

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

A Systematic Review of the Global Epidemiology of Viral-Induced Acute Liver Failure

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037473
Article Type:	Original research
Date Submitted by the Author:	07-Feb-2020
Complete List of Authors:	Patterson, Jenna; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Hussey, Hannah; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health & Family Medicine Silal, Sheetal; University of Cape Town, Department of Statistical Sciences; University of Oxford, Nuffield Department of Medicine Goddard, Liz; University of Cape Town, Department of Paediatrics, Red Cross War Memorial Children's Hospital Setshedi, Mashiko; University of Cape Town, Department of Medicine, Division of Gastroenterology, Groote Schuur Hospital Spearman, Wendy ; University of Cape Town, Department of Medicine, Division of Hepatology, Groote Schuur Hospital Hussey, Gregory; University of Cape Town Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Kagina, Benjamin; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Muloiwa, Rudzani; University of Cape Town, 5Department of Pediatrics & Child Health, Red Cross War Memorial Children's Hospital; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Muloiwa, Rudzani; University of Cape Town, 5Department of Pediatrics & Child Health, Red Cross War Memorial Children's Hospital; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine
Keywords:	Epidemiology < INFECTIOUS DISEASES, Hepatology < INTERNAL MEDICINE, VIROLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

A Systematic Review of the Global Epidemiology of Viral-Induced Acute Liver Failure

Jenna Patterson^{1,2}, Hannah Sophia Hussey^{1,2}, Sheetal Silal^{3,4}, Liz Goddard⁵, Mashiko Setshedi⁶, C.

Wendy Spearman⁷, Gregory D. Hussey^{1,8} Benjamin M. Kagina^{1,2} and Rudzani Muloiwa^{1,5}

¹Vaccines for Africa Initiative, University of Cape Town, South Africa

²School of Public Health & Family Medicine, University of Cape Town, South Africa

³Modelling and Simulation Hub, Africa, Department of Statistical Sciences, Faculty of Science, University of Cape Town, South Africa

⁴Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom

⁵Department of Pediatrics & Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town ⁶Department of Medicine, Division of Gastroenterology, Groote Schuur Hospital, University of Cape Town, South Africa

⁷Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, South Africa

⁸Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa

⁵Department of Pediatrics & Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town

Corresponding author: Jenna Patterson

Corresponding author's ORCID iD: 0000-0002-3927-037X

Corresponding author's email address: pttjen005@myuct.ac.za

Corresponding author's postal address: Vaccines for Africa Initiative, Room N2.09A, Werner Beit North, Health Sciences Campus, Anzio Road, Observatory, 7925

H.S. Hussey email address: hshussey@gmail.com

S. Silal email address: sheetal.silal@uct.ac.za

E. Goddard email address: liz.goddard@uct.ac.za

M. Setshedi email address: mashiko.setshedi@uct.ac.za

W. Spearman email address: wendy.spearman@uct.ac.za

G.D. Hussey email address: gregory.hussey@uct.ac.za

B.M. Kagina email address: benjamin.kagina@uct.ac.za

R. Muloiwa email address: rudzani.muloiwa@uct.ac.za

3	
4	
ر د	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
39 40	
40 41	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

REQUIRED STATEMENTS

Funding statement

This project was not supported by any funding source.

Conflict of interest disclosure

All authors have no conflicts of interest to declare.

Ethics approval statement

This study did not require ethics approval as it uses publicly available, published data.

Patient consent statement

This study did not require consent from patients as it uses no individual data.

Permission to reproduce material from other sources

This study has cited all references which are published and publicly available.

ABBREVIATIONS

- Acute liver failure (ALF)
- Hepatitis A virus (HAV)
- Hepatitis B virus (HBV)
- Hepatitis C virus (HCV)
- Hepatitis D virus (HDV)
- Hepatitis E virus (HEV)
- Epstein Barr virus (EBV)
- Herpes simplex virus-1 (HSV1)
- Herpes simplex virus-2 (HSV2)
- Varicella-zoster virus (VZV)
- Human parainfluenza viruses (HPIVs)
- Yellow fever virus (YFV)
- Human herpesvirus 6 (HHV-6)
- Cytomegalovirus (CMV)
- Coxsackievirus (CA16)
- Adenovirus (HAdVs)
- Medical Subject Headings (MESH)
- Low- and middle- income countries (LMICs)

2 3	1	<u>ABSTRACT</u>		
4 5	2	Objectives: The etiology and burden of viral-induced acute liver failure (ALF) remains unclear, globally		
6 7	3	(1). It is important to understand the epidemiology of viral-induced ALF to plan for clinical case		
8	4	management and case prevention.		
9 10	5	Participants: This systematic review was conducted to synthesize data on the relative contribution of		
11 12	6	different viruses to the etiology of viral-induced ALF in attempt to compile evidence that is currently		
13 14	7	missing in the field. Five electronic databases were searched for relevant literature from 2009 to 2019.		
15	8	Twenty-five eligible studies were included in the results of this review.		
16 17	9	Results: This systematic review estimated the burden of acute liver failure following infection with HBV,		
18 19	10	HAV, HBV, HCV, HEV, HSV/HHV, CMV, EBV, and parvo-virus B19. Data were largely missing for ALF		
20	11	following infection with VZV, HPIVs, YFV, CA16 and/or HAdVs. The prevalence of HAV-induced ALF was		
21 22	12	markedly lower in countries with routine HAV immunization vs no routine HAV immunization. Hepatitis		
23 24	13	E virus was the most common etiological cause of viral-induced ALF reported in this review. In addition,		
25	14	viral-induced ALF had poor outcomes as indicated by high fatality rates, which appear to increase with		
20 27	15	poor economic status of the studied countries.		
28 29	16	Conclusions: Immunization against HAV and HBV should be prioritized in LMICs to prevent high viral-		
30 31	17	induced ALF mortality rates, especially in settings where resources for managing acute liver failure are		
32	18	lacking. The expanded use of HEV immunization should be explored as HEV was the most common cause		
33 34	19	of ALF.		
35 36	Registration: PROSPERO registration number CRD42017079730			
37		Strengths and limitations		
38 39		• Findings are limited by lack of data for some of the viral etiologies of ALF including for VZV, HPIVs,		
40 41		YFV, CA16 and/or HAdVs, which may have led to an underestimation of the global burden of viral-		
42 42		induced ALF		
43 44		• The diversity of viruses attributable to ALF cases led to low statistical power in meta-analyses		
45 46		conducted.		
47 48		The included studies used varying methods of virus detection including serology and molecular		
49		tests which further added to the heterogeneity in the results of our review		
50 51		• Our findings show that HAV, HBV and HEV, viruses with effective vaccines, account for a large		
52 53		proportion of viral-induced ALF etiologies.		
54				
55 56				

 BMJ Open

3 ⊿		Our findings support that immunization against HAV, HBV should be prioritized, especially in
5		LMICs where resources for managing viral-induced ALF are glaringly lacking.
7 8 9	21 22 23	MANUSCRIPT
10	24	Background
11 12	25	Acute liver failure (ALF) refers to the development of encephalopathy and synthetic function impairment
13 14	26	following acute liver injury in an individual without pre-existing liver disease (2). The presence of
15 16	27	encephalopathy is not required to define ALF in paediatrics, but is an essential component of the
17	28	definition in adults (2). Possible causes of ALF include viral infections, drugs and toxins, pregnancy
18 19	29	related liver diseases, vascular causes and/or malignancies. Acute viral hepatitis has been identified as
20	30	the most common cause of ALF among all ages in Asia and Africa and one of the most common causes of
21	31	ALF in children in Asia and South America (1, 3). The incidence of viral-induced ALF has substantially
23 24	32	declined in Europe following the introduction of universal immunization against the hepatitis B virus
25 26	33	(HBV), with only 19% of all ALF cases now attributable to viral infection in the European population (4).
20	34	The introduction of routine immunization against the hepatitis A virus (HAV) in Argentina has reduced
28 29 30	35	the number of hepatitis A induced ALF cases by more than 25% (4).
31 32	36	Fatality rates associated with ALF vary between 60% and 80%, depending on the disease etiology as well
33	37	as a patient's access to care (5, 6). Liver transplantation plays a central role in the management of ALF
34 35	38	and remains the only definitive treatment for patients who fail to demonstrate spontaneous recovery
36 37	39	(7). A large proportion of patients with ALF in both high and low resource settings, however, are deemed
38	40	to have contraindications to transplantation or deteriorate beyond transplantation before a liver donor
39 40 41	41	is found (8-10).
42 43	42	The burden of viral-induced ALF around the world still remains unclear, with little to no data collected
44 45	43	regarding the disease incidence (1). Establishing the etiology of viral-induced ALF is important for early
45 46 47 48 49	44	initiation of treatment, determining the prognosis of the liver failure and identifying potential
	45	contraindications to liver transplantation. Most importantly, understanding the epidemiology of vaccine-
	46	preventable etiologies of ALF should be prioritised in under-resourced regions with limited access to
51	47	facilities for transplantation. This review aims to synthesize data on the relative contribution of different
52 53	48	viruses to the etiology of viral-induced ALF in attempt to compile evidence that is currently missing in
54 55	49	the field.

3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
75	
40	
4/	
48	
49	
50	
51	
52	
53	
51	
54	
22	
56	
57	
58	
50	

1 2

50 Bernal et al. 2010 completed a review of the burden of acute and fulminant liver failure based on

51 literature published between 1997 and 2009. The review became the bases for guidelines for clinical

52 practice (5). In this systematic review, we assess whether data have changed following the Bernal

53 publication, and whether there is evidence to warrant a review of clinical practice.

54 **Objectives**

- To estimate the prevalence of hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus
 (HCV), hepatitis D virus (HDV), hepatitis E virus (HEV), Epstein Barr virus (EBV), herpes simplex
 virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella-zoster virus (VZV), parvo-virus B19,
 human parainfluenza viruses (HPIVs), yellow fever virus (YFV), human herpesvirus 6 (HHV-6),
 cytomegalovirus (CMV), coxsackievirus (CA16) and/or adenovirus (HAdVs) among patients with
 ALF.
- To estimate the mortality rate for cases of ALF following infection with HAV, HBV, HCV, HDV,
 HEV, EBV, HSV1, HSV2, VZV, parvo-virus B19, HPIVs, YFV, HHV-6, CMV, CA16 and/or HAdVs
 - To estimate the prevalence and incidence of liver transplantation for cases of ALF following infection with HAV, HBV, HCV, HDV, HEV, EBV, HSV1, HSV2, VZV, parvo-virus B19, HPIVs, YFV, HHV-6, CMV, CA16 and/or HAdVs

67 <u>Methods</u>

63

64

65

66

72

79

60

This systematic review was registered with PROSPERO (registration number CRD42017079730) and the methods for its conduction have been published (11). The results of the review are reported using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines checklist (Appendix 1).

73 Study eligibility criteria

Published cross-sectional, surveillance and cohort studies reporting the outcomes of interest in patients
with ALF following infection with HAV, HBV, HCV, HDV, HEV, EBV, HSV1, HSV2, VZV, parvo-virus B19,
HPIVs, YFV, HHV-6, CMV, CA16 and/or HAdVs were eligible for inclusion in this study. Studies were
eligible for inclusion if they had clearly stated case definitions of viral-induced ALF and confirmed ALF
cases using both clinical and serological, molecular or culture diagnostic methods.

