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THE BIGGER PICTURE In-home digital surveillance has been proposed as the future for chronic, neurode-
generative disease such as Parkinson’s disease (PD), which can bemonitored by wearable devices from its
motor-related symptoms. However, the disparities between uncontrolled in-home environments have intro-
duced obstacles to the population-level application of digital screening of PD. In this study, we developed
the first-place solution in the recent DREAM Parkinson’s Disease Digital Biomarker Challenge, which calls
for optimal algorithms to extract digital biomarkers of PD from crowd-sourcedmovement records. To com-
bat the spatial and temporal bias in different movement records, we applied a variety of data-augmentation
methods, which significantly improves the performance of the deep-learning model. Besides PD, our
method provides a path for large-scale population screening and in-home monitoring using wearable de-
vices in other related neurodegenerative disorders.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Large-scale population screening and in-home monitoring for patients with Parkinson’s disease (PD) has so
far been mainly carried out by traditional healthcare methods and systems. Development of mobile health
may provide an independent, future method to detect PD. Current PD detection algorithms will benefit
from better generalizability with data collected in real-world situations. In this paper, we report the top-per-
forming smartphone-based method in the recent DREAM Parkinson’s Disease Digital Biomarker Challenge
for digital diagnosis of PD. Utilizing real-world accelerometer records, this approach differentiated PD
from control subjects with an area under the receiver-operating characteristic curve of 0.87 by 3D augmen-
tation of accelerometer records, a significant improvement over other state-of-the-art methods. This study
paves the way for future at-home screening of PD and other neurodegenerative conditions affecting
movement.
INTRODUCTION

Application of artificial intelligence to digital health monitoring

opens the door to in-home disease screening andmonitoring us-

ing widely available devices such as digital watches or smart-

phones. Parkinson’s disease (PD) is a common neurodegenera-

tive disease whose defining clinical features are movement

dysfunction, namely bradykinesia (e.g., slowness of movement)

associated with one or more other features of rest tremor, rigid-
This is an open access article under the CC BY-N
ity, or postural instability.1–5 Conventional clinical diagnosis de-

pends on defined clinical criteria relying on human expert evalu-

ation, which may be difficult to access and delays identification

and treatment of PD.4,6–9 Similarly, clinical management of PD

and the great majority of clinical research on PD rely on face-

to-face in-clinic evaluations, which may not capture sufficient

or critical data. In-home evaluation, so far limited in large-scale

clinical use, has the potential to significantly enhance accessi-

bility to and reduce costs of clinical research via the currently
Patterns 1, 100042, June 12, 2020 ª 2020 The Author(s). 1
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widely available digital devices and generalizable algorithm

design.10

Inertial sensors, such as accelerometers and gyroscopes, were

originally introduced into smartphones to alert holders of sudden

device falls and for maintaining display images upright.11 These

sensors can provide useful instruments for detecting human mo-

tion and posture, and have been applied extensively in this

context.12,13 A hindrance in utilizing smartphones for at-home

study of PD is that the evaluation of PD movement usually needs

to be corrected for specific tasks. For instance, when measuring

the resting tremor, the clinician has to ensure that the patient’s

hands are relaxed on the legs, and when measuring postural

tremor, the patient’s arms must remain outstretched with fingers

apart for several seconds. Another major challenge for in-home

monitoring of PD is that movement recordings obtained by these

mobile devices can be problematically influenced by the sur-

rounding environments, i.e., the topographical orientation of the

road, local gravities, and the positions and orientations of these

deviceswhenplacedon thepatient’sbody.14Theseunrelated fac-

tors may create noise in the data used to extract PD-related path-

ological information from patients’ walking records. This is a

particular problem for multiple-parameter machine-learning

models such as deep learning,which carry the risk of overfitting.15

A recent Dialog for Reverse Engineering Assessments and

Methods (DREAM) PD Digital Biomarker (PDDB) Challenge

called for methods to accurately identify PD in the general pop-

ulation using smartphone accelerometer and gyroscope re-

cords. Data science challenges such as DREAM provide partic-

ipants with a training dataset and a testing dataset for a one-shot

evaluation, helping to identify current state-of-the-art methods

for specific problems without overfitting. We describe the top-

scoring solution for this challenge, which performed significantly

better than the prior state-of-the-art methods, such as Deep

Learning by Convolutional Recurrent Attentive Neural Networks

(CRANNs), as well as traditional machine-learning methods

based on rigorously extracted features from Fourier transform

and discrete wavelet transform.16,17 The key to improved perfor-

mance was a generic methodology reflecting the physical prop-

erties of mobile device records. This method can be generalized

to any accelerometer-based and/or gyroscope-based disease

identification approach.

RESULTS

Source and Descriptions of Smartphone-Collected
Accelerometer and Gyroscope Data
Our study was based on the latest released DREAM dataset

(mPower) contributed by Sage Bionetworks, whereby a total of

2,804 subjects (656 self-reported patients and 2,148 healthy

controls) participated in a simple walking evaluation and agreed

to share their data with the broader research community.17,18 All

participants contributed 34,632 walking records to the dataset.

In the DREAM dataset (mPower), each participating individual

may takemultiple tests, termed ‘‘records.’’ The walking test con-

sisted of two 30-step walking phases, here denoted as

‘‘Outbound’’ and ‘‘Return,’’ whereby the participant was asked

to walk along a straight line. The two walking phases were inter-

rupted by 30 s of quiet standing, here denoted as ‘‘Rest.’’ A

representative walking record (outbound and return) will have
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an irregular cyclic pattern, and a representative quiet standing

record (rest) will be relatively stable, with initial and ending noise

periods (Figure 1A). In PD, tremors may occur during the quiet

standing period, and oscillations may be observed.

