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Method	Details	
	
Data	matrix	transformation	
	
Machine	 learning	methods	 are	 state-of-the-art	methods	 for	 a	 number	 of	 high-throughput	 data	
but	 they	are	still	not	very	popular	 in	 the	 field	of	SNP	analysis.	Two	are	 the	main	reasons:	 first,	
SNP	data	are	usually	very	high-dimensional	making	some	algorithms	difficult	to	use	on	a	regular	
workstation	and	second	SNPs	are	usually	represented	by	categorical	variables	(0,	1	or	2),	a	data	
type	which	may	lead	to	inconsistent	results	with	some	machine	learning	methods.		
Therefore	for	the	SNP	and	pathway	analyses	we	decided	to	use	a	different	representation	of	the	
data	 that	 we	 defined	 “reinforced”	 and	 that	 uses	 weights	 calculated	 with	 a	 function	 of	 the	
Sequence	Kernel	Association	Test	(SKAT)	method	(see	Supplementary	Information),	employed	in	
the	gene	analysis	performed	in	this	work.	Specifically	we	divided	the	samples	of	each	datamatrix	
in	two	equal	halves:	one	of	these	halves	was	used	to	calculate	a	weight	for	each	SNP	and	the	other	
half	was	used	to	address	the	actual	classification	task.	Before	this	latter	analysis	we	modified	the	
data	 matrix	 multiplying	 the	 usual	 additive	 code	 associated	 to	 each	 SNP	 (i.e.,	 0,1,	 or	 2)	 to	 its	
respective	weight,	defined	beta,	as	shown	in	this	formula:		
	
	 SNP(i)	=	SNPcode(i)	*	beta(i)	
	
The	 few	 missing	 values	 present	 in	 the	 data	 matrix	 were	 replaced	 with	 the	 weight	 value	
associated	 to	 that	 SNP.	 Using	 this	 procedure	 we	 obtained	 datamatrices	 of	 continuous	 values,	
more	suitable	to	be	analyzed	by	many	machine	learning	methods.		
The	SKAT	function	used	to	calculate	these	SNPs	weights	 is	called	“Get	Logistic	Weights”	and	its	
formula	is:		

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =  
𝑒^ 𝑝𝑎𝑟1 −𝑀𝐴𝐹 𝑝𝑎𝑟2

1 + 𝑒^ 𝑝𝑎𝑟1 −𝑀𝐴𝐹 𝑝𝑎𝑟2
	

	
The	SNPs	weights	are	obtained	considering	the	minor	allele	frequencies	(MAF)	that	refer	to	the	
frequency	at	which	 the	second	most	common	allele	occurs	 in	a	given	population.	 It	 is	an	 index	
used	in	population	genetics	to	distinguish	between	common	and	rare	variants.		Par1	and	par2	are	
two	parameters,	for	the	common	and	rare	variants	respectively,	that	a	user	can	set	up	in	order	to	
give	 more	 or	 less	 relevance	 to	 rare	 and	 common	 variants.	 In	 this	 study	 we	 used	 the	 values	
suggest	 in	 1	 in	 order	 to	 give	 a	 value	 different	 from	 0	 but	 very	 low	 (i.e.,	par1	 =	 1)	 to	 common	
variants	and	an	high	value	 to	rare	variants	 (i.e.,	par1	=	25),	which	are	 thought	 to	have	a	major	
role	in	complex	diseases	like	AD.		
	
SNP	analysis	
	
When	dealing	with	high-dimensional	data,	a	natural	problem	arises	in	relation	to	the	low	number	
of	 available	 samples	 n	 with	 respect	 to	 the	 dimensionality	 of	 the	 problem	 that	 concerns	 the	
number	 of	 features	p	 (i.e.,	n	<<	p).	 This	 issue	happens	 frequently	when	dealing	with	biological	
data,	 and	 it	 usually	 referred	 to	 as	 “curse	 of	 dimensionality”.	 In	 this	 setting,	 usual	 statistical	
guarantees	are	lost,	since	the	problem	is	over-determined,	i.e.,	there	is	no	unique	solution	to	the	
problem.	A	way	to	overcome	this	difficulty	is	to	incorporate	prior	knowledge	into	the	problem	at	
hand,	 for	 example	by	employing	 sparse	 techniques,	 such	as	Elastic-Net	or	 l1l2	 feature	 selection	
(l1l2FS)	2.	
l1l2FS	validate	the	robustness	of	the	method	using	a	model	assessment	framework,	for	which	the	
model	we	selected	as	the	“best”	on	our	data	is	trained	on	a	portion	of	the	data	(learning	set)	and	
tested	 on	 other	 unseen	 data	 (test	 set),	 iteratively	 (Figure	 S1A).	 	 Following	 this	 procedure	 it	 is	
possible	 to	 obtain	 a	 performance	 score	 for	 each	 selected	model,	 through	which	we	 ensure	 the	
generalization	properties	our	model	achieves	on	unseen	data.	
In	 the	 present	work	we	 chose	 l1l2FS	within	 PALLADIO	 3	 a	machine	 learning	 python	 framework	
that	can	be	customized	to	consider	various	combinations	of	feature	selections	and	classification	
methods.	 Independently	 of	 the	 chosen	methods,	 this	 tool	 ensures	 the	 reliability	 of	 the	 results	
performing	two	sets	of	experiments,	regular	and	permutation	batches	(Figure	S1B).		



