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Supplementary Methods

General Reagent Information

All reagents were used as received unless otherwise stated. Glycidyl propargyl ether
(90%), PEG-OH (M, = 2000 g/mol) and 4-dimethylaminopyridine (98%) were
purchased from Aladdin. Rhodanine (99%), rhodanine-3-acetic acid (98%),
2-(phenoxymethyl) oxirane (98%), S5-formyl-2-thiopheneboronic acid (98%),
tetrakis(triphenylphosphine)palladium (99%), 2,4,6-Trimethylbenzaldehyde (98%) and
pentacthylene  glycol (97%) were purchased from Energy Chemical.
4-Bromotriphenylamine (99%), 4-nitrobenzaldehyde (99%),
4-(hydroxymethyl)benzaldehyde (99%), 4-ethynylbenzaldehyde (98%),
terephthalaldehyde (99%) and tetrabutylammonium chloride (99%) were purchased
from Alfa Aesar. 4-Acetamidobenzenesulfonyl azide (97%) was purchased from
Adamas-Beta. Chloroform-d (99.8 atom % D), deuterium oxide (99.9 atom % D),
MECN-d3 (99.8 atom % D), DMSO-d¢ (99.8 atom % D) and DMF-d7 (99.5 atom % D)
were purchased from Sigma-Aldrich. 3-Allylrhodanine (98%), 2-hydroxyethyl
methacrylate (95%), furfural (98%) and dicyclohexylcarbodiimide (98%) were
purchased from TCI. Methyl methacrylate (99.8%), sodium sulfate anhydrous (99%),
potassium thiocyanate (99%), n-hexane (97%), ethyl acetate (99.5%), methanol
(99.7%), chloroform (99%), acetone (99.5%), diethyl ether (99.7%) and cuprous
chloride (98.5%) were purchased from Sinopharm Chemical Reagent Co. Ltd. Methyl
methacrylate was purified by small aluminum oxide (basic) chromatography to remove

inhibitor.



General Analytical Information

All NMR spectra were recorded on a Bruker NMR spectrometer (resonance frequency
of 400 MHz for 'H and 100 MHz for '3C) operated in the Fourier transform mode. The
samples were dissolved in deuterium oxide, chloroform-d, MECN-d;, DMF-d; or
DMSO-d6 with tetramethylsilane (TMS) as an internal reference. Molecular weights
and dispersity (P) were measured by using a Waters 150C gel permeation
chromatograph (GPC) equipped with microstyragel columns and an RI 2414 detector
at 30 °C. LiBt/DMF (0.1%, w/w) solution or THF solution with a flow rate of 1.0
mL/min were used as eluent. The molecular weights were calibrated against
monodispersed polystyrene standards. High resolution mass spectrometry data were
obtained from ThermoFisher LTQ-Orbitrap XL instrument. MALDI-TOF/TOF spectra
were obtained using Auto Flex II mass spectrometer (Bruker Daltonics), and DCTB
was used as a matrix. Imaging of the cyclic brush-like polymer and multicyclic
molecular brush were accomplished using Bruker atomic force microscope system in
ambient air. Thermogravimetric analysis was measured on a TA Q5000IR instrument
with a heating rate of 10 °C/min from room temperature to 700 °C. Differential
scanning calorimetry thermograms were measured on a TA Q2000 differential scanning
calorimeter instrument in aluminum pans with a heating or cooling rate of 10 °C/min
under a flowing nitrogen atmosphere from -40 °C to 120 °C. All T values were obtained
from the second scan after removing the thermal history. PL spectra were obtained from
Hitachi F-7000 fluorescence spectrophotometer. The absolute fluorescence quantum
yields of copolymer 3 solid and multicyclic copolymer 4 solid were measured by
FluoroMax-4 steady state and transient fluorescence spectrometer with integrating
sphere. TEM (Hitachi 7700), HRTEM (JEOL JEM 2100 plus) and AFM (Bruker edge)

were used to image the cyclic structures.



Synthesis of 2-(phenoxymethyl) thiirane (POMT).