Two sets of independent data existed in the phone records to

provide information on the participants’ body movement as they

were captured by different inertial sensors: acceleration,

captured by an accelerometer (represented as a spring-attached

rigid body), and rotationRate, captured by a gyroscope (repre-

sented as a spinning well with a fixed center) (Figure 1A). Both

types of the signals could be represented as a 3Xn matrix, where

n is the total sampled length of the record between �2,000 and

�3,000 points, as the sampling frame is 100 per second for a to-

tal of 20–30 s. Our machine-learning PD diagnostic model would

exploit PD pathological information from the two aforementioned

independent accelerometer and gyroscope records.

Performance of Deep Convolutional Neural Network
Model in Independent Cross-Validation and the DREAM
PDDB Challenge
Prior studies of gait and gait abnormalities in neurodegenerative

disorders used traditional signal-extraction techniques such as

Fourier transform or wavelet analysis to identify extracted fea-

tures, for example, walking pace, from accelerometer or gyro-

scope data.19–25 Classifiers such as Support Vector Machine

or K-Nearest Neighbors were applied to extracted features to

predict disease associations.26–30 These methodologies share

the common limitation of feature extraction performed indepen-

dently from the machine-learning step so that there is inevitably

redundant information in the extracted features, diluting model

power, while useful information is missed. Therefore, we imple-

mented a deep convolutional neural network (DCNN), which

can directly process the continuous accelerometer and gyro-

scope records (Figures 1B–1D).

Our model achieved an average area under the receiver-oper-

ating characteristic curve (AUROC) of 0.8558 (95% confidence

interval [CI] 0.8529, 0.8588) in the 5-fold cross-validation using

the same mPower dataset. The cross-validation results showed

the consistently robust performance of our model. Our deep-

learning prediction model also took first place in the DREAM

PD prediction competition, in comparison with other teams

that employed the aforementioned traditional machine-learning

methods.31

Data Augmentation Significantly Improves Model
Performance and Stability
Because convolutional neural networks (CNNs) have many pa-

rameters, deep-learning models are prone to overfitting. To

combat overfitting, diverse data-augmentation techniques

have been developed in the image and audio fields.32 In the

past, three-dimensional (3D) information of movement in space

has only been analyzed via intuitive approaches. For example,

summed square, mean, or variance has been utilized to remove

the differences in reference frames.33,34 To address the specific

properties of an object moving in 3D space, we implemented

data normalization and augmentation methods in the deep-

learning framework (Figure 1D). We first quantile normalized

the original 3D waveform signals by each axis. After normaliza-

tion, we applied three types of data-augmentation strategy to



Figure 1. Walking Test Data Provided in the

DREAM PDDB Challenge and Our Deep-

Learning Model

(A) Example of the walking activities carried out by

subjects and accelerometer records during the

three activities. During the walking test, the velocity

of participants is recorded by the two sets of sen-

sors implemented in their phones—gyroscope and

accelerometer—represented by a set of free-spin-

ning wells and a rigid body attached to a spring.

(B) The architecture of the convolutional neural

network in this study. The numbers at the top of the

boxes indicate the size of the layers and the

numbers of the filters.

(C) The model ensemble method in this study. We

trained five models by reseeding the training and

validation sets, for outbound walking, rest (quiet

standing), and return walking, respectively. For our

final prediction, we assemble the predictions of the

15models of outbound/rest/return by random forest

and create a final prediction for each individual.

(D) Data-augmentation strategies applied in this

study. The original record is first normalized by

quantile normalization and then applied to three

data-augmentation operations, namely magnitude

perturbation, temporal perturbation, and random

rotation.
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the accelerometer and gyroscope recordings: timewise scaling,

to mimic that the records are taken at a faster or a slower speed;

magnitude scaling, tomimic themagnitude of the acceleration or

rotation-rate disparities among records; and random rotation, to

correct the disparity of phone orientation when a patient is taking

the walking test (Figure 1D).

Without data augmentation the model quickly overfitted, as

seen in the increase and bumpiness in the test error along a

continuous drop in training error (Figure 2A). We found a signifi-

cant improvement in performance when using augmentation,

from 0.8261 (95% CI 0.8231, 0.8292) to 0.8496 (95% CI

0.8465, 0.8496) (p < 1 3 10�6) (Figures 2C, 2D, and S1C). On

the other hand, both training and testing errors steadily dropped

and were stabilized at a similar speed when we applied augmen-

tations, indicating alleviation of overfitting (Figures 2B and S1B).

We compared model performance with and without axis-wise

normalization, and found substantial improvement by using

normalization after augmentation was applied: 0.8558 (95% CI

0.8531, 0.8588) versus 0.8496 (95% CI 0.8465, 0.8496) (p <

1 3 10�6) (Figures 2C and S1E). This indicates that disparities

in holding position leading to shifts in the axes constitute a con-

founding factor that is appropriately addressed by per-axis

normalization.

