comprised between 1.4 and 1.7. The algorithms then check that each solution

they come up with respects these limits.

In the paper, we present the results for a number of layers up to 12, for which no doubt is possible. The

structures produced by the algorithms are exactly Bragg mirrors. When the number of layers is increased,

the results are not as perfect - or at least not all the time. Since we have imposed a �xed limit to the number

of objective functions that each algorithm can perform, this was expected. We underline that optimizing

a structure with 40 layers means that 80 parameters are left free, making the problem extremely complex.

Up to 24 layers, almost perfect dielectric mirrors are found except for a few layers. Sometimes λ/4

layers are replaced by 3λ/4 layers. Such a change can be explained because it is almost equivalent to
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DE/rand/1: y(x) = a+ F1(b− c)

DE/best/1: y(x) = best+ F1(a− b)

DE/randToBest/1: y(x) = c+ F1(a− b) + F2(best− c)

DE/currToBest/1: y(x) = x+ F1(a− b) + F2(best− x)

DE/rand/2: y(x) = a+ F1(a− b+ c− d)

DE/best/2: y(x) = best+ F1(a− b+ c− d)

where a, b, c, d are randomly drawn, distinct, in the population. We see that the mutated variant of x, namely y(x),

is in some cases independent of x - this is normal.

Table II. Various DE formulas.

take a λ/4 layer or one thrice as large for the re�ection coe�cient at the operation wavelength – and we

did put a high (300 nm) limit to the thickness of the layers, clearly allowing for such layers to emerge.

However, such a change makes the bandwidth narrower. In nature, it would probably not be favored. A

larger bandwidth means higher chances for the structures to be found by the algorithms, because is means

a larger attraction basin. That is probably the reason why thicker layers are not found for a small number

of layers.

We underline (as can be seen in the article), that as soon as a few periods are present, the performances

of the device are actually very good. Any increase in the number of periods is likely to be incremental.

It is almost surprising that the algorithms were actually able to produce dielectric mirrors with up to

24 layers. Above this limit, though, structures that are more or less regular emerge. They still present

excellent performances, as shown by the spectra, but are only periodic by parts, and do not exactly reach

the performances of a pure Bragg mirror.
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Figure 1. Results of the optimization when the algorithms are allowed to modify the optical index (in the interval

[1.4, 1.7]) and the thicknesses of the layers. Left: the structures. Right: The corresponding re�ection spectra.
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Inputs: f objective function, n dimension, population size λ and parent population size µ < λ

{Initialize:}

C =identity matrix, pc = 0, pσ = 0

w1, . . . , wµ can be chosen freely, with µi ≥ µi+1 and such that µw = 1/(
∑µ
i=1 w

2
i ) ' 0.3λ, cc ' 4/n, cσ ' c/n,

c1 ' 2/n2, cµ ' µw/n2, c1 + cµ ≤ 1, dσ = 1 +
√
µw/n

while Not terminate do

{Generate o�spring}

For each 1 ≤ i ≤ λ, yi is randomly drawn, centered multivariate Gaussian with covariance C

For each 1 ≤ i ≤ λ, xi ← m+ σyi

{Rank points (randomly break ties)}

Compute f(xi) for each i

De�ne (i) the index of the ith best o�spring: f(x(i)) ≤ f(x(i+1))

{Update mean}

m← m+ σz, where z =
∑µ
i=1 wiσy(i)

{Cumulation for C}

pσ ← (1− cc)pc
if pσ < 1.5

√
n then

pc ← pc +
√

1− (1− cc)2
√
µwyw

end if

{Cumulation for σ}

pσ ← (1− cσ)pσ +
√

1− (1− cσ)2
√
µwC

− 1
2 yw

end while

Table III. Pseudocode of CMAES.

Despite the lack of regularity sometimes, we underlined that very few layers present, in any of the

structures above, an intermediate optical index (see �gure 2 for the 40 layer structure). In a layer, the index

is usually either the lowest or the highest allowed (respectively 1.4 and 1.7). When this exact contrast is

imposed, the problem is largely simpli�ed for the algorithm – all the more so that it is very detrimental

to the convergence to constantly bump on a constraint like the one that is imposed to the indices. In that

case, the optimizations yield perfect Bragg mirrors up to 40 layers for the very least, as show Fig. 3. We

have not tried to go beyond this number of layers.

Figure 4 presents a comparison between the results of the di�erent algorithms tested on this case.
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Inputs: µ population size, f objective function, initial speed norm velocityinit, maximum velocity velocitymax.