80 Search strategy

Page 7 of 28

1 2

BMJ Open

3 ⊿	81	A combination of the following search terms (including the use of Medical Subject Headings (MESH))
5	82	was used and adapted for each of the relevant electronic databases: epidemiology, prevalence,
6 7	83	incidence, burden, mortality, morbidity, fulminant hepatic failure, fulminant liver failure, acute hepatic
8 9	84	failure, acute liver failure, Hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV),
10	85	hepatitis D virus (HDV), hepatitis E virus (HEV), Epstein Barr virus (EBV), herpes simplex virus-1 (HSV1),
11 12	86	herpes simplex virus-2 (HSV2), varicella-zoster virus (VZV), parvo-virus B19, human parainfluenza viruses
13 14	87	(HPIVs), yellow fever virus (YFV), human herpesvirus 6 (HHV-6), cytomegalovirus (CMV), coxsackie virus
15	88	and adenovirus.
16 17	89	
18 19	90	The following electronic databases were searched for relevant literature published from 2009 to 2019:
20	91	EBSCOhost, PubMed, ScienceDirect, Scopus and Web of Science. The search was run on 9 April 2019 and
21 22	92	updated via PubMed on 30 September 2019 with no new eligible studies to include.
23 24	93	
25	94	Data extraction
26 27	95	Study characteristics and outcomes of interests were extracted from the included studies on a pre-
28 29	96	designed data extraction form by two independent reviewers (JP and HH). Prior to use by the two
30	97	reviewers, the reliability of the extraction form was assessed by piloting 10 randomly selected articles
32	98	that met the inclusion criteria. The study team resolved any disagreements in data extraction through
33 34	99	consensus in consultation with RM. In cases where studies were in German, HH provided translation. In
35	100	cases where studies were not available in English or German, google translate was used to translate the
30 37	101	article to English (12).
38 39	102	
40 41	103	Data synthesis and analysis
41	104	A random-effects model was fitted to the study data as it included data taken from a series of
43 44	105	independently performed studies in different populations. We assessed heterogeneity by calculating I ²
45 46	106	statistics (threshold $I^2 > 40\%$). The values of I^2 were categorized for heterogeneity as follows: "not
40 47	107	important" (0 to 40%), "moderate" (41 to 60%) and "considerable" (61 to 80%) and "substantial" (81 to
48 49	108	100%). Where "not important" or "moderate" heterogeneity existed between studies (I ² \leq 40%), pooled
50 51	109	outcome measures were reported with 95% confidence intervals for each respective outcome. Where
52	110	"considerable" or "substantial" heterogeneity exists between studies (I ² > 40%), forest plots and
53 54	111	prevalence ranges calculated using the random-effects model were used to narratively describe each
55 56	112	outcome.
57		4
58 59 60		Patterson, J et al. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Z		
3	113	Risk of bias assessment
5	114	Each included study was assessed for risk of bias and quality using the Hoy et al., 2012 tool for
6 7	115	observational studies (13, 14). Studies were judged as having 'low risk' if scored 8-10, 'moderate risk' if
8	116	scored 5-7 and 'high risk' if scored 0-5. All risk of bias judgements were made by both JP and HH. In case
9 10	117	of disagreement in risk of bias and quality assessment, a final decision was made through consensus in
11 12	118	consultation with RM.
13 14	119	
15	120	Results
16 17	121	Patient and public involvement
18 19	122	This review was developed as part of an ongoing project by the research team that aims to generate
20	123	evidence to facilitate evidence-based decision-making of introducing routine hepatitis A vaccination in
21 22	124	South Africa. The findings of this review contribute to the knowledge base that aims to enhance global
23 24	125	vaccination strategies against viral-associated ALF. As this is a systematic review, no patient involvement
25	126	was required; however, it is hoped that the findings of this review will help to highlight the burden that
26 27	127	ALF places on populations without routine vaccination.
28 29	128	
30	129	Included studies
31 32	130	The initial database searches yielded 6,952 records, from which 3,545 duplicates were removed. A
33 34	131	further 3,263 were excluded following the screening of titles and abstracts (Figure 1). The full text of the
35	132	remaining 144 records were screened by JP and HH, from which 25 studies were deemed to meet the
36 37	133	final inclusion criteria. Twenty-four (96%) of the included studies were cohort studies. As detailed in
38 39	134	Table 1, the included studies were published between 2009 and 2017. Included studies were conducted
40	135	globally, with 7 studies and 3 studies conducted in India and Pakistan, respectively. The populations
41	136	represented by the included studies spanned all age groups and included participants primarily from
43 44	137	hospital settings. As the data in this review was sourced from a variety of countries, age groups and
45	138	settings, the heterogeneity was considerable and/or substantial for all results. Thus, we narratively and
40 47	139	graphically reported estimates of average prevalence rates and the spreads of prevalence.
48 49	140	
50	141	Vaccine-preventable viral-induced ALF
51 52 53 54	142	We narratively report the prevalence of HAV- and HBV-induced ALF by country immunization status. The
	143	point prevalence of HAV-induced ALF in countries with no routine HAV immunization at the time of data
55 56	144	collection ranged from 2% to 81% with an average of 27% (95% CI 13, 43), while the prevalence in
57		5
58 59		Patterson, J et al.
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

Page 9 of 28

BMJ Open

1 2			
- 3 4	145	countries with routine HAV immunization at the time of data collection ranged from 1% to 2% with an	
4 5	146	average of 2% (95% CI 1, 3) (Figure 2). In Argentina, the prevalence of HAV-induced ALF prior to routine	е
6 7	147	immunization was approximately 50% (95% Cl 45, 55), compared to approximately 1% (95% Cl 0, 5) after	er
8 9	148	immunization was introduced. The point prevalence of HBV-induced ALF in countries without universal	i
10	149	HBV immunization at the time of data collection ranged from 16% to 27% with an average of 22% (95%	, 5
11 12	150	CI 16, 30) (Figure 3). The point prevalence of HBV-induced ALF in countries with universal HBV	
13 14	151	immunization at the time of data collection ranged from 0% to 83% with an average of 19% (95% CI = 7	',
15	152	36).	
16 17 18 19 20 21 22	153		
	154	ALF attributable to non-vaccine-preventable viral infections	
	155	The point prevalence of HCV-induced ALF ranged from 2% to 25% with an average of 9% (95% CI = 1, 22	1)
	156	(Supplementary Figure 1). The point prevalence of HEV-induced ALF ranged from 3% to 70% with an	
23 24	157	average of 32% (95% Cl 24, 41) (Supplementary Figure 2). The point prevalence of HDV-, HHV/HSV-,	
25 26	158	CMV-, and EBV-induced ALF were estimated to have averages of 4% (95% CI 0, 13), 6% (95% CI 1, 12),	
20	159	13% (95% Cl 1, 35) and 6% (95% Cl 0, 24), 10% (95% Cl 2, 22), 2% (95% Cl 0, 5), and 1% (95% Cl 0, 5),	
28 29	160	respectively (Supplementary Figure 3). Data was not available to estimate the burden of ALF following	
30 31	161	infection with HDV, VZV, HPIVS, YFV, CA16 and/or HAdVs as outlined per the published protocol (11).	
31 32 32	162		
33 34	163	Outcomes of viral-induced ALF	
35 36	164	The narratively reported outcomes of viral-induced ALF were found to be severe. The mortality rates	
37	165	associated with viral-induced ALF in lower-middle income countries ranged from 18% to 91% with an	
38 39	166	average of 50% (95% CI 36, 64) (Figure 4A). The mortality rates associated with viral-induced ALF in	
40 41	167	upper-middle income countries ranged 3% to 45% with an average of 26% (95% Cl 1, 63) (Figure 4A).	
42 42	168	The mortality rates associated with viral-induced ALF in high income countries ranged from 12% to 40%	6
43 44	169	with an average of 29% (95% CI 17, 43) (Figure 4A). The rate of encephalopathy associated with viral-	
45 46	170	induced ALF cases in children ranged from 69% to 100% with an average of 89% (95% CI 79, 97) (Figure	;
47 48 49 50 51 52 53	171	4B). The need for liver transplantation with viral-associated ALF ranged from 4% to 62% with an average	;e
	172	of 25% (95% Cl 6, 53) (Figure 4B). The need for renal transplant in viral-associated ALF cases ranged	
	173	from 4% to 34% with an average of 18% (95% CI 2, 43) (Figure 4B).	
	174		
54	175	Methodological quality	
55 56			-
57 58			6
59 60		Patterson, J et al. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Risk of bias scores were assigned by two reviewers (JP and HH) and are described in Supplementary
Table 1. Overall, a majority of the included studies were judged as having 'low risk' of bias. Only one
included study was judged as having 'moderate risk' of bias due to lack of clarity around the
representativeness of the study population to the national population, methods of participant selection

180 and methods employed to reduce the likelihood of non-response.

182 Discussion

This systematic review estimated the burden of ALF following infection with HAV, HBV, HCV, HEV, HSV/HHV, CMV, EBV, and parvo-virus B19. The prevalence of HAV-induced ALF is markedly lower in countries with routine HAV immunization while HEV was the most common etiological cause of viralinduced ALF reported in this review. In addition, viral-induced ALF had poor outcomes as indicated by high fatality rates, which seem to increase with poor economic status of the studied countries.

The estimated prevalence of HAV-induced ALF in countries with routine HAV immunization was markedly lower than the estimated prevalence in countries without routine HAV immunization. When looking at countries with data before and after the introduction of routine HAV immunization, the reduction of HAV-induced ALF due to vaccination is further highlighted. The average prevalence of HBV-induced ALF was the same in settings with or without universal HBV immunization. Countries without universal HBV immunization programs are likely to have weak healthcare systems; thus, the reported prevalence of HBV-induced ALF is assumed to be an underestimate of the true burden in these populations due to weak routine testing and reporting systems. Currently, there is one HEV vaccine (Hecolin) licensed in China that has shown promise with a high degree of efficacy in preventing HEV genotype IV infection in healthy individuals 16 to 65 years (15). Further exploration of the efficacy of this vaccine for prevention of infection with genotypes I and II in different populations should to explore it's application in different countries and HEV endemicity settings (16).

This review estimated the mortality rate for viral-induced ALF to be approximately 50% in low- and middle- income countries (LMICs) and less than 30% in upper-middle- and high-income countries. Previous studies have estimated that mortality rates associated with ALF vary between 60% and 80%, depending on the disease etiology as well as a patient's access to care. Our review shows that although viral-induced ALF still carries a significant mortality, though possibly lower than that reported for other ALF etiologies (5, 6). Mortality data largely comes from hospitals with the capacity to diagnose viral-

Page 11 of 28

1

BMJ Open

2	
3	208
4 5	209
6 7	210
8	211
9	211
10 11	212
12	213
13 14	214
15	215
16 17	216
18	217
20	218
21 22	219
23	220
24 25	221
26 27	222
28	223
29 30	224
31	224
32	225
33 34	226
35 36	227
37	228
38 39	229
40	230
41 42	231
43 44	232
45	233
46 47	234
48	235
49 50	236
51 52	227
52 53	237
54	238
55 56	
סכ 57	
58	
59	

208 induced ALF, thus deaths outside of the hospital system or ALF deaths without virological testing may 209 not be captured in these mortality estimates. Liver transplantation is required by approximately 25% of 210 viral-induced ALF cases and approximately 18% of viral-induced ALF cases required renal 211 transplantation, globally. In addition to general lack of resources for transplantation, a significant 212 proportion of potential candidates have contraindications to transplant related to poor socioeconomic 213 status in LMICs. The transplant data included in this review may only reflect successful and unsuccessful 214 transplants, not those that were needed but not carried out due to resource constraints or 215 contraindications.

