### **Supporting Information**

### Title

Covalent inhibitors allosterically block the activation of Rho family proteins and suppress cancer cell invasion

Zhongya Sun<sup>1#,</sup> Hao Zhang<sup>2#</sup>, Yuanyuan Zhang<sup>2#</sup>, Liping Liao<sup>2,3#</sup>, Wen Zhou<sup>4#</sup>, Fengcai Zhang<sup>2,5</sup>, Fulin Lian<sup>2</sup>, Jing Huang<sup>2,3</sup>, Pan Xu<sup>2,3</sup>, Rukang Zhang<sup>2,3</sup>, Wenchao Lu<sup>2,3</sup>, Mingrui Zhu<sup>2,3</sup>, Hongru Tao<sup>2</sup>, Feng Yang<sup>2,6</sup>, Hong Ding<sup>2</sup>, Shijie Chen<sup>2</sup>, Liyan Yue<sup>2</sup>, Bing Zhou<sup>2</sup>, Naixia Zhang<sup>2</sup>, Minjia Tan<sup>2</sup>, Hualiang Jiang<sup>2</sup>, Kaixian Chen<sup>2,6,7</sup>, Bo Liu<sup>4,8\*</sup>, Chuanpeng Liu<sup>1\*</sup>, Yongjun Dang<sup>9\*</sup> and Cheng Luo<sup>2, 10,11\*</sup>

<sup>1</sup> School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China

<sup>2</sup> Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China <sup>3</sup> University of Chinese Academy of Sciences, Beijing 100049, China

<sup>4</sup> The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University

of Chinese Medicine, Guangzhou 510006, P.R. China

<sup>5</sup> School of Pharmacy, Nanchang University, Jiangxi 330006, China

<sup>6</sup> School of Pharmacy, Fudan University, Shanghai 201203, China

<sup>7</sup> Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China

<sup>8</sup> Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, P.R. China

<sup>9</sup> Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China

<sup>10</sup> Department of Pharmacology, College of Pharmacy, Fujian Medical University, China

<sup>11</sup> Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, South Dong Qing Road, Huaxi District, Guizhou 550025, China

<sup>#</sup>equal contribution

\*Corresponding authors

Bo Liu, The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China, <u>doctliu@gzucm.edu.cn</u>

Chuanpeng Liu, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China, liucp74@hotmail.com

Yongjun Dang, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China, yongjundang@fudan.edu.cn

Cheng Luo, Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, cluo@simm.ac.cn

**Keywords:** rho family proteins, inhibitors, novel pockets, crystal structures, anti-metastasis activities

#### Supplementary figures and legends



**Figure S1.** The relative conservative binding pockets around Cys107 among Rho family proteins revealed by molecular dynamics simulation. a-d) The structural dynamics of the potential binding pocket around the Cys-107 residue, revealed by the representative structures from the most principal (four out of ten) clusters. e) Sequence alignment of five small GTPases, which represents the five families of Ras. The conserved Cys107 among Rho GTPases is pointed by red arrows.



**Figure S2.** DC-Rhoin covalently binds to Cys107 of RhoA. a) Overlapped 1H-15N HSQC spectra for RhoA in the absence (red) and presence (blue) of compound DC-Rhoin at the ratio 1:1. b) The residues with attenuating peaks or with their CSP values bigger than 0.05 upon the addition of DC-Rhoin are labeled. c) The residues with significant chemical shift changes observed in response to DC-Rhoin modification are highlighted on the 3D cartoon structure of RhoA-GDP complex (PDB: 1FTN). The

residues with attenuating peaks upon the addition of DC-Rhoin are highlighted in green, and the residues with their CSP values bigger than 0.05 upon the addition of DC-Rhoin are colored in blue. d) Extracted ion chromatograms (XIC) for peptide HFC(C12H10SO4)PNVPIILVGNK in DMSO treatment versus compound treatment. e) ESI-MS/MS tandem mass spectra results showed the modified peptide HFC(C12H10SO4)PNVPIILVGNK by compound DC-Rhoin. f) Proposed reaction mechanism between compound DC-Rhoin and the Cys-107 residue of RhoA (MA represents Michael acceptor).