	

For	each	experiment,	we	resamples	different	 learning	and	 test	sets	a	 large	number	of	 times,	 in	
order	 to	 estimate	 the	 performance	 score	 distribution	 for	 both	 batches.	 The	 regular	 batch	
performs	experiments	on	the	given	dataset,	while	the	permutation	batch	performs	experiments	
where	 the	 relationship	 between	 input	 and	 output	 is	 destroyed	 by	 shuffling	 the	 labels	 in	 the	
learning	 set,	 following	what	 is	 referred	 to	 as	 permutation	 test.	 The	 two	 distributions	 are	 then	
compared	 by	 testing	 the	 null	 hypothesis	 H0	 by	means	 of	 a	 Two-sample	 Kolmogorov–Smirnov	
test	4,	a	principled	way	to	measure	the	statistical	robustness	of	the	obtained	result.	Then,	we	can	
reject	 the	 null	 hypothesis	when	 the	 computed	 p-value	 is	 smaller	 than	 the	 confidence	 interval.	
Rejecting	H0	implies	a	clear	difference	between	the	two	distributions	and	the	sample	size	is	large	
enough	to	describe	the	relationship	between	data	and	labels.	The	final	outcome	of	a	classification	
process	is	the	prediction	of	the	labels	associated	with	a	set	of	 input	samples.	In	order	to	assess	
the	performance	of	 l1l2FS,	PALLADIO	computes,	among	other	performance	metrics,	 the	balanced	
accuracy	score	and	the	Matthews	correlation	coefficient	(MCC).		
The	balanced	 accuracy	 score	 is	 the	 ratio	 of	 correctly	predicted	 labels,	 adjusted	 for	unbalanced	
problems.	 In	particular,	a	predictor	 that	always	returns	 the	 label	of	 the	most	represented	class	
would	yield	a	 score	of	50%,	 independently	of	 the	proportion	of	 the	 labels	 in	 the	dataset.	MCC,	
also,	is	a	comprehensive	measure	shown	to	be	particularly	useful	for	unbalanced	problems,	since	
it	is	always	defined	to	be	+1	for	perfect	match	between	predicted	labels	and	ground	truth,	−1	for	
total	disagreement	and	0	for	random	prediction.	
	

	
Figure	S1.	l1l2	and	PALLADIO	schemes.	

(A)	It	shows	the	model	assessment	framework	of	l1l2FS.	

(B)	It	shows	the	approach	that	PALLADIO	adopts	to	ensure	the	reliability	of	the	results.	

	
	
Gene	analysis	
	
SKAT	1	uses	a	multiple	regression	model	to	directly	regress	the	phenotype	on	genetic	variants	in	
a	region	and	on	covariates	allowing	different	variants	to	have	different	directions	(i.e.,	protective	
or	 causal)	 and	 magnitude	 of	 effects,	 including	 no	 effects.	 To	 collapse	 the	 information	 of	 the	



	

variants	in	a	region,	SKAT	does	not	need	a	threshold	because	it	uses	a	variance-component	score	
test	 that	 is	 a	 kernel	 association	 test.	 In	 the	 formula	 of	 this	 test	 there	 are	 those	weights	 that	 a	
SKAT	 user	 can	 chose	 to	 improve	 the	 power	 of	 the	 analysis	 (see	 “Data	matrix	 transformation”	
section	in	Supplementary	Information).	
In	 the	 present	 work	 we	 chose	 to	 utilize	 the	 SKATBinary	 package,	 more	 suitable	 with	 PLINK	
formatted	 files,	 that	 encloses	 a	 function	 that	 computes	p-values	 for	Burden,	 SKAT	and	SKAT-O	
test	 for	 binary	 traits	 (in	 our	 case	 cases@controls	 and	 APOEe4	 tasks)	 using	 asymptotic	 and	
resampling	methods.	
Burden	test	is	suitable	in	case	when	a	large	proportion	of	variants	are	causals	and	their	effect	are	
in	 the	 same	 direction	 (i.e.,	 all	 protective	 or	 causal).	 SKAT	 test	 is	 suitable	 when	 only	 a	 small	
proportion	of	variants	are	causal	or	their	effects	have	mixed	directions	(i.e.,	some	protective	and	
some	 causal).	 SKAT-O	 test	 is	 suitable	 whenever	 we	 have	 a	 genetic	 scenario	 that	 is	 a	 mixture	
between	that	one	suitable	for	Burden	and	that	one	suitable	for	SKAT.	
For	 ADNI-1	 and	 ADNI-2	 we	 applied	 the	 following	 conservative	 thresholds:	 0.05/36,000	 =	
1.37×10-6	 and	 0.05/29.484	 =	 1.70×10-6,	 where	 0.05	 is	 the	 level	 of	 significance,	 and	 the	
denominator	indicates	the	known	genes	and	intergenic	regions	in	which	the	platforms	have	been	
subdivided.	
	