217 This review is limited by lack of data for some of the viral etiologies of ALF including for VZV, HPIVs, YFV, 218 CA16 and/or HAdVs, which may have led to an underestimation of the global burden of viral-induced 219 ALF. Additionally, we believe that our findings underestimate the global burden of viral-induced ALF as 220 some important causes of ALF (e.g. HSV/HHV) are believed to be underrecognized as they require PCR 221 testing for diagnosis. The included studies also used varying methods of virus detection including 222 serology and molecular tests which further added to the heterogeneity in the results of our review. This 223 is a well-recognized limitation in studies of ALF where diagnostics are often limited by cost in under-224 resourced regions where viral causes of ALF are more prevalent. The limited availability of data hindered 225 most of the planned sub-group analyses outlined in the study protocol. Where data were available, high 226 heterogeneity of the data led to planned meta-analyses and meta-regression analyses not being 227 possible. Lastly, the diversity of viruses attributable to ALF cases led to low statistical power in meta-228 analyses conducted.

Future research should assess the burden of viral-induced ALF following infection with HDV, VZV, HPIVS, YFV, CA16 and HAdVs. Collectively, high-quality data on all viral etiologies of ALF would allow for better pooling of results. The review team encourages future studies to incorporate health economic estimates and mathematical modelling where data permits to assist health policy decision-makers to better design strategies for the prevention and management of viral-induced ALF. Epidemiological-economic modelling of immunization against HAV, HBV and HEV may well show that introduction of vaccination could lead to future cost savings in the long run due to prevented medical care and liver failure.

238 Conclusions

3	239	We successfully addressed the aim of the study although data on VZV, HPIVs, YFV, CA16 and/or HAdV	S
4 5	240	were missing. Notwithstanding the noted limitations, it is clear that HAV, HBV and HEV – vaccine-	
6 7	241	preventable ALF etiologies – account for a large proportion of ALF (approximately 21%, 20%, 32% of	
8	242	viral-induced ALF cases, respectively). The burden of ALF that is associated with vaccine-preventable A	٩LF
9 10	243	etiologies should be used in conjunction with other available key evidence to inform practice and	
11 12	244	policies on immunization, particularly in LMICs. A majority of LMICs have established universal	
12	245	vaccination against HBV. The Word Health Organization has recently recommended the introduction of	of
14 15	246	an HBV birth dose which is aimed at elimination of the virus and if successful, will subsequently reduc	re
16	247	the burden of HBV-induced ALE. Routine HAV immunization in LMICs, however, are lacking. More dat:	a is
17 18	247	urgently needed to guide routing use of the vaccing in prevention of morbidity and mortality caused k	213
19 20	240	the virus Lastly, further applicability of HEV vaccines should be explored, especially in LMCs where	Jy
20	249	the virus. Lastly, further applicability of HEV vaccines should be explored, especially in Livics where	
22 23	250	resources for managing viral-induced ALF are glaringly lacking.	
24	251		
25 26			
27			
28 29			
30			
31 32			
33			
34			
35 36			
37			
38			
39 40			
41			
42 42			
43 44			
45			
46 47			
48			
49			
50			
52			
53			
54			
55 56			
50			9
58			
59		Patterson, J et al.	
60		ror peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntmi	

2			
3 4	252	Contributors	
5	253	JP, GDH, BK and RM conceived this study. JP implemented the review under the supervision of RM. JP	
6 7	254	and HSH performed the study search, screening and extraction of data under the guidance of RM. GDH	-
8	255	and BK provided methodological expertise for this review. SS, LG, WS, and provided content expertise	
9 10	256	for this review and all authors will provided comments on the final manuscript before publication. JP is	S
11 12	257	the guarantor of this review.	
13	258	Funding	
14 15	259	This research received no specific grant from any funding agency in the public, commercial or not-for-	
16 17	260	profit sectors. The Vaccines for Africa Initiative (VACFA) has funded the costs associated with the	
18	261	research and dissemination of the results, including publications.	
19 20	262	Competing interests	
21 22	263	None declared.	
23	264	Data availability	
24 25	265	No additional data available.	
26 27	266	Patient consent for publication	
28	267	Not required.	
29 30			
31			
32 33			
34			
35			
36 37			
38			
39			
40 41			
41			
43			
44			
45 46			
47			
48			
49 50			
51			
52			
53			
54 55			
56			
57			1
58			
59		Patterson, J et al.	
60		ror peer review only inter/onlyopen.only.com/site/about/guidelines.xntim	

REFERENCES

- 1. European Association for the Study of the Liver. Electronic address eee, Clinical practice guidelines p, Wendon J, Panel m, Cordoba J, Dhawan A, et al. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J Hepatol. 2017;66(5):1047-81. 2. Lee WM, Stravitz RT, Larson AM. Introduction to the revised American Association for the Study of Liver Diseases Position Paper on acute liver failure 2011. Hepatology. 2012;55(3):965-7. 3. Morabito V, Adebayo D. Fulminant Hepatitis: Definitions, Causes and Management. Health. 2014;06(10):1038-48. 4. Cervio G, Trentadue J, D'Agostino D, Luque C, Giorgi M, Armoni J, et al. Decline in HAV-associated fulminant hepatic failure and liver transplant in children in Argentina after the introduction of a universal hepatitis A vaccination program. Hepat Med. 2011;3:99-106. 5. Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet. 2010;376(Seminar):190-201. Wlodzimirow KA, Eslami S, Abu-Hanna A, Nieuwoudt M, Chamuleau RA. Systematic review: acute liver failure - one 6. disease, more than 40 definitions. Aliment Pharmacol Ther. 2012;35(11):1245-56. 7. Spearman CW, McCulloch M, Millar AJ, Burger H, Numanoglu A, Goddard E, et al. Liver transplantation at Red Cross War Memorial Children's Hospital. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde. 2006;96(9 Pt 2):960-3. 8. O'Grady JG. Acute liver failure. Postgrad Med J. 2005;81(953):148-54. 9. O'Grady J. Liver transplantation for acute liver failure. Best Pract Res Clin Gastroenterol. 2012;26(1):27-33. 10. Patterson J, Hussey HS, Abdullahi LH, Silal S, Goddard L, Setshedi M, et al. The global epidemiology of viral-induced acute liver failure: a systematic review protocol. BMJ Open. 2019. 11. Balk E, Ching M, Chen M, Trikalinos T, L KWC. Assessing the Accuracy of Google Translate to Allow Data Extraction From Trials Published in Non-English Languages. Rockville, USA: Agency for Healthcare Research and Quality; 2013 Jan 2013. Contract No.: EHC145-EF. 12. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C. Assessing risk of bias in prevalence studies: Modification of an existing tool and evidence of interrater aggreement. Journal of Clinical Epidemiology. 2012;65:934-9. 13. Werfalli M, Musekiwa A, Engel ME, Ross I, Kengne AP, Levitt NS. The prevalence of type 2 diabetes mellitus among older people in Africa: a systematic review study protocol. BMJ Open. 2014. 14. Alam S, Azam G, Mustafa G, Azad AK, Haque I, Gani S, et al. Natural course of fulminant hepatic failure: the scenario in Bangladesh and the differences from the west. Saudi J Gastroenterol. 2009;15(4):229-33. 15. Asim MS, R.; Gupta, R. K.; Kar, P. Clinical & molecular characterization of human TT virus in different liver diseases. Indian Journal of Medical Research.131(4):545-54. 16. Bechmann LP, Manka P, Best J, Saner FH, Paul A, Canbay A, et al. Drug-induced liver injury as predominant cause of acute liver failure in a monocenter study. Deutsche Medizinische Wochenschrift. 2014;139(17):878-82. 17. Bhatia V, Dhawan A, Arora NK, Mathur P, Das MK, Irshad M. Urinary potassium loss in children with acute liver failure and acute viral hepatitis. J Pediatr Gastroenterol Nutr. 2013;57(1):102-8. 18. Borkakoti JH, R. K.; Mohammad, A.; Kumar, A.; Kar, P. Does high viral load of hepatitis E virus influence the severity and prognosis of acute liver failure during pregnancy? Journal of Medical Virology. 2013;85(4):620-6. 19. Bravo LC, Gregorio GV, Shafi F, Bock HL, Boudville I, Liu Y, et al. Etiology, incidence and outcomes of acute hepatic failure in 0-18 year old Filipino children. Southeast Asian J Trop Med Public Health. 2012;43(3):764-72. 20. Das AK, Begum T, Kar P, Dutta A. Profile of Acute Liver Failure from North-east India and Its Differences from other Parts of the Country. Euroasian J Hepatogastroenterol. 2016;6(2):111-5. 21. Gupta P, Mittal M, Bhat NK, Agarwal RK, Gupta P, Mittal G. A hospital based retrospective study on hepatotropic viruses as a cause of acute viral hepatitis in children in Uttarakhand, India. Indian Journal of Community Health. 2015;27(4):451-5. 22. Ho CM, Lee CH, Wang JY, Lee PH, Lai HS, Hu RH. Nationwide longitudinal analysis of acute liver failure in taiwan. Medicine (Baltimore). 2014;93(4):e35. 23. Latif N, Mehmood K. Risk factors for fulminant hepatic failure and their relation with outcome in children. J Pak Med Assoc. 2010;60(3):175-8. Mamun Al M, Rahman S, Khan M, Karim F. HEV infection as an aetiologic factor for acute hepatitis: experience from a 24. tertiary hospital in Bangladesh. J Health Popul Nutr. 2009;27(1):14-9. 25. Manka P, Bechmann LP, Coombes JD, Thodou V, Schlattjan M, Kahraman A, et al. Hepatitis E Virus Infection as a Possible Cause of Acute Liver Failure in Europe. Clin Gastroenterol Hepatol. 2015;13(10):1836-42.e2; quiz e157-8. 26. Mendizabal MM, S.; Videla, M. G.; Anders, M.; Zerega, A.; Balderramo, D. C.; Chan, D.; Barrabino, M.; Gil, O.; Mastai, R.; Yantorno, S.; Gadano, A.; Silva, M. O. Changing etiologies and outcomes of acute liver failure: Perspectives from 6 transplant centers in Argentina. Liver Transplantation. 2014;20(4):483-9. 27. Mishra SB, J.; Kumar, S.; Kar, P. Role of HEV antigen detection in HEV-related acute viral hepatitis and acute liver failure. Journal of Medical Virology. 2016;88(12):2179-85. 1
 - Patterson, J et al.