We also compared the performance of models using either

accelerometer or gyroscope data as input, whereby perfor-

mance was indistinguishable (Figures 3A and 3D). Furthermore,

whenwe added accelerometer data to gyroscope data through a
variety of network structures with six input

channels, we did not observe an improve-

ment in performance compared with either

acceleration or rotationRate alone (Fig-

ure S2). We found that using summed
squared values at each time point resulted in a substantial

drop in performance (Figures 3B and 3E) (AUROC = 0.7971,

95% CI 0.7938, 0.8006) compared with using 3D coordinates

with augmentation techniques discussed above (AUROC =

0.8558, 95% CI 0.8529,0.8588 (p < 1 3 10�6), likely due to the

loss of information. We also found that taking the maximal pre-

diction of each individual performed better than taking the

mean prediction (Figures 3C and 3F), 0.8558 (95% CI 0.8531,

0.8588) versus 0.8294 (95% CI 0.8264,0.8325) (p < 1 3 10�6).

This may imply that the symptoms of PD vary temporally in indi-

viduals and that the most severe records are more representa-

tive of the disease phenotype. Standard DCNN models, such

as VGG-16 and its alternatives, were also tested in our experi-

ments to search for the optimal deep-learning model (Figures

S3–S5).35

Quiet Standing Records Predict PD More Accurately
ThanOutbound/Return andWere PaidMost Attention by
DCNN Models
We compared the performance of the model using outbound

walking, quiet standing, and return walking records as model in-

puts. Quiet standing (Rest) records performed substantially bet-

ter than outbound and return walking records: 0.8548 (95% CI

0.8517, 0.8578) versus 0.7889 (95% CI 0.7802, 0.7971) and

0.7705 (95% HCI 0.7623, 0.7795) (Figures 4A–4C). Including

outbound and return walking records did not improve the perfor-

mance of the model (Figure S6).
Patterns 1, 100042, June 12, 2020 3



Figure 2. Normalization and Data Augmentation Improves the Performance and Stability of the Model

(A and B) The dynamics of training and testing loss during 100 epochs of training process for models applying no normalization and data augmentation (using raw

signal) and both normalization and augmentation. Models that achieved the lowest test loss were used as final models to avoid underfitting or overfitting to the

training set. The lowest test loss achieved during training is denoted andmarked by red crosses. (A) Loss during training without augmentation and normalization.

(B) Loss during training with both normalization and augmentation.

(C) Comparison of the performance of the model without both normalization and augmentation (original), with only normalization, with only augmentation, and

with both operations.

(D). Pairwise AUROC comparison of the performance by models using original records and with both augmentation and normalization from 1,000,000 boot-

strapping operations. The red dashed line denotes a baseline where the performances (AUROCs) of two operations are equal to each other.
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To examine which part of the records supports PD predictions

by the deep-learning model, we carried out a saliency map anal-

ysis.36 A saliencymap is a visualizedmap signifying the first layer

gradient of the neural network, where a higher value indicates the

stronger signal in the original record that is captured by the CNN

model.37 Saliency maps from both PD subjects and healthy con-

trols revealed that our model extracted strongest PD prediction

signals from quiet standing records and also from apparent quiet

standing interruptions in both outbound and return walking re-

cords (Figures 4D and S7–S12). During quiet standing, all move-

ment was expected to be involuntary, and the model was robust

for detecting involuntary movements, such as tremors, as indi-

cated by a waveform of low magnitude and high frequency (Fig-

ure 4D), a typical PD feature.38–41 This provided an insight into

the mechanism for the results above that quiet standing (Rest)

records gavemore accurate predictions than the other two types

of movement records.
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Meanwhile, our model also extracted relatively higher signals

from the walking records with higher frequency and more

disturbed waveforms, an obviously more perturbed walking

pattern comparedwith healthy controls, as shown on the saliency

maps of Outbound and Return records (Figures 4D and S7–12).

Rather than the clear, synchronized waveform of the walking re-

cords of the healthy controls, thewaveformof thewalking records

ofPDpatients ismorecurvy anddisturbed, suggesting that thePD

patients experienced struggles duringwalking and that their steps

were unsteady. Moreover, the wavelength, or the distance be-

tween two peaks, of PD patients’ walking records was much

smaller than that of healthy controls, suggesting they were taking

smaller steps and shorter strides, which was also a typical PD

feature.3 The above visualization of the features extracted by the

DCNN model suggests that our deep-learning model developed

its own understanding of PD walking pathology by recognizing

especially resting tremor and other typical PD gait characteristics.



Figure 3. Comparison of the Performance of

Models Using Records from Different De-

vices, Processing Methods, and Pulling

Methods

(A–C) Comparison of AUROCs between models

using: (A) either accelerometer and gyroscope data;

(B) the sum of the squared values of x, y, z axes and

3D data as input; (C) different pulling methods: on

record level (by record), on individual level using

average prediction across records of each individ-

ual (by mean), and on individual level using

maximum prediction across all records of each in-

dividual (by max) in 5-fold cross-validations.

(D–F) Pairwise comparison between AUROCs of

models mentioned in (A) to (C) in bootstrapping. No

significant difference between accelerometer and

gyroscope input data was observed, while more

consistent improvement was observed by 3D input

than summed square and by maximal prediction at

the individual level than prediction at record level or

the mean prediction at the individual level (p <

1 3 10�6).
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Model Performance and Predictions in Groups of
Different Demographic Status
The mPower dataset also provided self-reported demographic

information, year of the first PD diagnosis, and Unified Parkin-

son’s Disease Rating Scale (UPDRS) Part II score.18 We

analyzed the model performance in different demographic sub-

groups of themPower dataset (Figure 5).We found better perfor-

mance of our model in female than in male subjects (Figure 5C).

One potential reason for this is that women on average tookmore

tests thanmale participants (19.08 versus 10.47 records per per-

son). When participants were stratified by age, model perfor-

mance decreased steadily with aging (Figure 5D).