In	silico	SNP	characterization	
	
The	functional	characterization	of	the	gene	lists	derived	from	the	SNPs	signatures	identified	with	
PALLADIO	was	 performed	 through	 enrichment	 analysis	 using	 the	 online	 toolkit	WebGestalt	 5.	
This	tool	takes	as	input	a	list	of	relevant	genes/probesets	and	performs	an	enrichment	analysis	
based	 on	 a	 hypergeometric	 test,	 providing	 several	methods	 to	 correct	 for	multiple	 hypothesis	
and	using	several	databases	 (e.g.,	 the	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG),	Gene	
Ontology	(GO))	 for	 identifying	 the	most	relevant	pathways	and	ontologies	 in	each	signature.	 In	
other	words,	given	a	KEGG	pathway	and	a	reference	set	(such	as	the	entire	human	genome	or	the	
list	of	genes	in	a	microarray	platform),	the	enrichment	is	based	on	the	comparison	between	the	
fraction	of	 lists	genes	 in	 the	pathway	and	 the	 fraction	of	KEGG	pathway	genes	 in	 the	reference	
set.	The	gene	list	is	enriched	in	that	specific	KEGG	pathway	if	the	former	is	larger	than	the	latter	
fraction.	
In	the	present	work	we	enriched	the	two	longest	gene	lists	deriving	from	the	SNP	signatures	of	
ADNI-1	 (APOEe4	 task),	 and	of	ADNI-2	 (cases@controls	 task)	 considering	KEGG	 6	a	database	of	
pathway.	 In	 this	 analysis	 we	 considered	 the	 human	 genome	 as	 reference,	 0.05	 as	 level	 of	
significance,	 Benjamini-Hochberg	 as	 test	 for	 multiple	 hypothesis	 correction	 and	 3	 as	 the	
minimum	number	of	genes	in	a	KEGG	pathway.		
In	 order	 to	 understand	which	 genes	 of	 the	 identified	 SNP	 signatures	 are	 already	 known	 to	 be	
involved	 in	AD	and	which	genes	are	not,	we	utilized	Phenopedia	7,	 two	web-based	applications	
that	 explore	 the	 literature	 in	 a	 gene-centric	 and	 disease-centric	 way.	 We	 obtained	 the	 list	 of	
genes	associated	to	AD	from	Phenopedia	and	we	compared	it	to	our	lists	of	genes	derived	from	
our	SNP	signatures.	The	genes	highlighted	in	red	in	Tables	S2	and	S3	are	those	genes	known	to	
be	involved	in	AD.	
	
	
	
	
Supplementary	tables		
	
	
		 ADNI-1	 ADNI-2	

AD	cases	 179	 126	

Controls	 214	 155	

1/2	APOEe4	carriers	 178	 120	

0	APOEe4	carriers	 215	 161	



	

	
Table	S1.	Sample	size	of	the	classes	compared	in	the	two	classification	tasks	addressed	in	ADNI-
1	and	ADNI-2	datasets.	AD	cases	vs.	controls	define	the	cases@controls	task	while	1/2	APOEe4	
carriers	(high	risk)	vs.	0	APOEe4	carriers	(low	risk)	define	the	APOEe4	task.	
	
	
	
	