**Figure S3.** DC-Rhoins are selective Rho family inhibitors. a) The interactions of RhoA<sup>C16A</sup>, RhoA<sup>C20A</sup>, RhoA<sup>C83A</sup>, RhoA<sup>C159A</sup> and RhoA<sup>C190A</sup> with LARG were blocked by DC-Rhoin at the concentration around 3.1  $\mu$ M. b) DC-Rhoin04 shows minimal inhibition on several epigenetic targets containing exposed cysteine. c) The chemical structure of inactive compound DC-Rhoin10. d) DC-Rhoin10 did not block the interaction between RhoA and LARG.



Figure S4. Screening of active derivatives of DC-Rhoin in vitro. a) The chemical structures of DC-Rhoin's derivative compounds. b) The inhibitory effect of a panel of derivatives of DC-Rhoin were tested in a complex formation assay. c) The inhibition ratio of the derivatives at the concentration of 5  $\mu$ M; 1.7  $\mu$ M and 0.56  $\mu$ M in pull down assay. d) The inhibitory effect of a panel of derivatives of DC-Rhoin were tested in the GDP/GTP exchange assay of RhoA. e) The half maximal inhibitory concentrations of several inhibitors in the GDP/GTP exchange assay.



**Figure S5.** Compound DC-Rhoin inhibited cellular activity of Rho family proteins, and suppressed the migration and invasion of breast cancer MDA-MB-231 cells. a) DC-Rhoin inhibited the activation of RhoA at 25  $\mu$ M in MDA-MB-231 cells. b) DC-Rhoin decreased the level of p-MLC at the dose of 25  $\mu$ M in MDA-MB-231 cells. c) DC-Rhoin suppressed the formation of stress fiber in MDA-MB-231 cells d) The migration and invasion ability of MDA-MB-231 cells was inhibited by DC-Rhoin. Data are shown as mean  $\pm$  SD of three independent experiments, \*\*\*p < 0.001 (Student's *t*-test).Scale bars, 1mm.



**Figure S6.** Identification of DC-Rhoin04 as the most potent inhibitor of RhoA in cell. a) DC-Rhoin04 inhibited the phosphorylation of MLC protein at the concentration of 5  $\mu$ M, it has more potent cellular activity than other derivatives. b) Consistent with DC-Rhoin, DC-Rhoin04 inhibits the interaction of RhoA with LARG and GDI. c) DC-Rhoin04 exhibited inhibition against the GDP/GTP exchange rate of RhoA, with an IC<sub>50</sub> value of 3.56±0.31  $\mu$ M.



**Figure S7.** The negative molecule has no effect on the RhoA related pathway. a) DC-Rhoin10 did not inhibit the activation of RhoA in MDA-MB-231 cells. b) DC-Rhoin10 did not inhibit the serum induced phospho-MLC activities in MDA-MB-231 cells. c) DC-Rhoin10 has no effect on the migration of MDA-MB-231 cells. d) DC-Rhoin10 showed minimal anti-proliferative effect on MDA-MB-231 cells.



**Figure S8.** Under the condition of cell migration or invasion assays, DC-Rhoin04 has weak effect on the proliferation of MDA-MB-231 cells.



**Figure S9.** The evaluation of the pMLC level in the RhoA/Rac1/Cdc42 knockdown cells with DC-Rhoin treatment, and the establishment of RhoA<sup>C107A</sup> rescued model in MDA-MB-231 cells. a-c) MDA-MB-231 cells transduced with control (si-NC) or RhoA/Rac1/Cdc42 targeting siRNAs, and assessed for knockdown selection. d-f) Knock down of RhoA blocked the phosphorylation of MLC activated by serum, while deletion of Rac1 or Cdc42 has minimal effect. g-i) In the MDA-MB-231 cell line with

RhoA stably knocked down, the inhibition of DC-Rhoin on p-MLC was weak, while deletion of RAC1 or CDC42 had little effect. j) Rescue of RhoA knockdown cells by expression of 3×flag fusion RhoA protein.