To a suspension of 2-(phenoxymethyl)oxirane (9.0 g, 60 mmol) in distilled water (30
mL), was added potassium thiocyanate (23.2 g, 240 mmol) and stirred at 40 °C for 24
h. Afterwards, the organic phase was separated and the aqueous phase was extracted
with diethyl ether (2 x 30 mL). The combined organic phases were dried over
anhydrous sodium sulfate. Further purification can be achieved by silica gel column
chromatography using hexane/ethyl acetate (v/v, 9 : 1) to obtain the product as colorless
viscous oil. Yield was 75%. '"H NMR spectrum (400 MHz, CDCls): § 2.349 (d, 1H), §
2.632 (d, 1H), 6 3.307 (m, 1H), 6 3.961 (m, 1H), 6 4.224 (m, 1H), & 6.959 (m, 3H), o
7.325 (m, 2H).

Synthesis of 2-((prop-2-yn-1-yloxy)methyl)thiirane (PYMT).

To a suspension of 2-((prop-2-yn-1l-yloxy)methyl)oxirane (6.72 g, 60 mmol) in
distilled water (30 mL), was added potassium thiocyanate (23.2 g, 240 mmol) and
stirred at 40 °C for 24 h. Afterwards, the organic phase was separated and the aqueous
phase was extracted with diethyl ether (2 x 30 mL). The combined organic phases were
dried over anhydrous sodium sulfate. Further purification can be achieved by silica gel
column chromatography using hexane/ethyl acetate (v/v, 8 : 1) to obtain the product as
colorless viscous oil. Yield was 83%. 'H NMR spectrum (400 MHz, DMSO-de): § 2.314
(d, 1H), 6 2.572 (d, 1H), & 3.147 (m, 1H), & 3.461-3.597 (m, 3H), 6 4.199 (d, 2H).

Synthesis of 2-((allyloxy)methyl)thiirane (PEMT).

To a suspension of 2-((allyloxy)methyl)oxirane (6.84 g, 60 mmol) in distilled water (30
mL), was added potassium thiocyanate (23.2 g, 240 mmol) and stirred at 40 °C for 24
h. Afterwards, the organic phase was separated and the aqueous phase was extracted

with diethyl ether (2 x 30 mL). The combined organic phases were dried over



anhydrous sodium sulfate. Further purification can be achieved by silica gel column
chromatography using hexane/ethyl acetate (v/v, 8 : 1) to obtain the product as colorless
viscous oil. Yield was 86%. 'H NMR spectrum (400 MHz, CDCls): § 2.314 (d, 1H), &
2.572 (d, 1H), 6 3.147 (m, 1H), & 3.461-3.597 (m, 2H), 6 4.05 (d, 2H), 6 5.21 (m, 2H),
0 5.86 (m, 1H).

Synthesis of 5-(4-(diphenylamino)phenyl)thiophene-2-carbaldehyde (TTPA).
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4-Bromotriphenylamine (4.8 g, 15 mmol), 5-formyl-2-thiopheneboronic acid (3.1 g, 20
mmol) and potassium carbonate (4.1 g, 30 mmol) were dissolved in 120 mL anhydrous
THF. After stirring at room temperature for 30 min,
tetrakis(triphenylphosphine)palladium (200 mg) was added. The solution was stirred
and refluxed at 100 °C for 24 h. After cooling to room temperature, the solvent was
removed by evaporation and the residue was dissolved in 150 mL CHCl,. The organic
portion was washed with water and dried with anhydrous Na>SOs. Further purification
was operated by column chromatography using hexane/ethyl acetate (v/v, 12 : 1) to
obtain the product as light yellow solid. Yield was 28%. 'H NMR spectrum (400 MHz,
DMSO-dg): & 3.527 (s, 12H), 6 3.608 (t, 4H), 6 4.215 (t, 4H), & 4.434 (s, 4H), & 4.682
(s, 4H).