ADNI-1	

		 SNP	 #	Chr	 Gene	Symbol	

Ca
se
s@

Co
nt
ro
ls
	

rs12205042	 6	 HIVEP2	

rs1940890	 6	 LOC101928911	|	SPACA1	

rs16881241	 6	 RNGTT	|	LOC100131124	

rs6914160	 6	 KLHL31	|	LRRC1	

rs9465982	 6	 CDKAL1	

rs543049	 6	 LOC101928911	|	SPACA1	

rs6923298	 6	 HIVEP2	

rs677120	 6	 LOC101928911	|	SPACA1	

rs4896228	 6	 IL20RA	

rs6053572	 20	 GPCPD1	|	SHLD1	

rs708925	 20	 PLCB1	

rs2983626	 20	 CST9L	|	CST9	

rs2247337	 20	 CST9L	

rs13040567	 20	 CST9L	

AP
O
Ee
4	

rs11260977	 1	 IGSF21	

rs4839223	 1	 SLC6A17	

rs4839225	 1	 SLC6A17	

rs10749753	 1	 LEPROT|LEPR	

rs1338138	 1	 LINC01781|MTND2P30	

rs11102933	 1	 NGF|LOC112268234	

rs2147085	 1	 LINC01781|MTND2P30	

rs10789215	 1	 SGIP1	

rs12487324	 3	 IQSEC1|NUP210	

rs8180086	 3	 GPR87|P2RY13	

rs7651843	 3	 RBMS3	

rs7641352	 3	 TBL1XR1|KCNMB2	

rs276117	 3	 LOC728290|GBE1	

rs9875152	 3	 P2RY12|MED12L	

rs7625229	 3	 BFSP2|LOC391578	

rs661798	 3	 KALRN	



	

	

	
Table	S2.	ADNI-1	SNP	signatures	identified	in	the	cases@control	and	in	the	APOEε4	tasks.		
“#	Chr”	 indicates	 the	chromosome	number	and	 “|”	 in	 the	Gene	Symbol	 column	 indicates	 that	a	
specific	SNP	is	located	in	a	intergenic	region	between	two	genes.	
In	red	color	are	highlighted	those	genes	that	are	already	known	to	be	associated	to	AD.	In	bold	
black	color	are	highlighted	those	genes/SNPs	mentioned	in	the	main	manuscript.	
	
	
	
	
	
	 ADNI-2	

		 SNP	 #	Chr	 Gene	Symbol	

Ca
se
s@

Co
nt
ro
l

s	

rs640688	 1	 HIVEP3	

rs2093933	 1	 KIAA1324	

rs3913318	 1	 MIR4471	|	LOC100287877	

rs10493973	 1	 OLFM3	

rs12491760	 3	 PTPRG	

rs9311976	 3	 GRM7	

rs9310917	 3	 RBMS3	

rs6784803	 3	 MECOM	

rs7653603	 3	 P2RY14	

rs276125	 3	 LOC728290|GBE1	

rs13283389	 9	 GRIN3A|CYLC2	

rs11139921	 9	 RASEF|FRMD3	

rs10820215	 9	 GRIN3A|CYLC2	

rs7046513	 9	 GRIN3A|CYLC2	

rs10119403	 9	 LINC01505	

rs1891999	 9	 OLFM1|C9orf62	

rs7041138	 9	 SLC25A6P5|LINC01505	

rs1350996	 9	 FLJ35282|LOC101929563	

rs2075650	 19	 TOMM40	

rs8106922	 19	 TOMM40	

rs439401	 19	 LOC100129500|APOC1	

rs236137	 20	 SHDL1|CHGB	

rs6041265	 20	 BTBD3|PA2G4P2	

rs1287032	 20	 SHDL1|CHGB	

rs6041271	 20	 BTBD3|	PA2G4P2	

rs2294575	 20	 CHD6	

rs2057291	 20	 GNAS	



	

rs2843130	 1	 MORN1	

rs724309	 1	 ATPAF1	

rs6739882	 2	 MIR4431	|	ASB3	

rs13014133	 2	 RBMS1	|	LOC100131736	

rs7562244	 2	 AGAP1	

rs2160782	 2	 LINC01800	|	LINC02245	

rs13389584	 2	 GPR39	

rs266410	 3	 MRPS35P1	|	GRM7-AS3	

rs341981	 3	 EDEM1	

rs1598915	 3	 EPHA6	

rs9683798	 4	 ZEB2P1	|	LDB2	

rs7660498	 4	 HAUS3	|	MXD4	

rs224489	 4	 HS3ST1	|	LOC101929019	

rs4689726	 4	 SORCS2	

rs12507259	 4	 STK32B	

rs2203758	 4	 LCORL	|	RPL21P46	

rs4648016	 4	 NFKB1	

rs10043779	 5	 KIAA0825	

rs1494699	 5	 MSNP1	|	LOC100131678	

rs6882967	 5	 MSNP1	|	LOC100131678	

rs25754	 5	 ADAMTS12	

rs17156151	 5	 NUDT12	|	RAB9BP1	

rs261747	 5	 FYB	

rs6892938	 5	 ARL15	

rs2028269	 5	 MTX3	|	LOC100500934	

rs6865330	 5	 FGF10-AS1	|	LOC100506674	

rs9647537	 5	 PGBD3P2	|	HPRTP2	

rs17136076	 7	 RNA5SP230	|	MYL7	

rs17166226	 7	 SCIN	

rs10121110	 9	 ENG	

rs9792690	 9	 TRPM3	

rs10976614	 9	 C9orf123	|	PTPRD	

rs4740366	 9	 ABL1	

rs9408761	 9	 PTPRD	

rs7854386	 9	 LOC401557	|	C9orf62	

rs36100013	 9	 JAK2	

rs10817547	 9	 ZNF618	



	