**Figure S10.** The images of the transwell assay for testing the inhibition ability of DC-Rhoin04 on the migration or invasion in the normal MDA-MB-231 cell; RhoA-KD cell; RhoA<sup>WT</sup> rescued cell and RhoA<sup>C107A</sup> rescued cell. DC-Rhoin04 has weak inhibition on cell migration and invasion when endogenous RhoA expression was knocked down, while, the inhibition effect of DC-Rhoin04 was partially restored by re-expressing WT RhoA in RhoA knockdown cells, by contrast, RhoA<sup>C107A</sup> did not restore this effect. Shown are representative images of migrated cells.

## Supplementary tables and legends

| Cluster | Frames | Occurrence* |
|---------|--------|-------------|
| 1       | 8      | 0.000       |
| 2       | 2984   | 0.149       |
| 3       | 6006   | 0.300       |
| 4       | 11     | 0.001       |
| 5       | 2      | 0.000       |
| 6       | 3      | 0.000       |
| 7       | 443    | 0.022       |
| 8       | 10540  | 0.527       |
| 9       | 1      | 0.000       |
| 10      | 1      | 0.000       |

Table S1. Structural clustering of molecular dynamics simulation.

\* 19999 frames from 1000 nano-seconds trajectory were divided into 10 clusters, using the C-alpha

RMSD values between frames. Occurrence is calculated by dividing the frame numbers of each cluster by the total frame number 19999.

| Ranking | Name      | ID-Number       | Supplier   | Score  |
|---------|-----------|-----------------|------------|--------|
| 1       | DC-RC-013 | 2372-2747       | ChemDiv    | -5.382 |
| 2       | DC-RC-039 | AN-919/15183007 | Specs      | -4.730 |
| 3       | DC-RC-022 | M074-0694       | ChemDiv    | -3.637 |
| 4       | DC-RC-072 | AK-968/41922636 | Specs      | -3.556 |
| 5       | DC-RC-008 | 1037-1122       | ChemDiv    | -3.376 |
| 6       | DC-RC-021 | M074-0516       | ChemDiv    | -3.195 |
| 7       | DC-RC-061 | AB-337/13036006 | Specs      | -2.806 |
| 8       | DC-RC-011 | 4238-0006       | ChemDiv    | -2.360 |
| 9       | DC-RC-068 | AG-205/14231021 | Specs      | -2.210 |
| 10      | DC-RC-103 | AB-337/13036263 | Specs      | -1.704 |
| 11      | DC-RC-023 | Y021-0860       | ChemDiv    | -0.984 |
| 12      | DC-RC-067 | AN-970/40920551 | Specs      | -0.901 |
| 13      | DC-RC-077 | AA-516/12432384 | Specs      | 0.611  |
| 14      | DC-RC-034 | AK-968/37173253 | Specs      | 0.655  |
| 15      | DC-RC-028 | AQ-360/42595901 | Specs      | 0.667  |
| 16      | DC-RC-057 | AH-262/34334028 | Specs      | 0.706  |
| 17      | DC-RC-026 | AS-871/34823013 | Specs      | 0.802  |
| 18      | DC-RC-025 | M381-2881       | ChemDiv    | 1.651  |
| 19      | DC-RC-043 | AE-848/11827160 | Specs      | 1.704  |
| 20      | DC-RC-038 | AK-968/15611698 | Specs      | 1.724  |
| 21      | DC-RC-083 | AI-204/31701043 | Specs      | 1.858  |
| 22      | DC-RC-081 | AR-360/42760396 | Specs      | 1.898  |
| 23      | DC-RC-066 | AE-848/32762024 | Specs      | 2.216  |
| 24      | DC-RC-003 | 5511490         | ChemBridge | 2.224  |
| 25      | DC-RC-014 | 0933-0015       | ChemDiv    | 2.354  |
| 26      | DC-RC-102 | AN-648/14680008 | Specs      | 2.451  |
| 27      | DC-RC-080 | AN-970/40920625 | Specs      | 2.556  |
| 28      | DC-RC-091 | AO-365/15162219 | Specs      | 2.618  |
| 29      | DC-RC-005 | 1831-7638       | ChemDiv    | 2.679  |
| 30      | DC-RC-019 | 8019-9525       | ChemDiv    | 2.721  |
| 31      | DC-RC-010 | 1000-0138       | ChemDiv    | 2.908  |
| 32      | DC-RC-006 | 2188-1675       | ChemDiv    | 2.970  |
| 33      | DC-RC-096 | AE-848/37031020 | Specs      | 2.980  |
| 34      | DC-RC-001 | 5101336         | ChemBridge | 3.152  |
| 35      | DC-RC-073 | AH-262/01728005 | Specs      | 3.619  |
| 36      | DC-RC-017 | 1831-6582       | ChemDiv    | 3.786  |
| 37      | DC-RC-020 | F517-0048       | ChemDiv    | 3.886  |
| 38      | DC-RC-030 | AS-871/43118758 | Specs      | 3.892  |
| 39      | DC-RC-069 | AG-690/40124728 | Specs      | 4.073  |
| 40      | DC-RC-002 | 5331004         | ChemBridge | 4.131  |