Synthesis of bifunctional rhodanine monomer.
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Pentaethylene glycol (4.76 g, 20 mmol) and rhodanine-3-acetic acid (7.6 g, 40 mmol)
were added into one 50 mL flask. The mixture was stirred at 160 °C for 6 h. Afterwards,
the mixture was diluted with 5 mL ethyl acetate. The combined solution was put into
silica gel column chromatography using hexane/ethyl acetate (v/v, 1 : 7) to obtain the
product as yellow viscous oil. Yield was 33%. 'H NMR spectrum (400 MHz,
DMSO-de): 6 3.527 (s, 12H), 6 3.608 (t, 4H), 6 4.215 (t, 4H), & 4.434 (s, 4H), & 4.682
(s, 4H).

Synthesis of rhodanine-containing methyl methacrylate (MRDA).
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2-Hydroxyethyl methacrylate (6.5 g, 50 mmol), rhodanine-3-acetic acid (4.78 g, 25
mmol) and 4-dimethylaminopyridine (DMAP, 480 mg, 4 mmol) were dissolved in 100
mL anhydrous CH>Cl>. Then dicyclohexylcarbodiimide (DCC, 6.7 g, 33 mmol) in 20
mL anhydrous CH2Cl> was added dropwise at 0°C. After stirring at room temperature
for 24 h and filtration, the reaction solution washed with H>O three times. Then the
solution was concentrated by evaporator and put into silica gel column chromatography
using hexane/ethyl acetate (v/v, 5 : 2) to obtain the product as orange viscous liquid.
Yield was 35%. 'H NMR spectrum (400 MHz, DMSO-de): § 1.879 (s, 3H), 5 4.289 (m,
2H), 6 4.366 (m, 2H), 6 4.426 (s, 2H), 6 4.682 (s, 2H), 8 5.702 (s, 1H), 8 6.039 (s, 1H).



Model reaction of rhodanine-aldehyde condensation
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A typical procedure is as follow: 1 (0.2 mmol), 2 (0.2 mmol) and TEA (0.1 mmol) were
dissolved in 0.5 mL DMSO-d6 and transferred into a NMR tube. Then the tube was
sealed and immersed in an oil bath at 70 °C. After the certain reaction time, the

conversions were analyzed by NMR measurement.

Ring-opening polymerization of thiiranes using rhodanine and derivatives as

initiators
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A typical procedure is as follow: rhodanine (33 mg, 0.25 mmol), POMT (830 mg, 5
mmol) and tetrabutylammonium chloride (41 mg, 0.15 mmol) were dissolved in NMP
to obtain 2.5 mL solution and transferred into a transparent glass tube. After two freeze-
pump-thaw cycles, the tube was sealed and immersed in an oil bath at 75 °C. After 24
h reaction, the solution was precipitated into methanol several times and the product as

yellow viscous solid was obtained after dried in vacuum.



Synthesis of cyclic brush-like polymer
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Cyclic-(PPOMT 93--PPYMT19g) (295 mg, 1 mmol of alkynyl group), PEG2000-OH (6

OJ(\/OMO/
X

g, 3 mmol), CuCl (30 mg, 0.3 mmol) and triethylamine (200 mg, 2 mmol) were
dissolved in 15 mL CH2Cl. Then 4-acetamidobenzenesulfonyl azide (720 mg, 3 mmol)
in 5 mL CH2Clz was slowly added into the reaction mixture under an argon atmosphere.
After the reaction had been carried out at room temperature for 12 h, the mixture was
precipitated into diethyl ether three times. Then the crude product was dissolved in
methanol and further purified by dialysis (cut off 3500 Da MWCO). The methanol
solvent was changed about 8 h later, and it was changed for at least five times at 8 h
periods. The resulting cyclic brush-like polymer was obtained as milk-white solid after

concentration.

Synthesis of multicyclic polymers with cyclic units in the backbone.

Synthesis of the precursor polymer: 1d (292 mg, 0.5 mmol), terephthalaldehyde 3f (67
mg, 0.5 mmol) and trimethylamine (25 mg, 0.25 mmol) were dissolved in DMF to
obtain 2.5 mL solution and immersed in an oil bath at 70 °C. After 3 h reaction, the
solution precipitated into methanol several times and the product precursor polymer as
light brown solid was obtained after dried in vacuum.