rs10819687	 9	 NAMA	|	LOC101928438	

rs7031871	 9	 ARL2BPP7	|	LOC100127962	

s11244450	 10	 CHST15	|	OAT	

rs4980929	 12	 IQSEC3	

rs11609462	 12	 ERC1	

rs3759347	 12	 LEPREL2	

rs3217933	 12	 CCND2	

rs4766200	 12	 PARP11	|	HSPA8P5	

rs9552886	 13	 SGCG	

rs7996072	 13	 CYSLTR2	

rs17085790	 13	 LNX2	

rs12867878	 13	 RNA5SP30	|	LOC101926897	

rs11841581	 13	 TEX26	|	WDR95P	

rs10507296	 13	 MIPEPP3|LINC00539	

rs9564566	 13	 SNRPFP3	|	SRSF1P1	

rs1373904	 13	 LACC1	|	DGKZP1	

rs2389229	 13	 ABCC4	

rs7999070	 13	 TPTE2P1	

rs12861751	 13	 LINC00378	|	MIR3169	

rs1935179	 13	 RPL7L1P1	|	PEX12P1	

rs2407249	 13	 CYSLTR2	|	PSME2P2	

rs12894732	 14	 LOC100418768	LINC01800	

rs10136784	 14	 LINC00639	

rs7143462	 14	 ESRRB	|	CYCSP1	

rs2748144	 14	 LOC101927598	|	GNG2	

rs3825604	 14	 GNG2	

rs11156929	 14	 SLC25A21	

rs8010556	 14	 C14orf132	

rs6497287	 15	 HERC2	

rs2672680	 15	 FAM189A1	

rs870185	 15	 ZFAND6	

rs1883005	 15	 SNORD115-21|SNORD115-15	

rs12908255	 15	 PSTPIP1	

rs11634439	 15	 ARHGAP11A	

rs2010459	 15	 TMED3	

rs4965785	 15	 LRRK1	|	CHSY1	

rs7167588	 15	 GABRG3	



	

rs34261044	 15	 HERC2	

rs2239307	 16	 ADCY9	

rs8061043	 16	 CLEC16A	

rs12598337	 16	 GRIN2A	|	ATF7IP2	

rs11643000	 16	 GRIN2A	

rs6497898	 16	 HS3ST4	

rs36474	 16	 MYLK3	

rs9933735	 16	 RBFOX1	

rs1124018	 16	 RBFOX1	|	LOC100131080	

rs4390571	 16	 RBFOX1	|	LOC100131080	

rs9940785	 16	 RBFOX1	

rs2075158	 16	 RSL1D1	

rs3116150	 16	 SLC5A2	

rs13330742	 16	 WWOX	

rs7189472	 16	 XPO6	

rs2079268	 17	 ALOX15P1	|	SLC13A5	

rs9891398	 17	 NF1	

rs16950363	 17	 CA10	

rs9900961	 17	 RPL17P41	|	BPTF	

rs6504840	 17	 LOC100419014	|	RPS2P48	

rs8066872	 17	 LINC00673	

rs12947685	 17	 COX11	

rs12938347	 17	 LINC01483	|	LINC01028	

rs2007530	 17	 ARHGAP27P1	

rs740642	 17	 NTN1	

rs7236390	 18	 PIEZO2	

rs630285	 18	 AQP4-AS1	

rs605961	 18	 MPPE1	

rs678570	 18	 LAMA1	

rs8091074	 18	 LINC01387	

rs12984574	 19	 ZNF627	

rs2288867	 19	 ATP13A1	

rs4807347	 19	 ZNF555	

rs17639568	 19	 NFIX	

rs367209	 19	 LOC101928063	

rs7252291	 19	 CELF5	|	NFIC	

rs760629	 20	 PPIAP21	|	EIF4EBP2P	



	