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

59

BMJ Open

1			
2			
3 4 5	28.	Mumtaz K, Azam Z, Hamid S, Abid S, Memon S, Ali Shah H, et al. Role of N-acetylcysteine in adults with non- acetaminophen-induced acute liver failure in a center without the facility of liver transplantation. Hepatology	
5 6 7	29.	Pandit A, Mathew LG, Bavdekar A, Mehta S, Ramakrishnan G, Datta S, et al. Hepatotropic viruses as etiological agent of acute liver failure and related-outcomes among children in India: a retrospective hospital-based study. BMC Res	:s
, 8		Notes. 2015;8:381.	
9	30.	Poovorawan Y, Chongsrisawat V, Shafi F, Boudville I, Liu Y, Hutagalung Y, et al. Acute hepatic failure among hospitalized Thai children. Southeast Asian J Trop Med Public Health. 2013;44(1):50-3.	
11 12	31.	Schwarz KBO, Dominic Dell; Lobritto, Steven J.; Lopez, M. James; Rodriguez-Baez, Norberto; Yazigi, Nada A.; Belle, Steven H.; Zhang, Song; Squires, Robert H.; for the Pediatric Acute Liver Failure Study, Group. Analysis of Viral Testin in Nonacetaminophen Pediatric Acute Liver Failure. Journal of Pediatric Gastroenterology & Nutrition.	g
13		2014;59(5):616-23.	
14 15	32.	Shalimar, Kedia S, Gunjan D, Sonika U, Mahapatra SJ, Nayak B, et al. Acute Liver Failure Due to Hepatitis E Virus Infection Is Associated with Better Survival than Other Etiologies in Indian Patients. Dig Dis Sci. 2017;62(4):1058-66.	
16 17	33.	Silverio CE, Smithen-Romany CY, Hondal NI, Diaz HO, Castellanos MI, Sosa O. Acute liver failure in Cuban children. MEDICC Rev. 2015;17(1):48-54.	
18 19	34.	Somasekar SL, D.; Rule, J.; Naccache, S. N.; Stone, M.; Busch, M. P.; S.; ers, C.; Lee, W. M.; Chiu, C. Y. Viral Surveillanc in Serum Samples from Patients with Acute Liver Failure by Metagenomic Next-Generation Sequencing. Clinical	e
20	35.	Uddin Jamro BMC, S.: Mal Makheia, P.: Ahmed Soomro, A. Etiology, outcome and risk factors for fulminant hepatic	
21 22	36.	failure in children at a tertiary care hospital, Sukkur, Pakistan. Rawal Medical Journal. 2013;38(3):219-22. Tsunoda T, Inui A, Iwasawa K, Oikawa M, Sogo T, Komatsu H, et al. Acute liver dysfunction not resulting from hepatit	is
23		virus in immunocompetent children. Pediatr Int. 2017;59(5):551-6.	
24	37.	Zhao P, Wang CY, Liu WW, Wang X, Yu LM, Sun YR. Acute liver failure in Chinese children: a multicenter investigation	۱.
25	28	Hepatobiliary Pancreat Dis Int. 2014;13(3):276-80. Li SW, Zhao O, Wu T, Chen S, Zhang J, Xia NS. The development of a recombinant hepatitis E vaccine HEV 239. Hum	
27	50.	Vaccin Immunother. 2015;11(4):908-14.	
28	39.	Wu X, Chen P, Lin H, Hao X, Liang Z. Hepatitis E virus: Current epidemiology and vaccine. Human Vaccines and	
29		Immunotherapeutics. 2016;12(10):2603-10.	
30			
31			
32			
33 24			
35			
36			
37			
38			
39			
40			
41			
42			
45 44			
45			
46			
47			
48			
49			
50			
51 52			
52 52			
55 54			
55			
56			
57			2
58			
59	Patte	erson. J et al.	

FIGURE LEDENDS

Figure 1 PRISMA Flow Diagram describing selection of studies.

Figure 2

Abbreviations: HAV = hepatitis A virus, ALF = acute liver failure, CI = confidence interval, I2 = heterogeneity statistic

Figure 3 Abbreviations: HBV = hepatitis B virus, ALF = acute liver failure, CI = confidence interval, I2 = heterogeneity statistic

Figure 4 Abbreviations: ALF = acute liver failure, CI = confidence interval, I2=heterogeneity statistic, NA = not applicable

TABLES

Study	Study Design	Aim	Country	Income Level	Start of Data Collection	End of Data Collection	ALF Case Definition
Alam et al., 2009 (14)	Prospective cohort	To evaluate the etiology, complications, and outcome of FHF	Bangladesh	Lower- middle	3-Nov	8-May	Occurrence of hepatic encephalopathy within 8 weeks of onset of jaundice i patients with no previous live disease and the presence of coagulopathy as proved by PT > 15 s or INR > 1.5
Asim et al., 2009 (15)	Cross- sectional	To analyze serum samples from patients with ALF for hepatitis A-G viral markers	India	Lower- middle	1-Jun	4-May	Patient become deeply jaundiced and went into hepatic encephalopathy with 8 weeks of onset of the disease, with no past histor of chronic hepatitis
Bechmann et al., 2014 (16)	Retrospective cohort	To identify currently predominant etiologies of ALF at a transplant center	Germany	High	1-Jan	12-Feb	Acute Liver Failure Study Group Germany case definition: INR > 1.5 and encephalopathy of any grad Pre-existing liver disease ar systemic cause of liver failu

Bhatia et al., 2013 (17)	Prospective cohort	features, liver function tests, hepatitis viral markers and clinical outcomes in patients with ALF	India	Lower- middle	Jun-99	1-Jan	Development of hepa encephalopathy withir weeks of the first symp of acute hepatitis-like ill without any history o underlying liver disea
Borkakoti et al., 2013 (18)	Prospective cohort	To determine the viral load of HEV and its association with the disease severity in patients with ALF in comparison with patients with ALF due to other hepatides	India	Lower- middle	6-Jan	11-Dec	Development of encephalopathy withi weeks of the onset of jaundice without any p history of chronic live disease; diagnosed as a limiting disease and a s aspartate aminotransfe elevation of at least fived clinical jaundice or bo
Bravo et al., 2012 (19)	Prospective & retrospective cohort	To investigate the etiology, outcomes and incidence of AHF among children 0-18 years old	Philippines	Lower- middle	Jan-00	6-Dec	Onset of coagulopathy a encephalopathy ≤4 we after the onset of sympt a prothrombin time > 2 increased bilirubin at evidence for liver failt complicated by encephalopathy
Cervio et al., 2011 (4)	Retrospective cohort	To investigate the impact of HAV UI on the trends in the occurrence of FHF in children	Argentina	High	Mar-93	5-Jul	Mieli-Vergani case defir a multisystem disorde which severe impairme liver function, with or wi encephalopathy, occur association with hepatocellular necrosis patient with or witho recognized underlying co liver disease (Cheesen Mieli-Vergani, 2004
Das et al., 2016 (20)	Prospective cohort	To determine the profile of ALF etiologies	India	Lower- middle	7-Jan	15-Dec	History of developmer encephalopathy withi weeks of disease on
Gupta et al., 2015 (21)	Retrospective cohort	To determine the profile of Hepatitis A, B, C and E as a cause of AHF in	India	Lower- middle	11-Jan	14-Dec	Elevated ALT levels or A at least five-fold with cli jaundice and without evi of chronic liver disea

58

59

		hospital					2 without encephalopat
Ho et al., 2014 (22)	Prospective cohort	To investigate the incidence, etiology, outcomes, and prognostic factors of ALF	Taiwan	High income	5-Jan	7-Sep	International Classificatio Diseases, Ninth Revisic Clinical Modification (ICE CM) code 570.0
Latif et al., 2010 (23)	Prospective cohort	To identify the risk factors for FHF and their relationship with the outcome in children	Pakistan	Lower- middle	6-Sep	7-Feb	Development of encephalopathy within weeks of the onset of jaundice having evidence coagulopathy i.e. PT deranges > 4 s of control deranged liver function i TSB > 1.5 mg/dl, AT > 40
Mamun et al., 2009 (24)	Retrospective cohort	To assess the burden of HEV as a cause of ALF	Bangladesh	Lower- middle	4-Jun	6-Dec	Previously healthy patie who presented with seve impairment of hepato-cel function, i.e. encephalopa coagulopathy, and jaund within six months of onse symptoms
Manka et al., 2015 (25)	Retrospective cohort	To investigate the causes of previously diagnosed indeterminate cases ALF	Germany	High	6-Nov	13-Dec	Significant liver dysfunct with pathologically increa laboratory parameters [A ALT, AP], an existing coagulopathy in terms of INR > 1.5, and with the concomitant presence of degree of encephalopat
Mendizabal et al., 2014 (26)	Retrospective cohort	To determine the causes and short- term outcomes of ALF	Argentina	High	5-Jun	11-Dec	Presence of coagulopat [INR > 1.5 or prothromb index < 50%] and any gra of HE within 26 weeks of first symptoms without known underlying live disease
Mishra et al., 2016 (27)	Retrospective cohort	To assess the relative efficacy of HEV antigen detection by	India	Lower- middle	13-Nov	15-Jan	Any evidence of coagula abnormality, generally II >1.5 and any degree of mental alteration (encephalopathy) without

Patterson, J et al.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

		ELISA in patients with ALF					existing cirrhosis and w illness of < 4 weeks du
Mumtaz et al., 2009 (28)	Prospective cohort compared to historical control	To assess the etiology, prothrombin time (PT), alanine aminotransferase, creatinine, albumin for non- acetaminophen- induced ALF	Pakistan	Lower middle	Jan-00	7-Mar	Rapid development of liver injury with impai synthetic function a encephalopathy in a pe who previously had a n liver
Pandit et al., 2015 (29)	Retrospective cohort	To assess the frequency of hepatotropic viruses as etiological agents of ALF	India	Lower- middle	3-Jan	5-Dec	Onset of encephalopath days after the onset symptoms with INR > 2 increased bilirubin complicated by encephalopathy in pat without a previous histo liver disease
Poovorawan et al., 2013 (30)	Prospective cohort	To determine the causes and outcomes of Thai children with AHF	Thailand	Upper- middle	2-Jan	5-Sep	International Association the Study of the Liver definition: (Tandon e 1999)
Schwarz et al., 2014 (31)	Retrospective cohort - Patient registry	To analyzed results of viral testing among non- acetaminophen ALF study participants	USA/Canada/UK	High	Dec-99	12-Dec	No known evidence of c liver disease, with evide acute liver injury, and he based coagulopathy corrected by vitamin K the follow parameters: 15 s or INR ≥ 1.5 in f presence of clinical HE PT ≥ 20 s or INR ≥ 2 regardless of the presen absence of clinical H
Shalimar et al., 2017 (32)	Retrospective cohort	To assess the differences in the course of HEV- ALF as compared to other etiologies of ALF	India	Lower middle	Jan-86	15-Dec	International Association the Study of Liver (IASL definition: Occurrence encephalopathy within weeks from the onse symptoms in the abser preexisting liver dise

BMJ Open

lverio et al., 2015 (33)	Retrospective cohort	To describe the clinical features of children treated for ALF	Cuba	Upper- middle	5-Jan	11-Dec	Evidence of liver dama the absence of prior k chronic liver disease; a coagulation, expressed >15 s with encephalopa PT > 20 s with or wit encephalopathy—all within eight weeks of o clinical symptoms
omasekar et al., 2017 4)	Retrospective cohort	To investigate the causes of previously diagnosed indeterminate cases AI F	United States	High	Jan-98	10-Dec	<i>United States Acute</i> <i>Failure Study Group</i> definition
ldin Jamro et al., 113 (35)	Retrospective cohort	To study the etiology, outcome and risk factors for FHF in children at a tertiary care hospital	Pakistan	Lower- middle	7-Jul	12-Jun	Presence of acute liver (coagulopathy PT > 2 INR > 2), HE without existing liver disease, w weeks of the onset of liver disease
;unoda et al., 2017 6)	Prospective cohort	To identify the roles of CMV, EBV and HHV in immunocompetent children with acute liver failure not resulting from hepatitis virus	Japan	High	7-Jan	13-Dec	Liver dysfunction v elevated AST and AL IU/L
nao et al., 2014 (37)	Retrospective cohort	To investigate etiologies and outcomes of children with ALF	China	Middle	7-Jan	12-Dec	Coagulopathy [PTA ≤4 INR ≥ 1.5 excludi hematologic diseases jaundice [Tbil ≥ 171 µ within 4 weeks in a without pre-existing diseases
b reviations: ALF = acute Epstein Barr virus; HHV = ne; s = second; TSB = tot kaline phosphatase; PTA	Retrospective cohort liver failure; FH human herpes al serum bilirub = plasma throm	etiologies and outcomes of children with ALF IF = fulminant hepatic f svirus; ELISA = enzyme in; HE = hepatic encep nboplastin antecedent	China ailure; AHF = acute e-linked immunosor halopathy; AST = a	Middle e hepatic failu rbent assay; aspartate am	7-Jan ure; HEV = he INR = interna inotransferas	12-Dec epatitis E virus tional normali e; ALT = alan	hematolog jaundice [within 4 without p c s; CMV = cyto zed ratio; PT ine aminotran