We also explored model predictions in other subgroups

defined by demographic variables, such as participant educa-

tion level, employment, andmarital status.We found correlations

between PD classification and higher educational levels as well

as marital status and retirement status (Figures 6C–6E). Similar

correlations were reported in some previous large-scale demo-

graphic screening studies, possibly reflecting the composition

of study cohorts.42,43 While no substantial correlation was

observed when we compared the PD classification with duration

of disease as assessed by self-reported years of diagnosis, a

strong correlation (Pearson’s r = 0.421) was observed with

self-reported UPDRS Part II score, which reflected the self-

examined motor function in daily activities (Figures 6A and 6B).

Training Set Size and Model Performance
To test the relationship between the size of the training set and

model performance, we tested a series of training set sizes

and evaluated model performance (Figure 7). Substantial

AUROC improvement was observed as training size increased

from zero to 500 individuals or 5,000 records, with model perfor-

mance plateauing subsequently. This result suggests that the

dataset is adequate for training a generalizable model and that

our model achieved excellent performance despite the variance

and limitations of the training set. Also, themodel predicts best in
individuals with 3–5 records. Typically, with more records the

predictions should be better. However, since only a few people

in our dataset had more than five records, a decreasing model

performance in individuals with more than five records is more

likely to be the result of sampling bias.

DISCUSSION

Wedescribe a significant step toward population-level screening

for PD. Our application of deep learning to smartphone-based

gait data from a simple walking task demonstrated superior ac-

curacy (AUROC = 0.86) when tested on an independent blind

test set compared with the second-placed method, which was

the prior state-of-the-art method for predicting PD using

CRANNs (AUROC = 0.7), as well as traditional machine-learning

and hand-crafted feature-extraction methods using wavelet or

Fourier transform.16,17 Our model also achieved an average

AUROC of 0.856 in 5-fold cross-validation on 34,632 walking re-

cords of 2,804 participating subjects, showing consistent gener-

alizability and potential for future large-scale application.

The big-data era has produced opportunities for remote at-

home monitoring of chronic diseases such as PD. The biggest

challenge, however, in utilizing these datasets is how to extract

the gold from the mud—in other words, how to extract the infor-

mation that really matters in terms of pathophysiology from

extensive noise in the coarse real-world data, and how to deal

with the unavoidable missing values.

We applied two major strategies to address spatiotemporal

bias within these real-world motion records to detect PD fea-

tures. First, we identified the major spatial bias that could

confound the walking record of each individual, such as the

placement of the phone when recording the motion of partici-

pants. A novel augmentation method was applied to simulate

the random reference frames of accelerometer records. Second,

we noticed that the records taken by the same individual may not

be equally reliable for PD identification, as they might be taken at
Patterns 1, 100042, June 12, 2020 5



Figure 4. Visualization of Deep Convolutional Neural Networks Unveils the Importance of Quiet Standing Behaviors during Walking when

Detecting Parkinson’s Disease

(A) The comparisons of AUROCs performed by models on walking records during outbound walking (outbound), quiet standing (rest), and return walking (return).

(B) Pairwise comparison between AUROCs achieved by outbound walking (Outbound) and quiet standing (Return) models.

(C) Pairwise comparison between AUROCs achieved by return walking (Return) and quiet standing (Rest) models. Quiet standing consistently performed better

than both outbound and return walking (p < 1 3 10�6).

(D) Saliency maps that the trained deep neural network extracted from walking records (after padding to 40 s) of both PD patients and healthy controls during

outbound walking (Outbound), quiet standing (Rest), and return walking (Return). Ground-truth labels and predictions by the machine-learning models are

denoted for each rotation-rate signal and corresponding saliencymap extracted from each signal. On the right, PD characteristics of perturbed steps and tremors

in comparison with controls are zoomed in to show them in detail.
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time points reflecting different physical and medical conditions.

This was solved by pulling out the most severe record of each in-

dividual, i.e., model ensemble from the maximum predictions.

When incorporating these strategies into an appropriately tuned

DCNN model, the performance is further boosted, as deep
6 Patterns 1, 100042, June 12, 2020
learning is suitable for handling complicated patterns in contin-

uous time-series input, demonstrated by our first place in the

DREAM PDDB Challenge.31

Our results suggest that resting tremor might be an important

indicator of parkinsonian movement for efficient PD screening in



Figure 5. Demographics of Data at the Indi-

vidual Level and Model Performances in

Different Demographic Groups

(A) Gender composition of participants in the mPo-

wer walking test.

(B) Age composition of participants in the mPower

walking test.

(C) Age andPDpatients/healthy controls distribution

in male and female participants and comparison of

AUROCs when our model is performed on either a

male or female cohort in 5-fold cross-validation.

(D) Age andPDpatients/healthy controls distribution

in our dataset and comparison of AUROCswhen our

model is performed on participants aged under 45

(<45), aged between 45 and 70 (45–70), and aged

over 70 (R70) years in 5-fold cross-validation.
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the general population, as quiet standing records and the

walking records with longer standing periods provided a more

accurate prediction of PD. The importance of resting tremor in

PD’s digital detection was also observed and pinpointed in pre-

vious studies.44–46 Our model also paid the most attention to

quiet standing periods as revealed by the model’s saliency

map (Figure 4). These results indicated that resting tremor was

the most salient feature automatically identified by our DCNN

model to distinguish between PD and non-PD participants.