rs13041524	 20	 PLCB4	

rs236114	 20	 MCM8	

rs6075924	 20	 LOC284744	|	LINC00261	

rs6082789	 20	 LNCNEF	|	KRT18P3	

rs6014017	 20	 PFDN4	|	DOK5	

rs8119892	 20	 PPIAP21	|	EIF4EBP2P	

rs9679935	 20	 VAPB	

rs12152036	 21	 MIR548XHG	|	PPIAP22	

rs13048883	 21	 C1QBPP	|	FDPSP6	

rs4816257	 21	 MRPL39	

rs2257008	 21	 MIR5009	

rs7283527	 21	 LOC101927869	|	LINC01692	

rs12484854	 22	 LOC102724653	

rs9612352	 22	 ZDHHC8P1	|LINC01659	

rs11703440	 22	 LOC284898	|	LINC02554	

rs2298372	 22	 DRICH1	

rs5764804	 22	 FBLN1	

rs5760912	 22	 CRYBB2	

rs5752839	 22	 ZNRF3	

rs7288379	 22	 SHISAL1	|	LINC01656	

rs9614616	 22	 NUP50	|	KIAA0930	

rs11703546	 22	 CPSF1P1	|	RFPL3	

AP
O
Ee
4	

rs367209	 19	 LOC101928063	

rs383133	 19	 ZNF221	

rs365745	 19	 ZNF221	

rs415499	 19	 ZNF155	

	
Table	S3.	ADNI-2	SNP	signatures	identified	in	the	cases@control	and	in	the	APOEe4	tasks.	
“#	 Chr”	 indicates	 the	 chromosome	 number	 and	 “|”	 in	 the	 Gene	 Symbol	 column	 indicates	 that	
specific	SNP	is	located	in	an	intergenic	region	between	two	genes.	
In	red	color	are	highlighted	those	genes	that	are	already	known	to	be	associated	to	AD.	In	bold	
black	color	are	highlighted	those	genes/SNPs	mentioned	in	the	main	manuscript.		
	
	

	
	
	
	
	
	



	

	
Table	S4.	Groups	of	pathways	selected	in	REACTOME	and	analyzed	with	Group	Lasso	with	overlap	
in	ADNI-1.		

GROUP	 PATHWAYS	

1a	
Caspase	 activation	 via	 extrinsic	 apoptotic	 signaling	 pathway,	 intrinsic	 pathway	 for	 apoptosis,	
apoptosis	execution	phase,	regulated	necrosis,	 transmission	across	chemical	synapse,	amyloid	
fiber	formation,	deregulated	CDK5	triggers	multiple	neurodegenerative	pathways.	

1b	
	Macroautophagy,	 cellular	 response	 to	 hypoxia,	 cellular	 response	 to	 heat	 stress,	 cellular	
senescence,	detoxification	of	reactive	oxygen	species,	potassium	channels.	

1c	
	Cellular	senescence,	detoxification	of	reactive	oxygen	species,	PIP3	activates	AKT	signaling.	

2	

Metabolism	 of	 nitric	 oxide,	 mitochondrial	 protein	 import,	 mitochondrial	 iron-sulfur	 cluster	
biogenesis,	 the	citric	acid	 (TCA)	cycle	and	respiratory	electron	 transport,	 cellular	 senescence,	
detoxification	of	reactive	oxygen	species,	mitochondrial	translation,	mitochondrial	calcium	ion	
transport.	

3	 Caspase	 activation	 via	 extrinsic	 apoptotic	 signaling	 pathway,	 intrinsic	 pathway	 for	 apoptosis,	
apoptosis	execution	phase,	regulated	necrosis,	death	receptor	signaling	

4	

Clathrin-mediated	 endocytosis,	 translocation	 of	 GLUT4	 to	 the	 plasma	membrane,	 trans-golgi	
network	 vesicle	 budding,	mitochondrial	 calcium	 ion	 transport,	 ABC-family	 proteins	mediated	
transport,	cellular	hexose	transport	

5a	

Amyloid	 fiber	 formation,	 unfolded	 protein	 response,	 regulation	 of	 insulin-like	 growth	 factor	
(IGF),	mitochondrial	 protein	 import,	 chaperoning-mediated	protein	 folding,	 post-chaperoning	
tubuling	 folding	 pathway,	 asparagin	 N-linked	 glycosilation,	 gamma	 carboxylation,	
carboxyterminal	post-translation.	

5b	
Post-translation	 protein	 phosphorylation,	 neddylation,	 protein	 ubiquitination,	
deubiquitination,	 O-linked	 glycosilation,	 post-translational	 modification:	 synthesis	 of	 GPI-
anchored	proteins.	

6a	
Biological	oxidation,	the	citric	acid	(TCA)	cycle	and	respiratory	electron	transport,	regulation	of	
insulin	 secretion,	 glucagon	 signaling	 in	metabolism	 regulation,	metabolism	 of	 carbohydrates,	
digestion.	

6b	 Metabolism	of	nitric	oxide,	metabolism	of	lipids.	

7	
Cellular	response	to	hypoxia,	Cellular	response	to	heat	stress,	detoxification	of	reactive	oxygen	
species,	cellular	senescence,	HSP90	chaperone	cycle	for	steroid	hormone	receptors	(SHR),	cell	
junction	organization,	macroautophagy.	