Table S2. Full list of the covalent docking.

| 41 | DC-RC-016 | V012-3190       | ChemDiv | 4.586  |
|----|-----------|-----------------|---------|--------|
| 42 | DC-RC-108 | AJ-333/15478103 | Specs   | 4.717  |
| 43 | DC-RC-049 | AG-690/33031022 | Specs   | 4.756  |
| 44 | DC-RC-036 | AJ-264/34032056 | Specs   | 4.773  |
| 45 | DC-RC-071 | AK-968/37173229 | Specs   | 4.773  |
| 46 | DC-RC-056 | AG-205/37082025 | Specs   | 4.835  |
| 47 | DC-RC-094 | AC-907/34123034 | Specs   | 5.133  |
| 48 | DC-RC-075 | AS-871/43475471 | Specs   | 5.162  |
| 49 | DC-RC-024 | P123-0322       | ChemDiv | 5.681  |
| 50 | DC-RC-109 | AK-968/37284019 | Specs   | 5.831  |
| 51 | DC-RC-118 | AK-968/11532043 | Specs   | 6.452  |
| 52 | DC-RC-062 | AR-527/43461187 | Specs   | 6.889  |
| 53 | DC-RC-042 | AK-968/37129366 | Specs   | 7.007  |
| 54 | DC-RC-097 | AJ-030/14523319 | Specs   | 7.011  |
| 55 | DC-RC-046 | AK-968/40340474 | Specs   | 7.307  |
| 56 | DC-RC-015 | M747-0109       | ChemDiv | 7.583  |
| 57 | DC-RC-027 | AG-690/12089050 | Specs   | 7.737  |
| 58 | DC-RC-079 | AA-516/30011010 | Specs   | 7.860  |
| 59 | DC-RC-088 | AG-690/36008023 | Specs   | 8.034  |
| 60 | DC-RC-018 | M747-1072       | ChemDiv | 8.353  |
| 61 | DC-RC-095 | AK-968/40468110 | Specs   | 8.712  |
| 62 | DC-RC-065 | AP-845/42031890 | Specs   | 8.967  |
| 63 | DC-RC-112 | AF-399/14123003 | Specs   | 9.250  |
| 64 | DC-RC-111 | AC-907/15498070 | Specs   | 9.304  |
| 65 | DC-RC-029 | AG-690/15444292 | Specs   | 9.974  |
| 66 | DC-RC-116 | AP-828/41001738 | Specs   | 11.035 |
| 67 | DC-RC-032 | AN-967/15488165 | Specs   | 11.096 |
| 68 | DC-RC-055 | AG-690/37099107 | Specs   | 11.498 |
| 69 | DC-RC-104 | AN-988/14609005 | Specs   | 11.514 |
| 70 | DC-RC-035 | AS-871/41201398 | Specs   | 11.962 |
| 71 | DC-RC-093 | AG-690/34549021 | Specs   | 12.182 |
| 72 | DC-RC-053 | AA-504/32995018 | Specs   | 12.534 |
| 73 | DC-RC-004 | 1611-1693       | ChemDiv | 12.768 |
| 74 | DC-RC-113 | AO-081/14338048 | Specs   | 13.047 |
| 75 | DC-RC-052 | AE-848/32310050 | Specs   | 13.684 |
| 76 | DC-RC-092 | AK-968/37005084 | Specs   | 13.769 |
| 77 | DC-RC-031 | AG-690/40635129 | Specs   | 15.121 |
| 78 | DC-RC-051 | AG-690/32526028 | Specs   | 15.132 |
| 79 | DC-RC-074 | AG-690/11629216 | Specs   | 16.129 |
| 80 | DC-RC-009 | 2036-0581       | ChemDiv | 17.320 |
| 81 | DC-RC-007 | 8003-4420       | ChemDiv | 18.479 |
| 82 | DC-RC-090 | AJ-091/40652509 | Specs   | 22.022 |
| 83 | DC-RC-100 | AG-690/09664016 | Specs   | 23.649 |
| 84 | DC-RC-060 | AG-690/11764104 | Specs   | 24.760 |