{Initialization}

for 1 ≤ i ≤ µ do

xi ←randomly drawn ith point in the search space

pi ← xi (best known position for particle i

vi ← randomly drawn initial speed with norm velocityinit

end for

g = current best point in the population, i.e. g = xi such that f(xi) is minimal

while Not terminate do

for 1 ≤ i ≤ µ do

for 1 ≤ d ≤ n do

{Let us work on coordinate d}

Randomly draw rp and rg uniformly in [0, 1]

Update vi,d: vi,d ← ωvi,d + φprp(pi,d − xi,d) + φgrg(gd − xi,d)

Clip the velocity vi,d to [−velocitymax, velocitymax]

end for

Update xi ← xi + vi

pi ← best of(xi, pi) using f

g ← best of(pi, g) using f

end for

end while

Table IV. Pseudo-code of PSO.

Looking at each optimizer individual results, we can notice the overall good performances of CMAES and

DE. By comparing the medians to the best individual, we can also notice that up to twenty layers, the

problem seems to be quite well handled by those two optimizers: at least half of the time they were able

to reach the optimal solution. While the other three optimizers managed to approach the optimal solution

for ten and twenty layers, their performances then degrade to the point where for forty layers, there is a

factor of two between their results and those of DE/CMAES.

IV. BEGINNINGWITH THE LOWER INDEX

We have considered here the case of a dielectric mirror with �xed index, but beginning with the lower

index conversely to the case above. The �rst layer has always a thickness that is doubled compared to the
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Inputs: dimension n, objective function f , step-size σ, step-size adaptation rate r

x← (0, 0, . . . , 0)

while Not terminate do

Generate x′ = x+ σN (0, 1)

if f(x′) ≤ f(x) then

x← x′

σ ← rσ

else

σ ← σ/r
1
4

end if

end while

Table V. Pseudo-code of the (1 + 1)-ES.
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Figure 2. Optical index pro�le for the optimized structure presenting 40 layers. The index essentially varies abruptly

from 1.4 to 1.7 and back. Almost no intermediary indices can be seen here.

other layers with the same optical index. The objective function remains the same, we have simply put a

constraint on the thickness of the �rst layer (larger than 30 nm). Without this constraint, since they have

exactly the same performances, the algorithms �nd half of the time the mirror beginning with the lower

index and thicker layer and the standard dielectric mirror. The substrate on which the whole structure

relies is assumed to be made of the same material and presents an index of 1.4. When this is not the case,

although the half-wave layer improves the re�ection coe�cient compared to the quarter-wave layer, it is

not exactly as good as when beginning with the higher index.
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Figure 3. Results of the optimization when the algorithms use �xed optical indices, beginning with the higher index.

Layers 1 & 2 3 & 4 5 & 6 7 & 8 9 & 10 11 & 12 13 & 14 15 & 16 17 & 18 19 & 20

Odd, thin 85.148 82.220 78.148 84.214 98.724 104.391 98.556 113.842 99.507 109.016

Even, thick 103.159 97.388 98.108 109.286 144.311 118.996 132.302 125.882 125.991 127.987

Table VI. Thickness of layers in a 20 layers Chirped Mirror re�ecting around 50% of the visible spectrum. Table is

read top to bottom, left to right. In this mirror, a thin layer is always followed by a thicker one

V. CHIRPED DIELECTRIC MIRRORS

Looking for more broadband re�ective designs than the standard quarter-wave stack, we use the ob-

jective function

1− 1

8

7∑
n=0

r(500 + 50× n) (1)

where r(λ) is the re�ection coe�cient in energy of the structure at the wavelength λ. This function

objective is, to summarize it, one minus the mean re�ection coe�cient for eight equidistant values of the

wavelength from 500 nm to 800 nm. We have no need to ask for some transparency in the blue part of

the spectrum - which is achieved naturally for all the structures we have found. Most of the results are

shown on Fig. 6 and 7. The structures not shown are totally similar. The designs resemble closely a Bragg

mirror, except that the thicknesses vary slowly in the structure. Some (like for 40 layers) have a smaller

period at the top, others (like for 36 layers) have a larger period at the top. Both of them present similar

performances, actually. As can be seen, the larger the number of layers, the smoother the variation of the

thicknesses. The thicknesses are given here for the 20 layers result in Table VI.