1

57 58

59

Figure 1: Flow diagram for selection of studies

BMJ Open Figure 2: Prevalence of HAV-induced ALF by country HAV immunization status

study		Estimate (95% CI)	Country	Data start	Data e
No routine vaccination					
Asim et al., 2008	-	0.04 (0.00, 0.14)	India	Jun-01	May-0
Mumtaz et al., 2009	-	0.02 (0.00, 0.08)	Pakistan	Jan-00	Mar-07
Alam et al., 2009	-	0.07 (0.02, 0.17)	Bangladesh	Nov-03	May-0
Latif et al., 2010		0.56 (0.41, 0.70)	Pakistan	Sep-06	Feb-07
Cervio et al., 2011	-	0.50 (0.45, 0.55)	Argentina	Mar-93	Jul-05
Bravo et al., 2012		0.29 (0.10, 0.56)	Philippines	Jan-00	Dec-0
3hati et al., 2013		- 0.52 (0.31, 0.72)	India	Jun-99	Jan-01
Jddin Jamro et al., 2013		0.81 (0.69, 0.90)	Pakistan	Jul-07	Jun-12
Borkakoti et al., 2013	-	0.07 (0.05, 0.11)	India	Jan-06	Dec-1
Bechmann et al., 2014	-	0.07 (0.04, 0.13)	Germany	Jan-01	Feb-1
Gupta et al., 2015		- 0.50 (0.29, 0.71)	India	Jan-11	Dec-1
Pandit et al., 2015	_		India	Jan-03	Dec-0
Mishra et al., 2016		0.22 (0.10, 0.39)	India	Nov-13	Jan-1
Das et al., 2016	-	0.30 (0.24, 0.36)	India	Jan-07	Dec-1
Shalimar et al., 2017	•	0.02 (0.01, 0.02)	India	Jan-86	Dec-1
Subtotal (I ² = 98.52%)	\diamond	0.27 (0.13, 0.43)			
Routine vaccination					
Mendizabal et al., 2014	F	0.01 (0.00, 0.05)	Argentina	Jun-05	Dec-1
Schwarz et al., 2014	-	0.02 (0.01, 0.04)	USA/Canada/UK	Dec-99	Dec-1
Somasekar et al., 2017	-	0.02 (0.01, 0.05)	United States	Jan-98	Dec-1
Subtotal (I ² = NA)	0	0.02 (0.01, 0.03)			

Page 22 of 28

Page 23 of 28 Figure 3: Prevalence of HBV-induced ALF by country HBV immunization status

Study	Estimate (95% CI)	Country	Data start	Data e
Introduced in data collection period				
Asim et al., 2008	0.14 (0.06, 0.27)	India	Jun-01	May-0
Mamun et al., 2009	0.35 (0.16, 0.57)	Bangladesh	Jun-04	Dec-0
Uddin Jamro et al., 2013	0.18 (0.09, 0.30)	Pakistan	Jul-07	Jun-1
Shalimar et al., 2017	0.09 (0.07, 0.10)	India	Jan-86	Dec-1
Subtotal ($l^2 = 81.55\%$)	0.16 (0.07, 0.27)			
No universal immunization				
Mumtaz et al. 2009	0.27 (0.19, 0.38)	Pakistan	Jan-00	Mar-0
	0.18 (0.09, 0.31)	Pakistan	Sep-06	Feb-0
Bhati et al., 2013	0.16 (0.05, 0.36)	India	Jun-99	Jan-0
Subtotal $(I^2 = NA)$	0.22 (0.16, 0.30)			
Universal immunization				
	0.19 (0.11. 0.31)	Bangladesh	Nov-03	Mav-(
Bravo et al. 2012	0.10 (0.01, 0.30)	Philippines	Jan-00	Dec-0
Poovorawan et al. 2013	0.09 (0.00, 0.41)	Thailand	Jan-02	Sep-0
Borkakoti et al. 2013	— 0.47 (0.41, 0.52)	India	Jan-06	Dec-1
Mendizabal et al. 2014	0.30 (0.23, 0.38)	Argentina	Jun-05	Dec-1
Schwarz et al., 2014	0.01 (0.00, 0.03)	USA/Canada/UK	Dec-99	Dec-1
Ho et al., 2014	0.73 (0.63, 0.81)	Taiwan	Jan-05	Sep-0
Bechmann et al., 2014	0.19 (0.13, 0.26)	Germany	Jan-01	Feb-1
Gupta et al., 2015	0.38 (0.19, 0.59)	India	Jan-11	Dec-1
Pandit et al., 2015	0.19 (0.09, 0.33)	India	Jan-03	Dec-0
Mishra et al., 2016	0.33 (0.19, 0.51)	India	Nov-13	Jan-1
Das et al., 2016	0.03 (0.01, 0.06)	India	Jan-07	Dec-1
Somasekar et al., 2017	0.02 (0.01, 0.05)	United States	Jan-98	Dec-1
Subtotal ($I^2 = 97.77\%$)	0.20 (0.08, 0.35)			
0.2.4	.6 .8 1			

Figure 4: Prevalence of outcomes associated withewiral-induced ALF

Page 24 of 28

: Mortality rates associated with viral-induced ALF by country income status

2				
Study		Estimate (95% CI)	Country	
5 <u>Lower-middle income</u>				
6Mumtaz et al., 2009		0.63 (0.52, 0.73)	Pakistan	
⁷ Alam et al., 2009		0.73 (0.61, 0.83)	Bangladesh	
⁸ Mamun et al., 2009		⊢ 0.91 (0.72, 0.99)	Bangladesh	
9 1 Latif et al., 2010		0.60 (0.45, 0.74)	Pakistan	
1 Bravo et al., 2012		- 0.85 (0.65, 0.96)	Philippines	
1 blddin Jamro et al., 2013		0.73 (0.60, 0.83)	Pakistan	
1 B hati et al., 2013		0.36 (0.18, 0.57)	India	
1eorkakoti et al., 2013	-	0.22 (0.18, 0.27)	India	
¹ Pandit et al., 2015		0.24 (0.13, 0.38)	India	
16 Mishra et al 2016		0.33 (0.19, 0.51)	India	
17 17 Das et al. 2016	+	0.29 (0.23, 0.35)	India	
16halimar et al 2017		0.18 (0.17, 0.21)	India	
26 ubtotal ($l^2 = 9676\%$)		0.50 (0.36, 0.64)	india	
21				
²² ligh income				
23 Cervio et al., 2011	+	0.39 (0.34, 0.44)	Argentina	
24 2≓o et al., 2014		0.40 (0.31, 0.51)	Taiwan	
25 2 Mendizabal et al., 2014	-	0.27 (0.20, 0.35)	Argentina	
2Bechmann et al., 2014	+	0.12 (0.08, 0.19)	Germany	
2§ubtotal (l ² = 93.81%)	\diamond	0.29 (0.17, 0.43)	-	
29				
³⁰ Upper-middle income				
³ Boovorawan et al., 2013		0.45 (0.17, 0.77)	Thailand	
3 Z hao et al., 2014	-	0.03 (0.00, 0.16)	China	
3 \$ ilverio et al., 2015		0.42 (0.25, 0.61)	Cuba	
3 S ubtotal (I ² = NA)	\sim	0.26 (0.01, 0.63)		
36				
37				
38				
40 2A	0.2.4.6.8	1		
41		Faure	u and u latter //l	

Study Estimate (95% CI) Country Renal failure Alam et al., 2009 Bangladesh 0.34 (0.23, 0.47) Mumtaz et al., 2009 0.22 (0.14, 0.32) Pakistan Shalimar et al., 2017 0.04 (0.03, 0.05) India Subtotal (I² = NA) 0.18 (0.02, 0.43) Encephalopathy Latif et al., 2010 - 0.90 (0.78, 0.97) Pakistan Cervio et al., 2011 0.83 (0.79, 0.87) Argentina Bravo et al., 2012 0.69 (0.48, 0.86) Philippines Uddin Jamro et al., 2013 ■ 1.00 (0.94, 1.00) Pakistan Poovorawan et al., 2013 0.91 (0.59, 1.00) Thailand 0.89 (0.77, 0.96) Pandit et al., 2015 India Subtotal $(I^2 = 85.11\%)$ 0.89 (0.79, 0.97) Liver transplant Cervio et al., 2011 0.62 (0.56, 0.67) Argentina Mendizabal et al., 2014 0.54 (0.46, 0.62) Argentina Bechmann et al., 2014 0.12 (0.07, 0.18) Germany Silverio et al., 2015 0.10 (0.02, 0.26) Cuba Tsunoda et al., 2017 0.04 (0.01, 0.12) Japan Subtotal (I² = 98.22%) 0.25 (0.06, 0.53) 0 .2 .4 .6 .8 1

: Prevalence of clinical outcomes associated with viral-induces ALF

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

В

- 42 43
- 44

Supplementary Figure 1: Prevalence of HCV-induced ALF

1 2 3 4	Study		Estimate (95% CI)	Country	Data start	Data end
5 6 7 8	Asim et al., 2008	a	0.06 (0.01, 0.17)	India	Jun-01	May-04
9 10 11	Bravo et al., 2012		0.20 (0.01, 0.72)	Philippines	Jan-00	Dec-06
12 13	Uddin Jamro et al., 2013	-	0.02 (0.00, 0.09)	Pakistan	Jul-07	Jun-12
14 15 16	Borkakoti et al., 2013	-	0.25 (0.21, 0.31)	India	Jan-06	Dec-11
17 18 19	Ho et al., 2014	-	0.25 (0.17, 0.35)	Taiwan	Jan-05	Sep-07
20 21 22	Silverio et al., 2015	-	0.03 (0.00, 0.17)	Cuba	Jan-05	Dec-11
23 24 25	Somasekar et al., 2017	•	0.02 (0.01, 0.05)	United States	Jan-98	Dec-10
20 27 28	Overall (I ² = 94.01%)	\Diamond	0.09 (0.01, 0.21)			
29 30 31 32 33						
34 35 36 37 38	For peer re Abbreviations: HCV = hepatitis C virus, ALF = a	Uiew2nly4_http://f	8 Bmjopen.bmj.com/site/about/gui e, CI = confidence interval	delines.xhtml , I ² = heterogeneity s	tatistic	

Supplementary Figure 2: Prevalence of HEV-induced ALF

2 3 4	Study		Estimate (95% CI)	Ν	N Pregnant	Country	Date start	Date end
5 6 7	Asim et al., 2008	<u> </u>	0.43 (0.29, 0.58)	49		India	Jun-01	May-04
, 8 9	Mamun et al., 2009		0.57 (0.34, 0.77)	23		Bangladesh	Jun-04	Dec-06
10 11	Alam et al., 2009		0.70 (0.58, 0.81)	67	10	Bangladesh	Nov-03	May-08
12 13 14	Mumtaz et al., 2009		0.44 (0.34, 0.55)	91	9	Pakistan	Jan-00	Mar-07
15 16	Bhati et al., 2013		0.24 (0.09, 0.45)	25		India	Jun-99	Jan-01
17 18	Borkakoti et al., 2013		0.33 (0.28, 0.39)	318	160	India	Jan-06	Dec-11
19 20	Gupta et al., 2015		0.12 (0.03, 0.32)	24		India	Jan-11	Dec-14
21 22 23	Manka et al., 2015		0.17 (0.09, 0.28)	70		Germany	Nov-06	Dec-13
24 25	Pandit et al., 2015		0.03 (0.00, 0.17)	54		India	Jan-03	Dec-05
26 27	Das et al., 2016	-	0.13 (0.09, 0.18)	255		India	Jan-07	Dec-15
28 29 30	Mishra et al., 2016		0.61 (0.43, 0.77)	36	5	India	Nov-13	Jan-15
31 32	Shalimar et al., 2017	-	0.29 (0.26, 0.31)	146	2 175	India	Jan-86	Dec-15
33 34 35 36 37	Overall (l ² = 92.60%)	\bigcirc	0.32 (0.24, 0.41)					
38 39 40 41 42	Abbreviations: HEV = hepatitis E	1 1 1 1 1 1 1 1 1 1	I http://bmjopen.bmj.com/site/ak failure, CI = confidence in	bout/g	uidelines.xhtml al, I ² = hetero	geneity statis	tic	