| -   |           |                 |         |         |
|-----|-----------|-----------------|---------|---------|
| 85  | DC-RC-058 | AG-670/37139009 | Specs   | 24.926  |
| 86  | DC-RC-117 | AK-454/40962604 | Specs   | 25.497  |
| 87  | DC-RC-012 | 8004-7004       | ChemDiv | 25.938  |
| 88  | DC-RC-045 | AG-690/36159019 | Specs   | 26.180  |
| 89  | DC-RC-033 | AB-478/30282013 | Specs   | 27.094  |
| 90  | DC-RC-076 | AC-907/15498086 | Specs   | 27.549  |
| 91  | DC-RC-082 | AH-188/25003063 | Specs   | 27.942  |
| 92  | DC-RC-107 | AA-516/33240025 | Specs   | 28.603  |
| 93  | DC-RC-054 | AE-848/32310020 | Specs   | 29.678  |
| 94  | DC-RC-037 | AK-968/40335872 | Specs   | 29.917  |
| 95  | DC-RC-101 | AC-776/41252544 | Specs   | 30.443  |
| 96  | DC-RC-086 | AG-690/33251021 | Specs   | 31.035  |
| 97  | DC-RC-041 | AG-690/11629519 | Specs   | 33.521  |
| 98  | DC-RC-063 | AC-907/43493870 | Specs   | 35.753  |
| 99  | DC-RC-044 | AG-690/36535022 | Specs   | 37.441  |
| 100 | DC-RC-064 | AK-968/11567056 | Specs   | 37.548  |
| 101 | DC-RC-114 | AK-968/41926478 | Specs   | 38.112  |
| 102 | DC-RC-040 | AF-399/15286623 | Specs   | 40.554  |
| 103 | DC-RC-099 | AG-205/36408052 | Specs   | 40.789  |
| 104 | DC-RC-050 | AG-690/33036041 | Specs   | 45.579  |
| 105 | DC-RC-048 | AE-848/32494054 | Specs   | 50.984  |
| 106 | DC-RC-059 | AK-968/40337472 | Specs   | 51.013  |
| 107 | DC-RC-087 | AH-262/02645013 | Specs   | 51.752  |
| 108 | DC-RC-115 | AN-655/14023042 | Specs   | 52.056  |
| 109 | DC-RC-098 | AG-690/36896018 | Specs   | 54.868  |
| 110 | DC-RC-110 | AK-968/37214057 | Specs   | 56.627  |
| 111 | DC-RC-084 | AI-204/31722045 | Specs   | 58.615  |
| 112 | DC-RC-120 | AH-487/41431698 | Specs   | 60.296  |
| 113 | DC-RC-089 | AO-081/15384095 | Specs   | 62.868  |
| 114 | DC-RC-106 | AN-655/14023022 | Specs   | 79.451  |
| 115 | DC-RC-078 | AA-516/30040011 | Specs   | 84.422  |
| 116 | DC-RC-085 | AN-648/15240030 | Specs   | 87.025  |
| 117 | DC-RC-070 | AH-487/41801493 | Specs   | 89.209  |
| 118 | DC-RC-119 | AC-907/15498023 | Specs   | 92.765  |
| 119 | DC-RC-105 | AN-056/25013017 | Specs   | 97.320  |
| 120 | DC-RC-047 | AG-205/06782028 | Specs   | 104.124 |
|     |           |                 |         |         |