Looking at each optimizer’s results (found on Figure 8), it is interesting to note that while the problem

is a di�cult one in the physics sense, it doesn’t seem to be for the optimizers: up to 18 layers, all of them
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Figure 4. Optimization results for a simple Bragg Mirror. Bragg3 with 10, 20, 30 and 40 layers. With ten layers

the problem seems quite simple, but in higher dimensions there are visible performance di�erences between the

optimizers. Overall, CMAES and DE perform best, with quasi-random noticeably improving the performances of

CMAES.
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Figure 5. Results of the optimization when the algorithms when the �rst layer has the lower index. Left: the

structures. The blue color represents a lower index layer, while the black represents a higher index layer. Right: The

corresponding re�ection spectra.

except PSO were able to get to the optimal solution in at least one of the ten runs. In fact, DE performed so

well that it was able to �nd the optimum solution on almost each of its runs. While PSO wasn’t able to do

so, it was quite robust: on each problem, it was just a little worse than DE, and, from other statistics (mean,
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Figure 6. Left: structures produced by the algorithms, from 10 to 24 layers. Right: Corresponding re�ectance spectra.
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Figure 7. Left: structures produced by the algorithms, from 28 to 40 layers. Right: Corresponding re�ectance spectra.

median and worst), we can see that PSO beats all the other optimizers except DE in almost all instances -

though it usually fails to �nd the optimum.

Increasing the number of layers, we can at �rst glance notice that (1 + 1) − ES, CMAES and NM

begin to be noticeably less consistent: (1 + 1) − ES never gets the optimal solution for 30+ layers, the

QR version of CMAES only gets it once for 32 layers, and for 20+ layers, NM only gets it for 36 and 40

layers. In the meantime, DE is once again the most consistent: reaching the optimal solution in all but 3

cases (32, 36 and 40 layers), and with better means, medians and worst results. On those indicators, PSO,

NM and (1 + 1)− ES are just behind, while both versions of CMAES are noticeably farther.

VI. RETRIEVING THE MORPHO-LIKE ARCHITECTURES

Numerical tools able to compute the optical response of a structure as complicated as the one present

on Morpho butter�y wings can be extremely costly computationally. Here, we use a Fourier Modal

Method18,29 that has the advantage of being extremely fast for solving horizontally periodic problems.

This method is especially suited for periodic problems, horizontally. Here we consider a period of d = 600
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Figure 8. Chirped plots Optimization. Each point is an independent runs. Results when looking for a dielectric

mirror with 6 to 40 layers, re�ecting the entire visible spectrum. The x-axis corresponds to a sorting of results from

worst (left) to best (right). For low dimension, no optimizer seems really better than any other. As the dimension

increases however, DE really starts to outperform all the other optimizers. Only multiples of 10 layers are presented

(see text for more).

nm and 25 di�erent modes in each layer. This mode number has been chosen to get a good accuracy for

a low computational cost, in order to be able to perform the optimization. The period is imposed, and we

chose arbitrarily 600 nm here because this number is close to the period of actual structures47.

The structure thus consists in a �xed number of layers, each containing one block of chitin, with an

arbitrary thickness, width (smaller than d) and position within the period. For the initialization, each layer

is de�ned by its thickness (ranging from 0 to 150 nm), its shift from the origin (from 0 to 600 nm, the full

period), its width (from 0 to 600 nm) and the last is the space between this layer and the next (from 0 to

75 nm).

The modal method provides the re�ection coe�cients in the di�erent orders of di�raction r−1, r0
and r+1 the energy re�ection coe�cient respectively in the −1, 0th and +1 order. The coe�cient r0 is

the re�ection coe�cient for the specular re�ection, the mirror-like re�ection, obeying Snell’s laws. The

re�ection in the di�racted orders is directly linked to the way each pattern scatters light. The r±1 are not

null only if λ < d as only the specular re�ection occurs for λ > d.
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The objective function used to retrieve Morpho-like structures is

1− 1

2
(r+1(450) + r−1(450)− r0(450)) +

1

N

N∑
i=1

r0(λi) (2)

with λi = {300, 400, 500, 600, 700, 800}, ensuring the maximization of the di�raction orders at 450 nm

and the minimization of the specular re�ection for a wide range of wavelength.

The results obtained are shown on Fig. 9 and the corresponding re�ection spectra on Fig. 10.

5 6 7 8

9 10 11 12

Figure 9. Structures obtained through optimization for di�erent numbers of layers. With no constraints.
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Figure 10. Spectra for structures with from 5 to 12 layers shown in �gure 9.