Page 27 of 28

BMJ Open

Supplementary Figure 3: Prevalence of HDV-, HHV/HSV-, CMV- and EBV-induced AFL

study	Estimate (95% CI)	Country	Data start	Data end
HDV				
Ho et al., 2014	0.03 (0.01, 0.09)	Taiwan	Jan-05	Sep-07
Mumtaz et al., 2009	0.12 (0.06, 0.21)	Pakistan	Jan-00	Mar-07
Somasekar et al., 2017	0.00 (0.00, 0.03)	United States	Jan-98	Dec-10
Subtotal (I ² = NA)	0.04 (0.00, 0.13)			
HHV/HSV				
Mendizabal et al., 2014	0.01 (0.00, 0.04)	Argentina	Jun-05	Dec-11
Schwarz et al., 2014 -	0.12 (0.08, 0.16)	USA/Canada/Uk	C Dec-99	Dec-12
Silverio et al., 2015	0.06 (0.01, 0.21)	Cuba	Jan-05	Dec-11
Somasekar et al., 2017 -	0.03 (0.01, 0.07)	United States	Jan-98	Dec-10
Tsunoda et al., 2017	0.10 (0.04, 0.20)	Japan	Jan-07	Dec-13
Subtotal (I ² = 87.7%)	0.06 (0.01, 0.12)			
<u>CMV</u>				
Silverio et al., 2015 Somasekar –	0.26 (0.12, 0.45)	Cuba	Jan-05	Dec-11
et al., 2017 Tsunoda et al., 2017 🔹	0.00 (0.00, 0.03)	United States	Jan-98	Dec-10
Zhao et al., 2014 —	- 0.19 (0.11, 0.30)	Japan	Jan-07	Dec-13
Subtotal (I ² = 94.1%)	0.19 (0.07, 0.36)	China	Jan-07	Dec-12
<	> 0.13 (0.01, 0.35)			
EBV				
Silverio et al., 2015 Somasekar				
et al., 2017 Tsunoda et al., 2017 🛛 🖛	0.03 (0.00, 0.17)	Cuba	Jan-05	Dec-11
Subtotal (I ² = NA)	0.00 (0.00, 0.03)	United States	Jan-98	Dec-10
	- 0.21 (0.12, 0.32)	Japan	Jan-07	Dec-13
\sim	0.06 (0.00, 0.24)			
l				

1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
17 20
∠∪ ว1
21
22
23
24
25
26
27
28
29
30
31
37
22
27
54 25
35
36
37
38
39
40
41
42
43
44
45
46
17
47 10
40 40
49 50
50
51
52
53
54
55
56
57
58

60

SUPPLEMENTARY TABLE

Supplementary Table 1: Risk of bias judgements for included studies											
Study ID	Represent ation of the national populatio n	Represent ation of target populatio n	Rand om select ion or censu s	Minim al likelih ood of non- respo nse bias	Data collecte d directly from particip ants	Accept able case definiti on	Valid measure ment	Same mode of data collect ion	Appropr iate length	Appropria te numerator (s) and denomina tor(s)	Sco re
Alam et al., 2009	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Asim et al., 2009	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Bechmann et al., 2014	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Bhati et al., 2013	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Borkakoti et al., 2013	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Bravo et al., 2012	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Cervio et al., 2011	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Das et al., 2016	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Gupta et al., 2015	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Ho et al., 2014	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Latif et al., 2010	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Mamun et al., 2009	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	9
Manka et al., 2015	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	8
Mendizabal et al., 2014	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	8
Mishra et al., 2016	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Mumtaz et al., 2009	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Pandit et al., 2015	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	8
Poovorawa n et al., 2013	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	9
Schwarz et al., 2014	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	9
Shalimar et al., 2017	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Silverio et al., 2015	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Somasekar et al., 2017	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	8

BMJ Open

2												
3 4 5	Uddin Jamro et al., 2013	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
6 7	Tsunoda et al., 2017	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	9
8	Zhao et al., 2014	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	8
10												
11 12												
13												
15												
16 17												
18												
19 20												
21 22												
23												
24 25												
26 27												
28												
29 30												
31 32												
33												
35												
36 37												
38												
40												
41 42												
43 44												
45												
46 47												
48 49												
50												
51 52												
53 54												
55												
56 57												
58 50												
60		For p	eer review	/ only - h	ttp://bm	jopen.br	nj.com/sit	te/about/	guideline	s.xhtml		

BMJ Open

A Systematic Review of the Global Epidemiology of Viral-Induced Acute Liver Failure

	1					
Journal:	BMJ Open					
Manuscript ID	bmjopen-2020-037473.R1					
Article Type:	Original research					
Date Submitted by the Author:	14-Apr-2020					
Complete List of Authors:	Patterson, Jenna; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Hussey, Hannah; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health & Family Medicine Silal, Sheetal; University of Cape Town, Department of Statistical Sciences; University of Oxford, Nuffield Department of Medicine Goddard, Liz; University of Cape Town, Department of Paediatrics, Red Cross War Memorial Children's Hospital Setshedi, Mashiko; University of Cape Town, Department of Medicine, Division of Gastroenterology, Groote Schuur Hospital Spearman, Wendy ; University of Cape Town, Department of Medicine, Division of Hepatology, Groote Schuur Hospital Hussey, Gregory; University of Cape Town Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Kagina, Benjamin; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Kagina, Benjamin; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Kagina, Benjamin; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Muloiwa, Rudzani; University of Cape Town, 5Department of Pediatrics & Child Health, Red Cross War Memorial Children's Hospital; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine					
Primary Subject Heading :	Epidemiology					
Secondary Subject Heading:	Infectious diseases					
Keywords:	Epidemiology < INFECTIOUS DISEASES, Hepatology < INTERNAL MEDICINE, VIROLOGY					

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

A Systematic Review of the Global Epidemiology of Viral-Induced Acute Liver Failure

Jenna Patterson^{1,2}, Hannah Sophia Hussey^{1,2}, Sheetal Silal^{3,4}, Liz Goddard⁵, Mashiko Setshedi⁶, C.

Wendy Spearman⁷, Gregory D. Hussey^{1,8} Benjamin M. Kagina^{1,2} and Rudzani Muloiwa^{1,5}

¹Vaccines for Africa Initiative, University of Cape Town, South Africa

²School of Public Health & Family Medicine, University of Cape Town, South Africa

³Modelling and Simulation Hub, Africa, Department of Statistical Sciences, Faculty of Science, University of Cape Town, South Africa

⁴Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom

⁵Department of Pediatrics & Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town ⁶Department of Medicine, Division of Gastroenterology, Groote Schuur Hospital, University of Cape Town, South Africa

⁷Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, South Africa

⁸Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa

⁵Department of Pediatrics & Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town

Corresponding author: Jenna Patterson

Corresponding author's ORCID iD: 0000-0002-3927-037X

Corresponding author's email address: pttjen005@myuct.ac.za

Corresponding author's postal address: Vaccines for Africa Initiative, Room N2.09A, Werner Beit North, Health Sciences Campus, Anzio Road, Observatory, 7925

H.S. Hussey email address: hshussey@gmail.com

S. Silal email address: sheetal.silal@uct.ac.za

E. Goddard email address: liz.goddard@uct.ac.za

M. Setshedi email address: mashiko.setshedi@uct.ac.za

W. Spearman email address: wendy.spearman@uct.ac.za

G.D. Hussey email address: gregory.hussey@uct.ac.za

B.M. Kagina email address: benjamin.kagina@uct.ac.za

R. Muloiwa email address: rudzani.muloiwa@uct.ac.za

2	
2	
5	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
١٥	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
20	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
47	
42	
45	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
50	
20	
59	
60	

REQUIRED STATEMENTS

Funding statement

This project was not supported by any funding source.

Conflict of interest disclosure

All authors have no conflicts of interest to declare.

Ethics approval statement

This study did not require ethics approval as it uses publicly available, published data.

Patient consent statement

This study did not require consent from patients as it uses no individual data.

Permission to reproduce material from other sources

This study has cited all references which are published and publicly available.

ABBREVIATIONS

- Acute liver failure (ALF)
- Hepatitis A virus (HAV)
- Hepatitis B virus (HBV)
- Hepatitis C virus (HCV)
- Hepatitis D virus (HDV)
- Hepatitis E virus (HEV)
- Epstein Barr virus (EBV)
- Herpes simplex virus-1 (HSV1)
- Herpes simplex virus-2 (HSV2)
- Varicella-zoster virus (VZV)
- Human parainfluenza viruses (HPIVs)
- Yellow fever virus (YFV)
- Human herpesvirus 6 (HHV-6)
- Cytomegalovirus (CMV)
- Coxsackievirus (CA16)
- Adenovirus (HAdVs)
- Medical Subject Headings (MESH)
- Low- and middle- income countries (LMICs)

2 3 4	1	ABSTRACT								
4 5	2	Objectives: The etiology and burden of viral-induced acute liver failure (ALF) remains unclear, globally. It								
6 7	3	is important to understand the epidemiology of viral-induced ALF to plan for clinical case management								
8	4	and case prevention.								
10	5	Participants: This systematic review was conducted to synthesize data on the relative contribution of								
11 12 13 14 15	6	different viruses to the etiology of viral-induced ALF in attempt to compile evidence that is currently								
	7	missing in the field. Five electronic databases were searched for relevant literature from 2009 to 2019.								
	8	Twenty-five eligible studies were included in the results of this review.								
16 17	9	Results: This systematic review estimated the burden of acute liver failure following infection with HBV,								
18 19	10	HAV, HBV, HCV, HEV, HSV/HHV, CMV, EBV, and parvo-virus B19. Data were largely missing for ALF								
20	11	following infection with VZV, HPIVs, YFV, CA16 and/or HAdVs. The prevalence of HAV-induced ALF was								
21 22	12	markedly lower in countries with routine HAV immunization vs no routine HAV immunization. Hepatitis								
23 24	13	E virus was the most common etiological cause of viral-induced ALF reported in this review. In addition,								
25	14	viral-induced ALF had poor outcomes as indicated by high fatality rates, which appear to increase with								
26 27	15	poor economic status of the studied countries.								
28 29	16	Conclusions: Immunization against HAV and HBV should be prioritized in LMICs to prevent high viral-								
30 21	17	induced ALF mortality rates, especially in settings where resources for managing acute liver failure are								
32	18	lacking. The expanded use of HEV immunization should be explored as HEV was the most common cause								
33 34	19	of ALF.								
35 36	20	Registration: PROSPERO registration number CRD42017079730								
37		Strengths and limitations								
38 39		• Our findings show that HAV, HBV and HEV, viruses with effective vaccines, account for a large								
40 41		proportion of viral-induced ALF etiologies.								
42		• The study identifies a specific virus, Hepatitis E, as the most common etiological cause of viral-								
43 44		induced ALF.								
45 46		• Findings are limited by lack of data for some of the viral etiologies of ALF including for VZV, HPIVs,								
47		YFV, CA16 and/or HAdVs, which may have led to an underestimation of the global burden of viral-								
48 49		induced ALF.								
50 51		• The diversity of viruses attributable to ALF cases and viral detection methods led to high								
52 53		heterogeneity and low statistical power in meta-analyses conducted.								
54										
55 56										
57 58		1								
BMJ Open