Although not all PD patients experience tremor, it is recognized

as a common feature, present in 70%–100% PD patients,47,48

with resting tremor being a relatively specific feature.

We did not observe a significant correlation between our mod-

el’s prediction and disease duration (Figure 7A). We did, howev-

er, observe a strong correlation between our model’s prediction

and self-reported UPDRS Part II scores (Figure 6A). The poor

correlation between disease duration and PD prediction could

be because of variation in PD progression, effects of treatments,

or inaccurate recall of the year of first PD diagnosis. As tremor

often develops early in PD patients,49 differences between early

and advanced patients might not be very distinguishable by

our model.

Our model provided a promising instrument for enhancing

telemedicine and early screening of PD. Identification and ac-

curate diagnosis of PD is often delayed, likely causing

increased morbidity in the periods prior to diagnosis.50 Fang

et al., for example, showed that head injury occurs more

frequently in the year prior to diagnosis of PD.51 Therefore,

earlier identification and large-scale screening of PD might

significantly improve clinical outcomes in PD. Willis et al. also

showed that a substantial fraction of PD patients in the United

States do not obtain access to neurologist care.52 Accuracy of

initial clinician-based diagnosis may be as low as 75%–80%,

although it often improves markedly with serial patient fol-

low-up.53–55 An algorithm with satisfactory performance in

evaluating real-world in-home data might provide useful

screening of potential PD patients and earlier referral for expert

evaluations.
While our PD detection model achieved

satisfactory performance with crowd-

sourced data, it is important to note that

there are limitations of our algorithm
inherent to the nature of this dataset. It is possible that the mPo-

wer dataset used in this study overenrolled tremor-dominant PD

subjects. It is also likely that many of the PD subjects enrolled in

this dataset were treated, and since resting tremor does not al-

ways respond robustly to treatment,56 the relative sensitivity of

tremor detection (versus detection of bradykinesia) for identi-

fying PD might be enhanced. It is also plausible that smartphone

monitoring and our model captured PD-specific resting tremor

that cannot be observed by the naked eye. To carefully evaluate

the specificity and sensitivity of this approach, future evaluations

should include robust numbers of subjects with other forms of

tremor and other forms of parkinsonism. The mPower dataset

is imbalanced in terms of age, class, and gender (Figure 5). While

we rebalanced the training set by oversampling the scarcer PD

samples, mPower is under-represented in age-matched con-

trols. The non-PD participants are mainly younger than 45 years.

This might result in bias in our model given that our model per-

forms better in the younger group (under age 45) than in the older

group (over age 70) (Figure 5D). Furthermore, since the demo-

graphic information and clinical diagnosis of PD were self-re-

ported by the participants through a smartphone App rather

than by professional clinicians, we could inevitably have used

inaccurate information in building the PD detection model. The

lack of clinical data, such as UPDRS Part III subscores and total

scores, evaluations in ‘‘ON’’ and ‘‘OFF’’ conditions related to

levodopa intake, total levodopa equivalent daily doses, and

Hoehn and Yahr scores, are limitations of this dataset. Extension

of our model would benefit from involvement of neurologists and

PD specialists in the data-collecting steps.

While our PD identification model is based on simple walking

task data, smartphones can also collect multimodal data from

subjects, raising the prospect of multimodal evaluations to iden-

tify PD. The mPower program also collected other PD-relevant

performance data including voice, tapping, and memory.18 Inte-

gration of deep-learning models based on all data might

generate more reliable assessments of PD. The techniques

used in this study are generic, such as the augmentation by

altering the reference frame of the accelerometer or gyroscope
Patterns 1, 100042, June 12, 2020 7



Figure 6. PD Prediction in Groups Separated

by Demographic Status

(A) Composition of PD patients with different re-

ported UPDRS Part II scores and PD predictions

when applying our model to the patients. The red

line denotes Pearson’s correlation between the self-

reported UPDRS Part II score and PD predictions.

(B) Composition of PD patients with different dis-

ease duration (years since when they were first

diagnosed with PD) and PD predictions when

applying our model to the patients. The red line

denotes Pearson’s correlation between the disease

duration and PD predictions.

(C) Demographic groups divided by the highest

education level the participants ever achieved.

(D) Demographic groups divided by employment

status.

(E) Demographic groups divided by marital status.

Histograms in (C)–(E) denote the composition of PD

patients and healthy controls in the demographic

groups. Predictions of our model in each de-

mographic group are presented as violin plots and

box plots. The red dots denote the mean prediction

of our model for each demographic group.
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data, and can be used for monitoring other diseases with smart-

phones, watches, or professional medical devices57 in other

neurologic disorders.58–61 Sleep quality and breathing patterns

associated with sleep disorders are also frequently monitored

with accelerometers and gyroscopes.62–64 In-home monitoring

of PD through wearable sensors may also elevate the effective-

ness of therapy in real-world settings, as it can provide useful in-

formation for clinicians to evaluate medication regimens or

monitor deep brain stimulation parameters.65 Wider application

of these techniques may facilitate widespread use of smart-

phone gyroscope and accelerometer data in the digital

health area.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Yuanfang Guan is the lead contact of this study and can be reached through e-

mail: gyuanfan@umich.edu.

Materials Availability

The machine-learning models generated in this study can be obtained via our

public github repository: https://github.com/GuanLab/PDDB.