Since other constraints, making the Morpho architecture less optically optimum, seem to play a role,

we have added a term to the objective function of a times the mean �lling factor of the layers (the �lling

factor being comprised between 0 and 1 for each layer). The objective function is now

1− 1

2
(r+1(450) + r−1(450)− r0(450)) +

1

N

N∑
i=1

r0(λi) +
a

nb

nb∑
j=1

wj

d
(3)

where nb is the number of blocks assumed for the structure and wj the width of layer j. The parameter a

controls the weight of this peculiar constraint. The results shown Fig. 11 are obtained using a = 0.5. This
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penalizes structures with a lot of matter. In the following this case is thus said to be "with penalization". As

adding this sole constraint yields structures extremely similar to the �rst ones, but with narrower blocks,

we have added a fabrication constraint: that the blocks should all be at the vertical of a chosen point. This

makes architectures emerge that look very much like the actual structures on Morpho wings.

5 6 7

9 10 12

8

11

Figure 11. Structures obtained through optimization for di�erent numbers of layers when two constraints are added:

less matter and a fabrication constraint.
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Figure 12. Spectra for structures with from 5 to 12 layers shown in �gure 11.

We can safely conclude that although the optical response of the structure essentially governs the

architecture, the environmental constraints at play here (fabrication constraints and the need for lighter

structures) do explain the other features of the actual arrangements.

Individual results in the case without penalization are shown in Fig. 14; results without penalization

in Fig. 13 show a stronger domination by DE. DE still gets excellent results, but with 11 and 12 layers

is (slightly) beaten by NM, which gets very good results across the board. (1 + 1) − ES and PSO are

slightly worse, and don’t perform as well on this problem than in the previous two. CMAES gets poor

performances: it manages to approach the optimal with 4 and 5 layers but not quite. After that, it is quite

badly outperformed by all of the others.
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Figure 13. Performance of the di�erent algorithms on the butter�y problem with no penalization (the lower the

better). The x-axis represents the di�erent runs (sorted: best results on the right). DE dominates for most dimensions

but was less robust than NM and DCMA (i.e. rightmost results are the same but leftmost results are worse for DE).

VII. HIGH REFLECTIVE DIELECTRIC MIRRORS

The Needle technique is an algorithm which is speci�c to multilayers based on a discrete set of refrac-

tive index. In its original version, it adds a layer at a place it has determined will have the most impact

on the performances, then chooses the optimal thickness for this layer and so on. Using this technique,

it is able to reach a re�ectance or a transmittance for the optical �lter that can be arbitrarily close to the

desired spectra. Needle is thus not strictly speaking an optimization algorithm which will generally look

for a solution with a �xed number of layers - and its principle can not be extended to any other problem,

especially to more complex geometries as the Morpho structure. But given how important Needle is for

the community of optical �lters, we had to try to compare Needle with global optimization algorithms.

Since any global optimization algorithm will begin to struggle when the number of layers becomes

too large (as shown above, above 40 degrees of freedom, global optimization algorithms fail repeatedly

to �nd the optimum), Needle is able to "beat" any global optimization algorithm. However, it is well
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Figure 14. Performance of the di�erent algorithms on the butter�y problem with penalization (the lower the better).

The x-axis represents the di�erent runs (sorted: best results on the right). DE dominates.

known too that the solutions provided by Needle are not optimal for a given number of layers. When the

number of layers is low enough, e�cient global optimization algorithms as DE may be able to provide

better solutions than Needle. Again, Needle works by adding layers, so that no comparison can be fair to

both kinds of algorithms. We have tried just to see if at least Di�erential Evolution could compete with

Needle somehow, using standard test cases45, especially the most modular one: the high re�ectance �lter,

which looks actually like a chirped dielectric mirror. The only di�erence with the case above is the range

of refractive index considered.

DE has managed to provide a solution to the problem which is slightly better than Needle for a number

of layers which can be considered as quite high (29 layers). We do not claim here that DE is better than

Needle, which makes no sense, but at least that it may produce solutions which can compete with Needle

on the problem of designing optical �lters - which is already a feat.
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Figure 15. Left: (a) Structure generated using Needle45, comporting 29 layers (b) Best structure found using DE for

29 layers. Right : Comparison of the two re�ectance spectra showing that the dielectric mirror proposed by DE is

actually slightly better than the structure proposed by Needle.