	• Our findings support that immunization against HAV, HBV should be prioritized, especially in LMICs where resources for managing viral-induced ALF are glaringly lacking.
21 22 23	MANUSCRIPT De skorevord
24 25	Dackground
25 26	following acute liver injury in an individual without are existing liver disease (1). The presence of
20 27	oncombalonathy is not required to define ALE in pandiatrics, but is an occontial component of the
21 20	definition in adults (1). Dessible squares of ALE include viral infections, drugs and toxins, programmy
20	definition in adults (1). Possible causes of ALF include viral infections, drugs and toxins, pregnancy
29	related liver diseases, vascular causes and/or malignancies. Acute viral nepatitis has been identified as
30 21	the most common cause of ALF among all ages in Asia and Africa and one of the most common causes of
31	ALF in children in Asia and South America (2, 3). The incidence of viral-induced ALF has substantially
32	declined in Europe following the introduction of universal immunization against the hepatitis B virus
33	(HBV), with only 19% of all ALF cases now attributable to viral infection in the European population (4).
34	The introduction of routine immunization against the hepatitis A virus (HAV) in Argentina has reduced
35	the number of hepatitis A induced ALF cases by more than 25% (4).
36	Fatality rates associated with ALF vary between 60% and 80%, depending on the disease etiology as well
37	as a patient's access to care (5, 6). Liver transplantation plays a central role in the management of ALF
38	and remains the only definitive treatment for patients who fail to demonstrate spontaneous recovery
39	(7). A large proportion of patients with ALF in both high and low resource settings, however, are deemed
40	to have contraindications to transplantation or deteriorate beyond transplantation before a liver donor
41	is found (8-10).
42	The burden of viral-induced ALF around the world still remains unclear, with little to no data collected
43	regarding the disease incidence (3). Establishing the etiology of viral-induced ALF is important for early
44	initiation of treatment, determining the prognosis of the liver failure and identifying potential
45	contraindications to liver transplantation. Most importantly, understanding the epidemiology of vaccine-
46	preventable etiologies of ALF should be prioritised in under-resourced regions with limited access to
47	facilities for transplantation. This review aims to synthesize data on the relative contribution of different
48	viruses to the etiology of viral-induced ALF in attempt to compile evidence that is currently missing in
 49	the field

50 Bernal et al. 2010 completed a review of the burden of acute and fulminant liver failure based on

51 literature published between 1997 and 2009. The review became the bases for guidelines for clinical

52 practice (5). In this systematic review, we assess whether data have changed following the Bernal

53 publication, and whether there is evidence to warrant a review of clinical practice.

Objectives

- To estimate the prevalence of hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus
 (HCV), hepatitis D virus (HDV), hepatitis E virus (HEV), Epstein Barr virus (EBV), herpes simplex
 virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella-zoster virus (VZV), parvo-virus B19,
 human parainfluenza viruses (HPIVs), yellow fever virus (YFV), human herpesvirus 6 (HHV-6),
 cytomegalovirus (CMV), coxsackievirus (CA16) and/or adenovirus (HAdVs) among patients with
 ALF.
 - To estimate the mortality rate for cases of ALF following infection with HAV, HBV, HCV, HDV, HEV, EBV, HSV1, HSV2, VZV, parvo-virus B19, HPIVs, YFV, HHV-6, CMV, CA16 and/or HAdVs
 - To estimate the prevalence and incidence of liver transplantation for cases of ALF following infection with HAV, HBV, HCV, HDV, HEV, EBV, HSV1, HSV2, VZV, parvo-virus B19, HPIVs, YFV, HHV-6, CMV, CA16 and/or HAdVs

67 <u>Methods</u>

This systematic review was registered with PROSPERO (registration number CRD42017079730) and the
 methods for its conduction have been published (11). The results of the review are reported using the
 Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines checklist.

72 Study eligibility criteria

Published cross-sectional, surveillance and cohort studies reporting the outcomes of interest in patients
with ALF following infection with HAV, HBV, HCV, HDV, HEV, EBV, HSV1, HSV2, VZV, parvo-virus B19,
HPIVs, YFV, HHV-6, CMV, CA16 and/or HAdVs were eligible for inclusion in this study. Studies were
eligible for inclusion if they had clearly stated case definitions of viral-induced ALF and confirmed ALF
cases using both clinical and serological, molecular or culture diagnostic methods.

79 Search strategy

Page 7 of 32

1 2

BMJ Open

3 ⊿	80	A combination of the following search terms (including the use of Medical Subject Headings (MESH))
5	81	was used and adapted for each of the relevant electronic databases: epidemiology, prevalence,
6 7	82	incidence, burden, mortality, morbidity, fulminant hepatic failure, fulminant liver failure, acute hepatic
8 0	83	failure, acute liver failure, Hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV),
10	84	hepatitis D virus (HDV), hepatitis E virus (HEV), Epstein Barr virus (EBV), herpes simplex virus-1 (HSV1),
11 12	85	herpes simplex virus-2 (HSV2), varicella-zoster virus (VZV), parvo-virus B19, human parainfluenza viruses
13 14	86	(HPIVs), yellow fever virus (YFV), human herpesvirus 6 (HHV-6), cytomegalovirus (CMV), coxsackie virus
15	87	and adenovirus.
16 17	88	
18 19	89	The following electronic databases were searched for relevant literature published from 2009 to 2019:
20	90	EBSCOhost, PubMed, ScienceDirect, Scopus and Web of Science. The search was run on 9 April 2019 and
21 22	91	updated via PubMed on 30 September 2019 with no new eligible studies to include.
23 24	92	
25	93	Data extraction
26 27	94	Study characteristics and outcomes of interests were extracted from the included studies on a pre-
28 29	95	designed data extraction form by two independent reviewers (JP and HH). Prior to use by the two
30	96	reviewers, the reliability of the extraction form was assessed by piloting 10 randomly selected articles
31 32	97	that met the inclusion criteria. The study team resolved any disagreements in data extraction through
33 34	98	consensus in consultation with RM. In cases where studies were in German, HH provided translation. In
35	99	cases where studies were not available in English or German, google translate was used to translate the
30 37	100	article to English (12).
38 39	101	
40 41	102	Data synthesis and analysis
41	103	A random-effects model was fitted to the study data as it included data taken from a series of
43 44	104	independently performed studies in different populations. We assessed heterogeneity by calculating I ²
45 46	105	statistics (threshold $I^2 > 40\%$). The values of I^2 were categorized for heterogeneity as follows: "not
40 47	106	important" (\leq 40%), "moderate" ($>$ 40% to \leq 60%) and "considerable" ($>$ 60% to \leq 80%) and
48 49	107	"substantial" ($> 80\%$ to $\leq 100\%$). Where "not important" or "moderate" heterogeneity existed
50 51	108	between studies (I ² \leq 40%), pooled outcome measures were reported with 95% confidence intervals for
52	109	each respective outcome. Where "considerable" or "substantial" heterogeneity exists between studies
53 54	110	(I ² > 40%), forest plots and prevalence ranges calculated using the random-effects model were used to
55 56	111	narratively describe each outcome.
57		4
58 59 60		Patterson, J et al. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

112 Risk of bias assessment

Each included study was assessed for risk of bias and quality using the Hoy *et al.*, 2012 tool for observational studies (13, 14). Studies were judged as having 'low risk' if scored 8-10, 'moderate risk' if scored 5-7 and 'high risk' if scored 0-5. All risk of bias judgements were made by both JP and HH. In case of disagreement in risk of bias and quality assessment, a final decision was made through consensus in consultation with RM.

5 119 Patient and public involvement

This review was developed as part of an ongoing project by the research team that aims to generate evidence to facilitate evidence-based decision-making of introducing routine hepatitis A vaccination in South Africa. The findings of this review contribute to the knowledge base that aims to enhance global vaccination strategies against viral-associated ALF. As this is a systematic review, no patient involvement was required; however, it is hoped that the findings of this review will help to highlight the burden that ALF places on populations without routine vaccination.

127 <u>Results</u>

The initial database searches yielded 6,952 records, from which 3,545 duplicates were removed. A further 3,263 were excluded following the screening of titles and abstracts (Figure 1). The full text of the remaining 144 records were screened by JP and HH, from which 25 studies were deemed to meet the final inclusion criteria. Twenty-four (96%) of the included studies were cohort studies. As detailed in Table 1, the included studies were published between 2009 and 2017. Included studies were conducted globally, with 7 studies and 3 studies conducted in India and Pakistan, respectively. The populations represented by the included studies spanned all age groups and included participants primarily from hospital settings. As the data in this review was sourced from a variety of countries, age groups and settings, the heterogeneity was considerable and/or substantial for all results. Thus, we narratively and graphically reported estimates of combined prevalence rates and the spreads of prevalence.

139 Vaccine-preventable viral-induced ALF

We narratively report the prevalence of HAV- and HBV-induced ALF by country immunization status. The point prevalence of HAV-induced ALF in countries with no routine HAV immunization at the time of data collection ranged from 2% to 81% with a combined of 27% (95% CI 13, 43), while the prevalence in countries with routine HAV immunization at the time of data collection ranged from 1% to 2% with a Page 9 of 32

BMJ Open

1 2		
3 4	144	combined of 2% (95% Cl 1, 3) (Figure 2). In Argentina, the prevalence of HAV-induced ALF prior to
5	145	routine immunization was approximately 50% (95% CI 45, 55), compared to approximately 1% (95% CI 0,
7	146	5) after immunization was introduced. The point prevalence of HBV-induced ALF in countries without
8 9	147	universal HBV immunization at the time of data collection ranged from 16% to 27% with a combined of
10	148	22% (95% CI 16, 30) (Figure 3). The point prevalence of HBV-induced ALF in countries with universal HBV
11	149	immunization at the time of data collection ranged from 0% to 83% with a combined of 20% (95% CI = 8 ,
13 14	150	35).
15	151	
16 17	152	ALF attributable to non-vaccine-preventable viral infections
18 10	153	The point prevalence of HCV-induced ALF ranged from 2% to 25% with a combined of 9% (95% CI = 1,
20	154	21) (Supplementary Figure 1). The point prevalence of HEV-induced ALF ranged from 3% to 70% with a
21 22	155	combined of 32% (95% CI 24, 41) (Supplementary Figure 2). The point prevalence of HDV-, HHV/HSV-,
23	156	CMV-, and EBV-induced ALF were estimated to have combined prevalences of 4% (95% CI 0, 13), 6%
24 25	157	(95% Cl 1, 12), 13% (95% Cl 1, 35) and 6% (95% Cl 0, 24), 10% (95% Cl 2, 22), 2% (95% Cl 0, 5), and 1%
26 27	158	(95% Cl 0, 5), respectively (Supplementary Figure 3). Data was not available to estimate the burden of
28	159	ALF following infection with HDV, VZV, HPIVS, YFV, CA16 and/or HAdVs as outlined per the published
29 30	160	protocol (11).
31 32	161	
33	162	Outcomes of viral-induced ALF
34 35	163	The narratively reported outcomes of viral-induced ALF were found to be severe. The mortality rates
36 37	164	associated with viral-induced ALF in lower-middle income countries ranged from 18% to 91% with a
38	165	combined mortality rate of 50% (95% CI 36, 64) (Figure 4A). The mortality rates associated with viral-
39 40	166	induced ALF in upper-middle income countries ranged 3% to 45% with a combined mortality rate of 26%
41 42	167	(95% Cl 1, 63) (Figure 4A). The mortality rates associated with viral-induced ALF in high income countries
43	168	ranged from 12% to 40% with a combined mortality rate of 29% (95% CI 17, 43) (Figure 4A). The rate of
44 45	169	encephalopathy associated with viral-induced ALE cases in children ranged from 69% to 100% with a
46 47	170	combined rate of 89% (95% Cl 79, 97) (Figure 4B). The need for liver transplantation with viral-
48	171	associated ALE ranged from 4% to 62% with a combined rate of 25% (95% CL 6, 53) (Figure 4B). The need
49 50	172	for renal transplant in viral-associated ALE cases ranged from 4% to 34% with a combined rate of 18%
51 52	173	(95% CL 2, A3) (Figure 4B)
53	174	(35% Cl 2, 45) (1501 C 45).
54 55	175	Methodological quality
56 57	110	
58 59 60		Patterson, J et al. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Risk of bias scores were assigned by two reviewers (JP and HH) and are described in Supplementary
Table 1. Overall, a majority of the included studies were judged as having 'low risk' of bias. Only one
included study was judged as having 'moderate risk' of bias due to lack of clarity around the
representativeness of the study population to the national population, methods of participant selection

180 and methods employed to reduce the likelihood of non-response.