The precursor polymer (72.2 mg, 0.2 mmol heterocycle), POMT (664 mg, 4 mmol) and
TBACI (56 mg, 0.2 mmol) were dissolved in NMP to obtain 2 mL solution and
transferred into a transparent glass tube. After two freeze-pump-thaw cycles, the tube
was sealed and immersed in an oil bath at 75 °C. After 18 h reaction, the solution was

precipitated into methanol several times and the product as light brown solid was



obtained after dried in vacuum.

Synthesis of red/near-infrared AIE multicyclic polymer with pendant cyclic units.

2-[[[(2-Carboxyethyl)thio]thioxomethyl]thio]-2-methylpropanoic acid (26.8 mg, 0.1
mmol), MMA (1200 mg, 12 mmol), MRDA (303 mg, 1 mmol) and AIBN (3.2 mg, 0.02
mmol) were dissolved in DMF to obtain 10 mL solution and transferred into a
transparent glass tube. After three freeze-pump-thaw cycles, the tube was sealed and
immersed in an oil bath at 65 °C. After 12 h reaction, the solution was precipitated into
methanol several times and the copolymer 1 as light yellow powder was obtained after
dried in vacuum.

Then this copolymer 1 and 40 fold excess AIBN were dissolved in 50 mL THF to
remove RAFT end groups. After three freeze-pump-thaw cycles, the solution was
sealed and immersed in an oil bath at 80 °C. After 16 h reaction, the solution was
precipitated into diethyl ether several times and the copolymer 2 as white powder was
obtained after dried in vacuum.

Copolymer 2 without RAFT end groups (300 mg, 0.2 mmol RDA units), 5-(4-
(diphenylamino)phenyl)thiophene-2-carbaldehyde (74.6 mg, 0.21 mmol) and TEA (10
mg, 0.1 mmol) were dissolved in DMF to obtain 3 mL solution and immersed in an oil
bath at 70 °C. After 1 h reaction, the solution was precipitated into diethyl ether and
hexane (1 : 1) several times and the red/near-infrared AIE copolymer 3 as dark red
powder was obtained after dried in vacuum.

Copolymer 3 (57 mg, 0.03 mmol RDA units), POMT (150 mg, 0.9 mmol) and
tetrabutylammonium chloride (13 mg, 0.045 mmol) were dissolved in NMP to obtain
0.75 mL solution and transferred into a transparent glass tube. After two freeze-pump-
thaw cycles, the tube was sealed and immersed in an oil bath at 75 °C. After 10 h
reaction, the solution was precipitated into methanol several times and the
red/near-infrared AIE multicyclic polymer with pendant cyclic units as red solid was

obtained after dried in vacuum.
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Supplementary Figure 1. '"H NMR trace during the formation of cyclic polymer:

Conversion (POMT) = (1-15) x 100%; I, denotes the protons integral values of

methylene at unreacted POMT (& = 4.00 ppm).
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Supplementary Figure 2. 'H NMR trace without adding rhodanine as the initiator
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Supplementary Figure 4. '>°C NMR spectrum of the cyclic polymer in entry 1, Tablel
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Supplementary Figure 5. The '"H NMR spectrum of the cyclic polymer in entry 2,

Table 1
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Supplementary Figure 6. The MALDI-TOF MS spectrum of the cyclic PPYMT in

entry 2, Table 1
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Supplementary Figure 7. The '"H NMR spectrum of the cyclic polymer in entry 3,

Table 1 using N-substituent rhodanine derivative as the initiator
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Supplementary Figure 8. SEC curve of resulting polymer in entry 3, Table 1 using

