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Appendix A: Variational Inference
We fit tGPLVM to data with Black Box Variational Inference [1]. BBVI uses sam-

pling to stochastically compute gradients to minimize the KL Divergence, or equiv-

alently maximize the Evidence Lower Bound, between an approximating variational

distribution and the true posterior. Gradients of the evidence lower bound (ELBO)

do not require gradients of the log probability, avoiding the derivative of the Stu-

dent’s t-distribution.

For GPLVMs, variational inference is implemented by introducing auxiliary vari-

ables known as inducing points [2, 3]. Inducing points reduce the complexity of

fitting the model from O(n3) to O(m2n) [2]. We adapt the variational inference

methods from [2] for the Bayesian GPLVM. Maintaining the variables and nota-

tion from the model, we introduce inducing points XU ∈ RM×Q, and latent GP

evaluations at the inducing points U ∈ RN×P . The likelihood for the model can be

rewritten as:

p(Y, F, U,X|Xu) =

( P∏
j=1

p(yj |fj)p(fj |uj , X,Xu)p(uj |Xu)

)
p(X).

This is approximated by a variational distribution of form:

q(F,U,X) =

( P∏
j=1

p(fj |uj , X)q(uj)

)
q(X).

The variational distribution over q(X) is a Gaussian:

q(x) = N (x|M,S),

whereM and S are variational parameters for the mean and variance of the poste-

rior. The distribution of q(U) is unconstrained [2]. We use the following formulation:

Kfu = k(x, u′)

Kff = k(x, x′)

Kuu = k(u, u′)

ψuu = (K ′fuKfu)−1

q(u) = N (u|KuuψuuKfuy,Kuu).

The probability of fj given the latent variables and inducing points is:

p(fj |uj , X) = N (f |KfuK
−1
uu u,Kff −KfuK

−1
uuK

′
fu).
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Variational latent means, M, are initialized with PCA (truncated SVD for sparse

format matrices) unless otherwise indicated. Variational latent variances, S, are

initialized as ones. The initial inducing points Xu are randomly sampled from the

initial latent means. We use 30 inducing points in all experiments.

Appendix B: Data Acquisition and Implementations
Estimated manifolds were compared to zero inflated factor analysis (ZIFA) [4], t-

SNE [5], scVI [6] and PCA [7] (dense data) or TruncatedSVD [8] (sparse data). ZIFA

was implemented using available Python code (https://github.com/epierson9/ZIFA).

scVI was also implemented using available Python code (https://github.com/YosefLab/scVI).

t-SNE was implemented using scikit-learn with the default perplexity of 30. PCA

and truncated SVD were also implemented from scikit-learn. For all experiments we

also tested our model with different kernels and with a normal, but gene-specific,

error model.

The high count expression matrix for Pollen [4] was downloaded from the

SIMLR repository (https://github.com/BatzoglouLabSU/SIMLR) [9]. These data

are log normalized by log10(1 + Y ). The data consist of 249 cells from 11 cell

populations. Due to its small size, the full data set was used for each batch.

K-means clustering on latent variable mappings was performed using scikit-

learn’s sklearn.cluster. KMeans [10]. NMI and Rand were computed using scikit-

learn’s NMI (sklearn.metrics.normalized mutual info score) and Adjusted Rand

Score packages (sklearn.metrics.adjusted rand score) [10].

The data from GPfates [11] were downloaded from the GPfates repository

(https://github.com/Teichlab/GPfates/tree/master/) and includes the TPM nor-

malized expression for 409 Plasmodium-infected CD4+ T cells sequenced in

batches over the course of seven days. These data were log normalized by

log2(1 + Y ). Minibatches included 408 cells and 1700 genes. For each esti-

mated manifold, a minimum spanning tree was fit to the undirected graph ma-

trix of Euclidean distance between the cells’ locations in the latent space using.

scipy.sparse.csgraph.minimum spanning tree.

The filtered count matrix for CD34+ PMBCs [12] was downloaded from the 10x

website (https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/cd34).

Minibatches consisted of 1000 cells and 500 genes. Data was log normalized

as log2(1 + Y ). Inference was run for 250 iterations. The count matrix of

1 million mouse brain cells [12] was also downloaded from the 10x website

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M neurons).

Counts were normalized by log2(1 + Y ). Minibatches were sized as described in

methods. Due to memory constraints in implementation of TruncatedSVD, the 1

million neural brain cells latent means were initialized using nonnegative matrix

factorization (NMF) [13]
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