The DC-Rhoin is the lead compound with identifier DC-RC-063.

| Compound ID | Compound structure                                           | Inhibition% at<br>100 μM | Inhibition% at 50<br>µM |
|-------------|--------------------------------------------------------------|--------------------------|-------------------------|
| DC-RC-008   | HN<br>HN<br>O<br>HN<br>H <sub>2</sub> C<br>CH <sub>3</sub>   | 6.31±3.24                | 13.50±2.79              |
| DC-RC-012   | $H_2C$                                                       | 9.58±2.60                | 7.91±1.06               |
| DC-RC-014   | $ \begin{array}{c} H \\ N \\ N \\ H_2C \\ CH_3 \end{array} $ | 15.27±2.78               | 14.13±3.18              |
| DC-RC-022   | NH<br>NH<br>CH <sub>3</sub><br>O                             | 8.16±2.81                | 4.59±6.69               |
|             | H <sub>2</sub> С О<br>СН <sub>3</sub><br>Ј                   |                          |                         |
| DC-RC-023   | NH NO                                                        | 11.19±4.80               | 6.52±1.60               |
|             | H₂C O                                                        |                          |                         |
| DC-RC-024   |                                                              | 11.18±2.68               | 7.11±2.75               |
| DC-RC-040   | H <sub>3</sub> C<br>H <sub>3</sub> C<br>N<br>N               | 20.94±4.77               | 18.63±1.67              |

# Table S3. The structures of twelve top-score compounds, and their inhibitory

activities against the nucleotide exchange rate of RhoA.



Quantification was calculated from three independent assays and the error bars represent  $\pm$  SD for

triplicate experiments. The DC-Rhoin is the lead compound with identifier DC-RC-063.