8	

	mTOR	 signaling,	 death	 receptor	 signaling,	 PIP3	 activates	 AKT	 signaling,	 MAPK1/MAPK3	
signaling,	 MAPK6/MAPK4	 signaling,	 integrin	 signaling	 by	 leptin,	 integrin	 signaling	 by	 hippo,	
WNT	ligand	biogenesis	and	trafficking,	degradation	of	beta-catenin	by	destruction	complex,	TCF	
dependent	signaling	in	response	to	WNT,	beta-catenin	independent	WNT	signaling.	

9a	

GPCR	 ligand	 binding,	 GPCR	 downstream	 signaling,	 GASTRIN-CREB	 signaling,	 pre-NOTCH	
expression	and	processing,	signaling	by	NOTCH1,	signaling	by	NOTCH2,	signaling	by	NOTCH3,	
signaling	by	NOTCH4.	

9b	

GPCR	downstream	signaling,	GASTRIN-CREB	signaling.	

9c2	

Signaling	by	TGF-beta	family	members.	

9c3	

Signaling	by	receptor	tyrosine	kinases.	



	

	
	

	
Table	S5	Groups	of	pathways	selected	in	REACTOME	and	analyzed	with	Group	Lasso	with	overlap	in	
ADNI-2.		

GROUP	 PATHWAYS	

1a	
Caspase	 activation,	 intrinsic	 pathway	 for	 apoptosis,	 apoptosis	 execution	 phase,	 regulated	
necrosis,	 transmission	 across	 chemical	 synapse,	 amyloid	 fiber	 formation,	 deregulated	 CDK5	
triggers	multiple	neurodegenerative	pathways.	

1b1	
Cellular	response	to	hypoxia,	cellular	response	to	heat	stress,	potassium	channels.	

1b2	 Macroautophagy,	detoxification	of	reactive	oxygen	species,	cellular	senescence.	

1c	
Cellular	senescence,	detoxification	of	reactive	oxygen	species,	PIP3	activates	AKT	signaling.	

2	

Metabolism	 of	 nitric	 oxide,	 mitochondrial	 protein	 import,	 mitochondrial	 iron-sulfur	 cluster	
biogenesis,	 the	 citric	acid	 (TCA)	cycle	and	respiratory	electron	 transport,	 cellular	 senescence,	
detoxification	of	reactive	oxygen	species,	mitochondrial	translation,	mitochondrial	calcium	ion	
transport.	

3	 Caspase	 activation	 via	 extrinsic	 apoptotic	 signaling	 pathway,	 intrinsic	 pathway	 for	 apoptosis,	
apoptosis	execution	phase,	regulated	necrosis,	death	receptor	signaling	

4	

Clathrin-mediated	 endocytosis,	 translocation	 of	 GLUT4	 to	 the	 plasma	membrane,	 trans-golgi	
network	 vesicle	 budding,	mitochondrial	 calcium	 ion	 transport,	 ABC-family	 proteins	mediated	
transport,	cellular	hexose	transport	

5a	

Amyloid	 fiber	 formation,	 unfolded	 protein	 response,	 regulation	 of	 insulin-like	 growth	 factor	
(IGF),	mitochondrial	 protein	 import,	 chaperoning-mediated	protein	 folding,	 post-chaperoning	
tubuling	 folding	 pathway,	 asparagin	 N-linked	 glycosilation,	 gamma	 carboxylation,	
carboxyterminal	post-translation.	

5b	
Post-translation	 protein	 phosphorylation,	 neddylation,	 protein	 ubiquitination,	
deubiquitination,	 O-linked	 glycosilation,	 post-translational	 modification:	 synthesis	 of	 GPI-
anchored	proteins.	

6a	
Biological	oxidation,	the	citric	acid	(TCA)	cycle	and	respiratory	electron	transport,	regulation	of	
insulin	 secretion,	 glucagon	 signaling	 in	metabolism	 regulation,	metabolism	 of	 carbohydrates,	
digestion.	

6b	 Metabolism	of	nitric	oxide,	metabolism	of	lipids.	

7	
Cellular	response	to	hypoxia,	Cellular	response	to	heat	stress,	detoxification	of	reactive	oxygen	
species,	cellular	senescence,	HSP90	chaperone	cycle	for	steroid	hormone	receptors	(SHR),	cell	
junction	organization,	macroautophagy.	

8	

mTOR	 signaling,	 death	 receptor	 signaling,	 PIP3	 activates	 AKT	 signaling,	 MAPK1/MAPK3	
signaling,	 MAPK6/MAPK4	 signaling,	 integrin	 signaling	 by	 leptin,	 integrin	 signaling	 by	 hippo,	
WNT	ligand	biogenesis	and	trafficking,	degradation	of	beta-catenin	by	destruction	complex,	TCF	
dependent	signaling	in	response	to	WNT,	beta-catenin	independent	WNT	signaling.	