Data and Code Availability

All code associated with this paper can be freely accessed and downloaded

via https://github.com/GuanLab/PDDB/. The mPower dataset used in this pa-

per can be accessed via the mPower public research portal: https://www.

synapse.org/#!Synapse:syn4993293/wiki/247859.
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Collection of Mobile Phone Accelerometer

and Gyroscope Data from the Participants

Motion-related data collected from smartphones

consisted of the following six categories: time-

stamp, attitude, rotationRate, userAcceleration,

acceleration, and gravity. The latter five categories

were sampled every 0.01 s (100 frames/s).

Following the mPower App protocol, participants

signal the test start on their smartphone, pocket

the phone, and perform the task, then take their

phone out and stop the test. Each participant is

able to make multiple records numbering from 1 to
over 500, and at different time points, such as when they are feeling at their

best (just after they have taken the medication) or at their worst (immediately

before the medication) and other times. Demographic and clinical information

were self-reported through the App.

The aforementioned six categories of data provide two independent sources

of information. The first source of information is acceleration, taken from the

accelerometer, which describes the change of speed of a mass point. This

change is represented by projections along three orthogonal x, y, z axes in

3D space. userAcceleration is equal to the acceleration that the user imparts

to the device plus local gravity.

The second source of information is the rotationRate taken from the gyro-

scopes, which describes the speed of the rotation around the reference frame:

pitch for x, roll for y, and yaw for z.66 For rotationRate, the mobile phone is

considered as a rigid body having 6� of freedom in motion (acceleration + rota-

tion). Even if the center of the phone is still, or moving at a constant direction

and speed, the rotationRate is not necessarily zero, because the phone can be

rotated at its center point. The reference frame of the rotation is the phone.

Both attitude and rotationRate recorded in the cell phones contain the same

information about the rotation, but are expressed in different mathematical

terms. rotationRate is expressed directly by x, y, z, which stand for pitch,

roll, and yaw, respectively, while attitude is expressed as a unit vector (x0, y0,
z0) and an angle (w) around this vector between 0� and 360�, according to Eul-

er’s rotation theorem.

Building Augmentation Methods for Accelerometer and Gyroscope

Records

A data-augmentation strategy is vital for overfitting prone machine-learning al-

gorithms. Before being fed into the DCNN, we transformed the raw data by

quantile normalization and three data-augmentation operations (Figure 1D

mailto:gyuanfan@umich.edu
https://github.com/GuanLab/PDDB
https://github.com/GuanLab/PDDB/
https://www.synapse.org/#!Synapse:syn4993293/wiki/247859
https://www.synapse.org/#!Synapse:syn4993293/wiki/247859


Figure 7. Relationship between Model Per-

formance and Training Size/Records of

Each Individual

(A) The AUROCs achieved by our models as the

training size increases from 0 to 1,500 individuals.

The model reached satisfactory performance at

around 500 individuals.

(B) The AUROCs achieved by our models as the

training size increases from 0 to 19,000 records. The

red line in (A) and (B) shows the lowest fit between

AUROC and individuals/records in the training set.

(C) The distribution of records per individual in our

dataset (both PD patients and healthy controls) and

comparison of AUROCs when our model performs

on groups of individuals with %2, 3–5, 5–10,

and >10 total walking records (a walking record here

denotes a full round of outbound, quiet standing,

and return activities). The maximum of the x axis

was cut to 100 for better display.
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and Supplemental Information).We carried two loss-included data-augmenta-

tion strategies, by timewise rescaling between 0.8- and 1.2-fold to mimic that

the records are taken at a faster or a slower speed, and magnitude rescaling

between 0.8- and 1.2-fold to mimic the magnitude of the acceleration or rota-

tion-rate disparities among records.

Also, the placement of the phone on the subject’s body during movement

can have a fundamental impact on the measurement by inertial sensors. For

example, for a phone lying flat on a table, its z-axis acceleration is around

9.8 m2/s while the acceleration along the x and y axes is zero. If we keep the

phone still but hold it vertically, its y axis acceleration becomes 9.8 m2/s while

the acceleration along the other two axes is zero. Normalization removes such

disparities. Thus, we used a transformation of the reference frame to create

loss-free augmentations of the same record (see Supplemental Information).

After a record is transformed by augmentation, it is fed into the deep learning

network (Figures 1B and 1C). A single mobile record can be augmented to

generate multiple records randomly on-the-fly. This means every epoch of

the same records in the training set can be randomly transformed into a new

record. For example, if the training process stopped early, say, converged at

the 43rd epoch, 43 new records would be generated from the same training

record.

Applying DCNN to Continuous Walking Records

Deep learning is now the preferred algorithm for datasets with spatial (e.g., im-

age) and time (e.g., sound) continuity.67 Feature extraction in deep learning is

obtained by convolution operations that extract local information and progres-

sively summarize local information into aglobal prediction (Figure 1B). Because

networkparameters are traineddirectly to fit prediction targets, deep learning is

amoredirect prediction approach comparedwith traditional feature extraction,

which is followed by classification or regression. In many of the machine-

learning analyses of data with spatial and time continuity, performance of the

deep-learning models reaches or surpasses human performance (i.e., human

visual interpretation, hand labeling, or diagnoses by clinicians).68,69

Convolutional neural networks (CNNs) learn information derived from time-

and space-continuous data and have been widely used to address various
biomedical problems.70,71 Mobile accelerometer

and gyroscope records exhibit time and space

continuity, and deep CNNs are a natural route to

build models for such data. We constructed a

one-dimensional CNN using Theano and Lasagne

(v.1.0) Python libraries, where the input channels

were the x, y, z values of acceleration or rotation

rates. The DCNN model consists of nine building

blocks, each consisting of a maximum pooling

layer, convolution layer, and batch normalization

layer (Figure 1B). The features extracted by convo-
lution layers then are put into a dense layer for finalized output of PD

prediction.