| Kinase Target        | Protein activity% | Kinase Target | Protein       |
|----------------------|-------------------|---------------|---------------|
|                      | (50 μM)           |               | activity% (50 |
|                      |                   |               | μ <b>M</b> )  |
| Abl(h)               | 83                | JAK1(h)       | 88            |
| ACK1(h)              | 82                | JAK2(h)       | 90            |
| ACTR2(h)             | 101               | JAK3(h)       | 89            |
| ALK(h)               | 100               | JNK3(h)       | 101           |
| Arg(h)               | 71                | KDR(h)        | 94            |
| AMPKa1(h)            | 85                | Lck(h)        | 94            |
| AMPKa2(h)            | 85                | LIMK1(h)      | 97            |
| A-Raf(h)             | 115               | LIMK2(h)      | 110           |
| ARK5(h)              | 91                | LKB1(h)       | 85            |
| ASK1(h)              | 93                | LOK(h)        | 129           |
| Aurora-A(h)          | 93                | Lyn(h)        | 89            |
| Aurora-C(h)          | 127               | LRRK2(h)      | 99            |
| Bmx(h)               | 80                | LTK(h)        | 92            |
| BRK(h)               | 103               | MAK(h)        | 105           |
| BTK(h)               | 75                | MAPK1(h)      | 114           |
| B-Raf(h)             | 96                | MAPK2(h)      | 109           |
| CaMKI(h)             | 90                | MAP4K3(h)     | 84            |
| Cdc7/cyclinB1(h)     | 90                | MAP4K4(h)     | 103           |
| CDK1/cyclinB(h)      | 88                | MAP4K5(h)     | 93            |
| CDK2/cyclinA(h)      | 92                | MAPKAP-K2(h)  | 109           |
| CDK2/cyclinE(h)      | 111               | MEK1(h)       | 97            |
| CDK3/cyclinE(h)      | 98                | MEK2(h)       | 107           |
| CDK4/cyclinD3(h)     | 89                | Mer(h)        | 89            |
| CDK5/p25(h)          | 100               | Met(h)        | 78            |
| CDK5/p35(h)          | 98                | MLCK(h)       | 82            |
| CDK6/cyclinD3(h)     | 115               | MLK2(h)       | 84            |
| CDK7/cyclinH/MAT1(h) | 113               | MSK2(h)       | 78            |
| CDK9/cyclin T1(h)    | 99                | MST1(h)       | 88            |
| CDK12/cyclinK(h)     | 76                | MST2(h)       | 101           |
| CDK13/cyclinK(h)     | 125               | MST3(h)       | 97            |
| CDK14/cyclinY(h)     | 93                | MST4(h)       | 111           |
| CDK18/cyclinY(h)     | 95                | MuSK(h)       | 110           |
| CDKL1(h)             | 110               | MYLK2(h)      | 90            |
| CHK1(h)              | 99                | MYO3B(h)      | 98            |
| CHK2(h)              | 108               | NDR2(h)       | 90            |
| CK1δ(h)              | 82                | NEK1(h)       | 73            |
| CK1(y)               | 89                | NEK2(h)       | 111           |
| CK2(h)               | 82                | NEK3(h)       | 83            |

Table S4. Effect of DC-Rhoin04 on the activity of 180 human kinases.

| CSK(h)               | 99  | NIM1(h)       | 100 |
|----------------------|-----|---------------|-----|
| c-RAF(h)             | 93  | NLK(h)        | 90  |
| cSRC(h)              | 105 | NUAK2(h)      | 108 |
| DAPK1(h)             | 94  | p70S6K(h)     | 85  |
| DAPK2(h)             | 85  | PAK1(h)       | 93  |
| DRAK1(h)             | 87  | PAK2(h)       | 100 |
| DRAK2(h)             | 121 | PAR-1Ba(h)    | 114 |
| eEF-2K(h)            | 118 | PEK(h)        | 95  |
| EGFR(h)              | 80  | PDGFRa(h)     | 84  |
| EphA5(h)             | 77  | PDK1(h)       | 107 |
| EphB2(h)             | 85  | PhKy1(h)      | 86  |
| EphB4(h)             | 91  | PhKγ2(h)      | 85  |
| ErbB4(h)             | 82  | Pim-1(h)      | 74  |
| FAK(h)               | 93  | Pim-2(h)      | 88  |
| Fer(h)               | 92  | PKA(h)        | 89  |
| Fes(h)               | 81  | PKBα(h)       | 93  |
| FGFR1(h)             | 141 | PKBβ(h)       | 92  |
| FGFR2(h)             | 106 | PKBγ(h)       | 97  |
| FGFR4(h)             | 98  | PKD3(h)       | 85  |
| Fgr(h)               | 80  | PKG1a(h)      | 94  |
| Flt1(h)              | 99  | PKR(h)        | 97  |
| Flt3(h)              | 130 | Plk1(h)       | 106 |
| Flt4(h)              | 81  | Plk3(h)       | 108 |
| Fms(h)               | 102 | Plk4(h)       | 90  |
| Fyn(h)               | 139 | PRAK(h)       | 119 |
| GCK(h)               | 111 | PRK1(h)       | 97  |
| GCN2(h)              | 100 | PRK2(h)       | 104 |
| GRK1(h)              | 94  | RIPK2(h)      | 89  |
| GRK2(h)              | 107 | ROCK-I(h)     | 87  |
| GRK5(h)              | 91  | ROCK-II(h)    | 96  |
| GRK7(h)              | 89  | Rse(h)        | 101 |
| GSK3β(h)             | 93  | Rsk1(h)       | 74  |
| Hck(h)               | 85  | Rsk2(h)       | 104 |
| Hck(h) activated     | 91  | Rsk3(h)       | 80  |
| IGF-1R(h)            | 113 | Rsk4(h)       | 133 |
| IGF-1R(h), activated | 97  | SAPK2a(h)     | 87  |
| IKKα(h)              | 95  | SGK(h)        | 88  |
| IKKβ(h)              | 76  | Src(1-530)(h) | 77  |
| IKKɛ(h)              | 97  | SRPK1(h)      | 90  |
| IR(h)                | 125 | Syk(h)        | 110 |
| IR(h), activated     | 92  | TAK1(h)       | 102 |
| IRE1(h)              | 93  | TAO1(h)       | 99  |
| IRR(h)               | 97  | TAO2(h)       | 75  |