VIII. ANTIREFLECTIVE COATING FOR SILICON PHOTOVOLTAICS

For the design of the anti-re�ective (AR) coating, we relied on our scattering matrix method for multi-

layers, Moosh13, for computing the conversion e�ciency. We used the standard material parameters that

come along with the program. The objective function is simply taken as one minus the conversion e�-

ciency, computed by assuming that each photon (in the 375-750 nm range) that is absorbed in the active

(amorphous silicon) layer in converted into an electron-hole pair and then collected. We then compare the

short-circuit current this procedure yields with the theoretical maximum short-circuit current that can be

reached when all the photons produce a pair and are then collected (always in the 375-750 range for which

amorphous silicon may produce electron-holes pairs). With this procedure, we assure that the objective

function is comprised between 0 and 1.

We ran optimizations on two cases, and two cases only so far (i) a case where the amorphous silicon

layer is very thin (89 nm), that we studied before35, and for which we known that for 89 nm we have a

marked resonance in the absorption spectrum that makes the layer more absorbent and (ii) a case where

the layer is, on the contrary, quite thick (10 µm) in order to be in a more conventional framework for

photovoltaics. Having seen that many results, for multilayers, present a maximum index contrast, and

that the optimization was usually much more successful when the contrast was imposed (as seen above),

we have done so right away. We thus excluded all the solutions that could have looked like index gradients,

solutions some of us have been studying though in another context7. We were at the time simply curious

to see what the algorithms could yield. Again, the results we have presented are our very �rst runs, and

this is enough to demonstrate that elegant and surprising solutions can emerge through optimization. The



22

O
p
tica

l in
d
e
x

1.7

1.4
10 12 14 16 18 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 400  450  500  550  600  650  700  750

A
b

s
o

rp
ti
o

n

Wavelength (nm)

Simple AR coating
12 layers AR coating
20 layers AR coating

Bare silicon

Figure 16. Optimal structures produced by the algorithms for a 89 nm thick amorphous silicon layer(left) and ab-

sorption spectra for a few chosen designs (right)

rest is left for future works.

For the thin amorphous silicon layer, the resulting structures and the corresponding absorption spec-

trum are shown on Fig. 16. In order to be fair, we compared the performances of the structured AR

coating with 12 and 20 layers with a one-layer AR coating. For the latter, the optimal characteristics are

well known. The thickness of the layer has to be chosen so that it is equal to a fourth of the central oper-

ation wavelength. We have taken here a layer with an optical index of 1.7 (more e�cient than a 1.4 index

coating) and a thickness of 95.6 nm, corresponding to a central operation wavelength of 650 nm.

We underline that, because the layer itself is resonant, the optimum number of layers seems to be 12.

We have computed the conversion e�ciency of the structure for di�erent numbers of layers and came to

the conclusion that although the change in the conversion e�ciency are small, it is at its highest for 4 or

5 periods and thus 10 or 12 layers. That is why the results of the optimization for 14 and 16 layers looks

exactly like the 12 layer AR coating (the thicknesses of some layers are clearly extremely small so that

they don’t contribute to the optical response).

For a thicker silicon layer, the results of the optimization are much more clear because the layer is not

resonant any more. The advantage brought by the structured AR coating is however smaller compared to

the simple AR coating (the same 95.6 nm thick layer as above). The results are clearly Bragg mirrors with

modi�ed edges. It is striking to see that for 12 layers, the optimum structure is the same for the thick or

the thin silicon layer.

Of course, the case we have treated here is simple. Again, our point was not to optimize a real struc-

ture with perfectly accurate material parameters (in general the simple AR coatings are less e�cient for

crystalline silicon than what is shown here and more complex AR coatings are thus even more relevant14).

Here, obviously, the algorithms consistently point towards an unexpected class of AR coatings rather than

very di�erent solutions for di�erent thicknesses of the active silicon layer or di�erent numbers of layers
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Figure 17. Optimal structures produced by the algorithms for a 10 µm thick amorphous silicon layer(left) and ab-

sorption spectra for a few chosen designs (right)

Structure type Short-circuit current Jsc Conversion e�ciency CE

89 nm layer 12.859 0.55778

89 nm layer & AR coating 17.075 0.74067

10 µm layer 13.759 0.59632

10 µm layer & AR coating 19.991 0.86639

Table VII. Performances for the photovoltaic structures we use as a reference: a 89 nm thick and a 10 µm thick

amorphous silicon layer, bare and covered with a λ/4 anti-re�ective coating (the central wavelength λ being chosen

to be 650 nm).

in the coating. This is what makes the results very promising – we can be sure that this method, applied

to other problems in photonics, will be able to produce e�cient, regular and intelligible structures.
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