On each occasion when a record was fed into the CNN, the three augmen-

tations mentioned in the previous section were executed. This allowed the

network to assess more different examples. Models for quiet standing and

walking periods of records were trained independently.

Assembling the Multiple Models’ and Records’ Predictions of the

Individuals

For each individual, we took the maximal value across all outbound walking,

quiet standing, and return walking records, respectively. The outputs of these

three types of models were stacked together in a random forest learner for the

final prediction (Figure 1C). For each record, which contained a section of

walking and a section of quiet standing, we calculated the mean values of

the five models for walking and quiet standing, respectively. According to

the mPower App, participants were instructed to carry out the walking task

including two sessions of walking (Outbound and Return) interrupted by one

session of quiet standing (Rest). Some participants might stop after the first

walking session, leading to missing quiet standing and return walking data in

a record. If quiet standing data were missing, we first searched for other quiet

standing records from the same individual and used the mean prediction of

those records to replace the missing data. If such a replacement was not

found, we replaced its predicted score of its outbound walking data if avail-

able. If an individual had more than one record, we took the maximum or the

average value of all records for outbound/return walking and quiet standing

separately. The final prediction score was combined by a random forest

learner from prediction scores of the walking and quiet standing records of

the individual.

Visualization of Features Extracted by DCNN Models via

Saliency Maps

To better interpret the information extracted by our PD prediction deep-

learning model, we drew saliency maps of the DCNN model corresponding

to the walking records of patients and healthy individuals by computing the
Patterns 1, 100042, June 12, 2020 9
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gradient of the last layer corresponding to the input layer. Both negative and

positive saliency were computed and visualized (see Supplemental Informa-

tion). The saliencymaps show significantly stronger signals during quiet stand-

ing periods, as the example in Figure 4D shows. More examples can be found

in Figures S7–S12.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100042.
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Supplementary Information 

1. Supplemental Figures: 

Figure S1. Training with only normalization and augmentation and comparison of model 
performance with normalization and augmentation than original.  

 
(A) and (B) show the dynamics of training and testing loss during 100 epochs of training process for models 
applying only normalization and data augmentation. Models achieved the lowest test loss were obtained to 
avoid underfitting and overfitting to the training set. Lowest test loss achieved were denoted and marked 
by red crosses. (C) and (D) show the pairwise comparison of AUROCs between models using raw signal 
(neither normalization and augmentation) and with only normalization/only augmentation during 
bootstrapping. (E) shows the bootstrapped AUROCs between applying only augmentation and applying 
both augmentation and normalization. (A). Training and test loss within 100 epochs during training of 
models with only normalization. (B). Training and test loss within 100 epochs during training of models with 
only augmentation. (C). Pairwise comparison between models using raw (original) and normalized walking 
records (+normalization). (D). Pairwise comparison between models using raw (original) and augmented 
walking records (+augmentation). (E). Pairwise comparison between models using augmented walking 
records (+augmentation) and using both normalized and augmented records (+both). 



 

 

Figure S2. Comparison of training with 6 channels (with both gyroscope and accelerometer) and 
either gyroscope/accelerometer alone. 

 

(A). Comparisons of AUROCs using both gyroscope and accelerometer signals as input (6-channel) and 
using either signal alone. (B). Paired AUROC value comparison between using 6-channel and gyroscope 
signal as input (mean[SD], 0.8499[0.0017] vs. 0.8558[0.0015]). (C). Paired AUROC value comparison 
between using 6-channel and accelerometer signals as input(mean[SD], 0.8499[0.0017] vs. 
0.8552[0.0015]). No significant improvement was observed when using 6-channel input. (D). Demonstration 
of model with 6 input channels of accelerometer and gyroscope signals. (E). Demonstration of model with 
both accelerometer and gyroscope as input and concatenate at the last later. This model performs equally 
to using 6-channel input. 

 

 

 

  



 

 

Figure S3. Comparison of performance of different vgg-like models.  

 

(A). Comparison of AUROCs of our final model and two vgg models we tested in this study. (B). Paired 
AUROC value comparison between our final model and vgg 16 model.  No substantial difference was 
observed between two models (mean[SD], 0.8567[0.0016] vs. 0.8558[0.0015], p-value =0.81001), while 
our final model requires less training time as it contains fewer layers. (C). Paired AUROCs value comparison 
between our final model and vgg-like model. Our final model consistently performed better than the vgg-
like model (mean[SD], 0.8558[0.0015] vs. 0.8268[0.0017], p-value <1e-6). (D). Demonstration of VGG 
model (with three dense layers). (E). Demonstration of VGG-like model (with two dense layers)  

 
  



 

 

Figure S4. Comparison of performance of maximum and average pooling.  

 
(A). Comparisons of AUROCs using max pooling layers (our final model) and average pooling layers in 
CNN model. (B). Paired AUROC value comparison between using max pooling and average pooling layers. 
Max pooling consistently performed better than average pooling (mean[SD], 0.8558[0.0015] vs. 
0.8244[0.0016], p-value <1e-6). (C). Demonstration of model that replaces max pooling with mean pooling 
layers. 

 

 

 

 



 

 

Figure S5. Comparison of performance of adding/no dropout.   