9a	

GPCR	 ligand	 binding,	 GPCR	 downstream	 signaling,	 GASTRIN-CREB	 signaling,	 pre-NOTCH	
expression	and	processing,	signaling	by	NOTCH1,	signaling	by	NOTCH2,	signaling	by	NOTCH3,	
signaling	by	NOTCH4.	

9b	

GPCR	downstream	signaling,	GASTRIN-CREB	signaling.	

9c	

Signaling	by	TGF-beta	family	members,	signaling	by	receptor	tyrosine	kinases.	



	

	
	
Supplemental	Results		

	
Validation	of	the	SNP	signatures	

	
In	order	to	verify	the	robustness	of	the	identified	SNPs	signatures,	a	validation	procedure	was	
performed	considering	the	dataset	(ADNI-1	or	ADNI-2)	left	available.	Two	steps	characterize	the	
validation:	the	first	one	consists	in	mapping	the	SNPs	of	the	signature	in	another	independent	
dataset,	and	the	second	one	consists	in	analyzing	the	data	matrix	(having	all	the	subjects	and	just	the	
selection	of	SNPs	of	the	identified	list)	evaluating	the	classification	performance	of	the	signature.	
When	we	started	the	validation	procedure	of	the	SNP	signature	identified	in	ADNI-1	cases@controls	
task,	we	tried	to	map	all	the	14	SNPs	in	ADNI-2	but	just	9	SNPs	were	found.	Despite	this	issue,	we	
build	the	data	matrix,	having	these	9	SNPs	and	281	subjects,	and	we	analyzed	it	using	Regularized	
Least	Square	(RLS)	classifier	inside	PALLADIO.	Figure	S2	shows	that	we	could	not	validate	this	
signature.	A	possible	reason	resides	in	the	failure	of	the	complete	mapping	of	all	the	SNPs	of	our	
signature	in	ADNI-2.	
In	the	validation	procedure	of	the	other	ADNI-1	SNP	signature,	considering	APOEe4	task,	we	
encountered	the	same	SNP	mapping	issue:	in	ADNI-2	we	found	just	24	SNPs	over	39	total	SNPs.	
Nonetheless	this	incomplete	SNP	mapping	was	sufficient	to	validate	the	signature	in	ADNI-2	(Figure	
S2).		
When	we	tried	to	validate	the	SNP	signatures	identified	in	ADNI-2	in	ADNI-1,	we	encountered	the	
same	SNP	mapping	issue	explained	before:	for	the	cases@controls	signature	we	found	just	46	over	
138	total	SNPs	and	for	the	APOEe4	signature	we	found	2	over	4	total	SNPs.	Both	these	signatures	did	
not	pass	the	validation	procedure	(Figure	S2).		
Even	if	the	validation	procedure	truly	succeeded	just	for	the	APOEe4	signature	identified	in	ADNI-1,	
we	cannot	state	with	certainty	that	the	other	three	SNP	signatures	failed	the	validation	because	we	
were	unable	to	map	all	the	SNPs	of	these	signatures	in	the	validation	dataset.	A	possible	reason	why	
we	could	validate	just	APOEe4	signature	identified	in	ADNI-1,	even	if	also	in	this	case	the	SNP	
mapping	was	incomplete,	could	be	found	in	the	different	“value”	or	“weight”	of	the	SNPs	of	a	
signature.	Since	the	SNPs	are	characterized	by	different	weights,	as	confirmed	the	different	risk	of	
developing	AD	based	on	the	number	of	copies	of	APOEe4,	the	probability	that	a	SNP	signature	passes	
the	validation	will	increase	proportionally	to	the	number	and	the	weights	of	the	mapped	SNPs.	
Furthermore	the	method	we	chose	to	perform	the	SNP-based	analysis	(i.e.,	l1l2FS)	is	designed	to	
identify	a	list	of	features	discriminant	but	also	correlated.	This	last	characteristic	means	that	if	the	
mapping	procedure	does	not	comprehends	the	most	correlated	SNPs,	high	is	the	probability	that	the	
validation	of	the	signature	will	not	succeed.	
	

	
	



	

Figure	 S2.	 The	 validation	 results	 of	 the	 SNP	 signatures	 identifies	 in	 ADNI-1	 and	 ADNI-2	
dataset.	 	 In	 the	 validation	 procedure	 we	 consider	 the	 same	 two	 classification	 tasks:	 AD	 vs.	
healthy	controls	(cases@controls)	and	1/2	APOEe4	vs.	0	APOEe4	carriers	(APOEe4	task).	B.	ACC,	
Balanced	Accuracy;	MCC,	Matthews	Correlation	Coefficient.	
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