N-substituent rhodanine derivative as the initiator
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Supplementary Figure 10. The '"H NMR spectrum of cyclic random copolymer in

entry 4, Table 1
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Supplementary Figure 11. The 'H NMR spectrum of the cyclic graft copolymer
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Supplementary Figure 13. The mechanism of RA Knoevenagel reaction
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Supplementary Figure 14. The HR-MS analysis of RA reaction in entry 1, Table 2
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Supplementary Figure 15. The '"H NMR trace of RA reaction in entry 2, Table 2
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Supplementary Figure 16. The '3°C NMR trace of RA reaction in entry 2, Table 2
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Supplementary Figure 17. The '"H NMR trace of RA reaction in entry 3, Table 2
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Supplementary Figure 18. The '3C NMR trace of RA reaction in entry 3, Table 2
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Supplementary Figure 19. The '"H NMR trace of RA reaction in entry 4, Table 2
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Supplementary Figure 20. The 3*C NMR trace of RA reaction in entry 4, Table 2
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Supplementary Figure 21. The '"H NMR trace of RA reaction in entry 5, Table 2
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Supplementary Figure 22. The 3*C NMR trace of RA reaction in entry 5, Table 2
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Supplementary Figure 24. The 3C NMR trace of RA reaction in entry 6, Table 2
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Supplementary Figure 25. The '"H NMR trace of RA reaction in entry 7, Table 2
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Supplementary Figure 26. The >*C NMR trace of RA reaction in entry 7, Table 2
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Supplementary Figure 27. The '"H NMR trace of RA reaction in entry 8, Table 2
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Supplementary Figure 28. The >*C NMR trace of RA reaction in entry 8, Table 2
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Supplementary Figure 29. The HR-MS analysis of RA reaction in entry 2, Table 2
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Supplementary Figure 30. The HR-MS analysis of RA reaction in entry 3, Table 2
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Supplementary Figure 31. The HR-MS analysis of RA reaction in entry 4, Table 2
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Supplementary Figure 32. The HR-MS analysis of RA reaction in entry 5, Table 2
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Supplementary Figure 33. The HR-MS analysis of RA reaction in entry 6, Table 2
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Supplementary Figure 34. SEC curve of resulting polymer using C-substituent RA

reaction product in Figure 4 as the initiator
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Supplementary Figure 35. MALDI-TOF MS spectrum of resulting polymer using

C-substituent RA reaction product in Figure 4 as the initiator
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Supplementary Figure 36. 1°C NMR spectrum of RA Knoevenagel polymerization

product and corresponding monomers
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Supplementary Figure 37. 'H NMR spectrum of mixture during the formation of
multicyclic copolymer: Conversion (POMT) = (1-1,) x 100%; I, denotes the protons

integral values of methylene at unreacted POMT (6 = 4.00 ppm)

Supplementary Figure 38. The 'H NMR spectra of the multicyclic copolymer with

cyclic units in the backbone at different conversions
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Supplementary Figure 39. 'C NMR analysis of the precursor polymer and

multicyclic polymers
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Supplementary Figure 40. TGA of the precursor polymer and multicyclic polymers
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Supplementary Figure 41. DSC curves of multicyclic polymers and single cyclic

counterpart

Supplementary Figure 42. TEM image of multicyclic copolymer brush
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Supplementary Figure 43. SEC curves of resulting hyperbranched polyrhodanine

initiator and hyperbranched multicyclic polymers

Supplementary Figure 44. "H NMR spectra of resulting hyperbranched polyrhodanine

initiator and hyperbranched multicyclic copolymer
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Supplementary Figure 45. 'H NMR spectrum of rhodanine-containing methyl

methacrylate (MRDA)
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Supplementary Figure 46. UV-vis characteristic absorption curves of

trithiocarbonate containing copolymer 1 and copolymer 2 in Figure 8
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Supplementary Figure 47. The typical donor-acceptor structure of RA reaction

product
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Supplementary Figure 48. The '"H NMR spectra of copolymer 2 with side rhodanine

units and red/near-infrared AIE copolymer 3 with side rhodanine units
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Supplementary Figure 49. The 'H NMR spectrum of red/near-infrared AIE

multicyclic polymer 4 with pendant cyclic units