 

(A). Comparisons of AUROCs adding dropout layers and no dropout layers. (B). Paired AUROC value 
comparison between using no dropout and after adding dropout layers. Adding dropout doesn’t show 
significant improvement in model performance (mean[SD], 0.8558[0.0015] vs. 0.7120[0.0019], p-value <1e-
6). (C). Demonstration of model that adds dropout layers (rate = 0.8). 

  



 

 

Figure S6. Comparison of performance of models using quiet standing records alone and all 
records.  

 

(A). Comparisons of AUROCs of models using only quiet standing (Rest) records and using all records 
(outbound walking, quiet standing and return walking) in 5-fold cross validation. (B). Paired AUROC value 
comparison between using quiet standing (Rest) records and using all records (outbound walking, quiet 
standing and return walking). No substantial difference was between using only quiet standing records and 
all records (mean[SD], 0.8558[0.0015] vs. 0.8548[0.0016], p-value = 0.24021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S7. Ten examples of original records and saliency maps of PD patients during the 
Outbound session. 

 



 

 

Figure S8. Ten examples of original records and saliency maps of healthy individuals during the 
Outbound session.  

 



 

 

Figure S9. Ten examples of original records and saliency maps of PD patients during the Rest 
session. 

 



 

 

Figure S10. Ten examples of original records and saliency maps of healthy individuals during the 
Rest session. 

 



 

 

Figure S11. Ten examples of original records and saliency maps of PD patients during the Return 
session. 

 



 

 

Figure S12. Ten examples of original records and saliency maps of healthy individuals during the 
Return session. 

  



 

 

2. Supplemental Experimental Procedures 

2.1 Cross-validation by Separating Individuals 
Since walking and quiet standing records of the same person often show similar patterns, randomly 

dividing the data at the record level into training and testing sets may lead to overfitting and over-estimation 
of model performance. Thus, in the 5-fold cross-validation, we divided the training and testing set by 
individuals. Because the training and testing are done at the record level, we further mapped each record 
to the individual. The evaluation of the performance was the Area Under the Receiver Operating curve 
(AUROC) for classifying PD patients. 

2.2 Nested Training for Calling Back Optimal Parameters 

To simplify the training process, we zero-padded all matrices to 3✕4000. For each cross-validation, the 

training samples from walking and quiet standing were randomly divided into the training set (50%) and 
validation set (50%), respectively. The best model generated through the epochs was called back by the 
validation set. This process was repeated by reseeding the training and validation set for five times 
separately for walking and quiet standing, generating five models for each. The training records were then 
resampled to balance the positives (with PD) and negatives (without PD) by bootstrap resampling. We 
trained the models for 50 epochs, equivalent to reading through approximately 750,000 samples during 
training, using Adam optimization and an initial learning rate of 0.0005. Relu activation was used in all 
intermediate convolution layers, and sigmoid is used for the last layer.  

2.3 Quantile normalization of walking records 

Before being fed into the feedforward neural network, the walking records were normalized by axis-
wise quantile. For the original padded record with axis x, y and z, the original record R is: 

 

The normalized record R’ will be generated by quantile, which is adjusted to the average and then 
divided by the standard deviation: 

 

2.4 Loss-included Data Augmentation by time-series and magnitude rescaling 

To simulate the perturbation on speed or range of movement by different individuals in a real-world 
situation, we randomly rescaled the original record by 0.8-1.2 by time series fold using Python OpenCV 1, 
and then padded/cropped to the original size. The time series rescaling might lose part of the information 
due to cropping. 



 

 

2.5 Loss-free Data Augmentation by Random Rotation 

To simulate the records in different reference frames, we rotated the original signal reference frames 
by random angles based on Euler’s theorem. Each time, we seeded three random numbers i, j, and k 
between 0 to 1, and then defining a normalized axis = (i’,j’,k’) by: 

 

 

 

Next, we seeded a randomized angle θ between 0 to 2π: 

 

Then, we generated the rotation matrix: 

 

The above rotation matrix represented the difference between a new reference frame and the reference 
frame of the phone, which allowed us to sample the reference frames at all possible orientations. By 

multiplying the rotation matrix to the original record R of 3✕4000, we could produce a new record of the 

same size but under a different reference frame: 

 

2.6 Calculation of AUROC and Significance Tests for Comparing Models 

The Area Under the Receiver Operating Characteristic curve (AUROC) is a measurement of the 
accuracy of binary classifiers 2. It is calculated by plotting the true positive rate (TPR) against the false 
positive rate (FPR) at various thresholds and calculating the accumulated area under the curve. We used 
sklearn.metrics module in Python to calculate the AUROCs of the five-fold cross validation and the 
bootstrapping significance tests. 

The five-fold cross-validation also allowed us to carry out bootstrapping to estimate the p-values of 
differences between models. The bootstrapping was carried out by resampling the predictions on the 
subjects from the summation of the five test sets in the five-fold validation process, which was also the 
complete dataset used in this study. We carried out 1,000,000 bootstrapping for pairwise significance tests 
in this study to choose the optimal models. The p-value and 95% confidence interval were calculated based 
on the empirical probability during the 1,000,000 bootstrapping operations. 

2.7 Visualization of Saliency Maps 

To better interpret the deep learning neural network’s understanding of PD movement pathology, we 
pulled out the saliency maps to show the attention of the neural network. The saliency was computed from 
the gradient of the sum of the outermost layer corresponding to the input. The gradients were computed by 



 

 

the threano.grad function 3. Then we visualized the saliency map as well as the original input using ggplot2 
in R (Figure 4). More examples of the saliency maps we extracted from PD patients and healthy controls 
were shown in Figure S7-12. 
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