| IRAK1(h) | 99  | Tec(h) activated      | 82  |
|----------|-----|-----------------------|-----|
| IRAK4(h) | 83  | TGFBR1(h)             | 103 |
| Itk(h)   | 72  | TGFBR2(h)             | 95  |
| ULK1(h)  | 88  | ZAK(h)                | 115 |
| ULK2(h)  | 101 | ZAP-70(h)             | 105 |
| VRK1(h)  | 91  | ATM(h)                | 92  |
| Wee1(h)  | 111 | ATR/ATRIP(h)          | 91  |
| WNK1(h)  | 104 | PI3 Kinase (p120□)(h) | 95  |
| Yes(h)   | 95  | $PIP5K1 \square (h)$  | 98  |

# Table S5. The sequences of siRNA used in the experiments.

|           | sense (5'-3')           | antisense (5'-3')       |
|-----------|-------------------------|-------------------------|
| siRhoA-1  | CUAUGAUUAUUAACGAUGUTT   | ACAUCGUUAAUAAUCAUAGTT   |
| siRhoA-2  | GGCUUUACUCCGUAACAGATT   | UCUGUUACGGAGUAAAGCCCT   |
| siRhoA-3  | GUACAUGGAGUGUUCAGCAAAC  | GUUUGCUGAACACUCCAUGUAC  |
| siRhoA-4  | GGAAAGACAUGCUUGCUCAUC   | GAUGAGCAAGCAUGUCUUUCCA  |
| siRhoA-5  | GAAAGCAGGUAGAGUUGGCUU   | GAAGCCAACUCUACCUGCUUU   |
| siRac1-1  | UGUAGGUAAAACUUGCCUACU   | AGUAGGCAAGUUUUACCUACA   |
| siRac1-2  | UGCAUUUCCUGGAGAAUAUAU   | AUAUAUUCUCCAGGAAAUGCA   |
| siRac1-3  | UCGUUCUUGGUCCUGUCCCUU   | AAGGGACAGGACCAAGAACGA   |
| siRac1-4  | AGUUCAGACUCACAUUCUAUU   | AAUAGAAUGUGAGUCUGAACU   |
| siCdc42-1 | UCAAGUAUGUGGAGUGUUCUG   | CAGAACACUCCACAUACUUGA   |
| siCdc42-2 | UGCCUGAGAUAACUCACCACU   | AGUGGUGAGUUAUCUCAGGCA   |
| siCdc42-3 | UACUGCAGGGCAAGAGGAUUAU  | AUAAUCCUCUUGCCCUGCAGUA  |
| siCdc42-4 | UGACGUCAGGUGCGUGCCCCU   | AGGGGCACGCACCUGACGUCA   |
| NC-siRNA  | UUCUCCGAACGUGUCACGUdTdT | ACGUGACACGUUCGGAGAAdTdT |