182 Discussion

This systematic review estimated the burden of ALF following infection with HAV, HBV, HCV, HEV, HSV/HHV, CMV, EBV, and parvo-virus B19. The prevalence of HAV-induced ALF is markedly lower in countries with routine HAV immunization while HEV was the most common etiological cause of viralinduced ALF reported in this review. In addition, viral-induced ALF had poor outcomes as indicated by high fatality rates, which seem to increase with poor economic status of the studied countries.

The estimated prevalence of HAV-induced ALF in countries with routine HAV immunization was markedly lower than the estimated prevalence in countries without routine HAV immunization. When looking at countries with data before and after the introduction of routine HAV immunization, the reduction of HAV-induced ALF due to vaccination is further highlighted. The combined prevalence of HBV-induced ALF was the same in settings with or without universal HBV immunization. Countries without universal HBV immunization programs are likely to have weak healthcare systems; thus, the reported prevalence of HBV-induced ALF is assumed to be an underestimate of the true burden in these populations due to weak routine testing and reporting systems. Currently, there is one HEV vaccine (Hecolin) licensed in China that has shown promise with a high degree of efficacy in preventing HEV genotype IV infection in healthy individuals 16 to 65 years (15). Further exploration of the efficacy of this vaccine for prevention of infection with genotypes I and II in different populations should to explore it's application in different countries and HEV endemicity settings (16).

This review estimated the mortality rate for viral-induced ALF to be approximately 50% in low- and middle- income countries (LMICs) and less than 30% in upper-middle- and high-income countries. Previous studies have estimated that mortality rates associated with ALF vary between 60% and 80%, depending on the disease etiology as well as a patient's access to care. Our review shows that although viral-induced ALF still carries a significant mortality, though possibly lower than that reported for other ALF etiologies (5, 6). Mortality data largely comes from hospitals with the capacity to diagnose viral-

Page 11 of 32

1

BMJ Open

2	
3	208
4 5	209
6 7	210
8	211
9	211
10	212
12	213
13 14	214
15	215
16 17	216
18	217
19 20	218
21	219
22	220
24 25	221
26 27	222
28	223
29 30	224
31 32	225
33	226
34 35	227
36	227
37 38	220
39	229
40 41	230
42	231
43 44	232
45 46	233
47	234
48 49	235
50	236
51 52	237
53	238
54 55	250
56	239
57	
58	
59	

208 induced ALF, thus deaths outside of the hospital system or ALF deaths without virological testing may 209 not be captured in these mortality estimates. Liver transplantation is required by approximately 25% of 210 viral-induced ALF cases and approximately 18% of viral-induced ALF cases required renal 211 transplantation, globally. In addition to general lack of resources for transplantation, a significant 212 proportion of potential candidates have contraindications to transplant related to poor socioeconomic 213 status in LMICs. The transplant data included in this review may only reflect successful and unsuccessful 214 transplants, not those that were needed but not carried out due to resource constraints or 215 contraindications.

217 This review is limited by lack of data for some of the viral etiologies of ALF including for VZV, HPIVs, YFV, 218 CA16 and/or HAdVs, which may have led to an underestimation of the global burden of viral-induced 219 ALF. Additionally, we believe that our findings underestimate the global burden of viral-induced ALF as 220 some important causes of ALF (e.g. HSV/HHV) are believed to be underrecognized as they require PCR 221 testing for diagnosis. The included studies also used varying methods of virus detection including 222 serology and molecular tests which further added to the heterogeneity in the results of our review. This 223 is a well-recognized limitation in studies of ALF where diagnostics are often limited by cost in under-224 resourced regions where viral causes of ALF are more prevalent. The limited availability of data, 225 including lack of same country data on burden of disease before and after introduction of immunization, 226 hindered most of the planned sub-group analyses outlined in the study protocol. Where data were 227 available, high heterogeneity of the data led to planned meta-analyses and meta-regression analyses 228 not being possible. Lastly, the diversity of viruses attributable to ALF cases led to low statistical power in 229 meta-analyses conducted.

Future research should assess the burden of viral-induced ALF following infection with HDV, VZV, HPIVS, YFV, CA16 and HAdVs. Collectively, high-quality data on all viral etiologies of ALF would allow for better pooling of results. The review team encourages future studies to incorporate health economic estimates and mathematical modelling where data permits to assist health policy decision-makers to better design strategies for the prevention and management of viral-induced ALF. Epidemiological-economic modelling of immunization against HAV, HBV and HEV may well show that introduction of vaccination could lead to future cost savings in the long run due to prevented medical care and liver failure.

239 Conclusions

60

3 1	240	We successfully addressed the aim of the study although data on VZV, HPIVs, YFV, CA16 and/or HAdVs	;
4 5	241	were missing. Notwithstanding the noted limitations, it is clear that HAV, HBV and HEV – vaccine-	
6 7	242	preventable ALF etiologies – account for a large proportion of ALF (approximately 21%, 20%, 32% of	
8	243	viral-induced ALF cases, respectively). The burden of ALF that is associated with vaccine-preventable A	۱LF
9 10	244	etiologies should be used in conjunction with other available key evidence to inform practice and	
11 12	245	policies on immunization, particularly in LMICs. A majority of LMICs have established universal	
13	246	vaccination against HBV. The Word Health Organization has recently recommended the introduction o	of
14 15	247	an HBV birth dose which is aimed at elimination of the virus and, if successful, will subsequently reduc	e
16 17	248	the burden of HBV-induced ALF. Routine HAV immunization in LMICs, however, are lacking. More data	a is
18	249	urgently needed to guide routine use of the vaccine in prevention of morbidity and mortality caused b	v
19 20	250	the virus. Lastly, further applicability of HEV vaccines should be explored, especially in LMICs where	
21 22	251	resources for managing viral-induced ALF are glaringly lacking.	
22	252		
24 25			
26 27			
27 28			
29			
30 31			
32			
33 34			
35			
36			
37 38			
39			
40			
41 42			
42 43			
44			
45			
46 47			
48			
49			
50			
51			
52 53			
54			
55			
56			~
57			9
58		Detterson Lot al	
59 60		Fallerson, J et al. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2		
3	253	Contributors
4 5	254	JP, GDH, BK and RM conceived this study. JP implemented the review under the supervision of RM. JP
6 7	255	and HSH performed the study search, screening and extraction of data under the guidance of RM. GDH
8	256	and BK provided methodological expertise for this review. SS, LG, MS, and WS provided content
9 10	257	expertise for this review and all authors will provided comments on the final manuscript before
11 12	258	publication. JP is the guarantor of this review.
13 14	259	Funding
14	260	This research received no specific grant from any funding agency in the public, commercial or not-for-
16 17	261	profit sectors. The Vaccines for Africa Initiative (VACFA) has funded the costs associated with the
18 10	262	research and dissemination of the results, including publications.
20	263	Competing interests
21 22	264	None declared.
23 24	265	Data availability
24 25	266	All data were taken from published articles available in the public domain.
26 27	267	Patient consent for publication
28	268	Not required.
29 30		
31 32		
33		
34 35		
36 37		
38		
39 40		
41 42		
43		
44 45		
46		
47 48		
49 50		
50		
52		
53 54		
55		
56		
57 58		
59		Patterson, J et al.
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

REFERENCES

- 1. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. Journal of Hepatology. 2017;66(5):1047-81.
- 2. Morabito V, Adebayo D. Fulminant Hepatitis: Definitions, Causes and Management. Health. 2014;06(10):1038-48.
 - European Association for the Study of the Liver. Electronic address eee, Clinical practice guidelines p, Wendon J, Panel m, Cordoba J, Dhawan A, et al. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J Hepatol. 2017;66(5):1047-81.
 - Cervio G, Trentadue J, D'Agostino D, Luque C, Giorgi M, Armoni J, et al. Decline in HAV-associated fulminant hepatic failure and liver transplant in children in Argentina after the introduction of a universal hepatitis A vaccination program. Hepat Med. 2011;3:99-106.
 Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet. 2010;376(Seminar):190-201.
- 6. Wlodzimirow KA, Eslami S, Abu-Hanna A, Nieuwoudt M, Chamuleau RA. Systematic review: acute liver failure one disease, more than 40 definitions. Aliment Pharmacol Ther. 2012;35(11):1245-56.
- 7. Lee WM, Stravitz RT, Larson AM. Introduction to the revised American Association for the Study of Liver Diseases Position Paper on acute liver failure 2011. Hepatology. 2012;55(3):965-7.
- 8. Spearman CW, McCulloch M, Millar AJ, Burger H, Numanoglu A, Goddard E, et al. Liver transplantation at Red Cross War Memorial Children's Hospital. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde. 2006;96(9 Pt 2):960-3.
- 9. O'Grady JG. Acute liver failure. Postgrad Med J. 2005;81(953):148-54.

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57 58

59

- 10. O'Grady J. Liver transplantation for acute liver failure. Best Pract Res Clin Gastroenterol. 2012;26(1):27-33.
- 11. Patterson J, Hussey HS, Abdullahi LH, Silal S, Goddard L, Setshedi M, et al. The global epidemiology of viral-induced acute liver failure: a systematic review protocol. BMJ Open. 2019.
- 12. Balk E, Ching M, Chen M, Trikalinos T, L KWC. Assessing the Accuracy of Google Translate to Allow Data Extraction From Trials Published in Non-English Languages. Rockville, USA: Agency for Healthcare Research and Quality; 2013 Jan 2013. Contract No.: EHC145-EF.
- 13. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C. Assessing risk of bias in prevalence studies: Modification of an existing tool and evidence of interrater aggreement. Journal of Clinical Epidemiology. 2012;65:934-9.
- 14. Werfalli M, Musekiwa A, Engel ME, Ross I, Kengne AP, Levitt NS. The prevalence of type 2 diabetes mellitus among older people in Africa: a systematic review study protocol. BMJ Open. 2014.
- 15. Li SW, Zhao Q, Wu T, Chen S, Zhang J, Xia NS. The development of a recombinant hepatitis E vaccine HEV 239. Hum Vaccin Immunother. 2015;11(4):908-14.
- 16. Wu X, Chen P, Lin H, Hao X, Liang Z. Hepatitis E virus: Current epidemiology and vaccine. Human Vaccines and Immunotherapeutics. 2016;12(10):2603-10.
- 17. Alam S, Azam G, Mustafa G, Azad AK, Haque I, Gani S, et al. Natural course of fulminant hepatic failure: the scenario in Bangladesh and the differences from the west. Saudi J Gastroenterol. 2009;15(4):229-33.
- 18. Asim M, Singla R, Gupta RK, Kar P. Clinical & molecular characterization of human TT virus in different liver diseases. Indian Journal of Medical Research. 2010;131(4):545-54.
- 19. Bechmann LP, Manka P, Best J, Saner FH, Paul A, Canbay A, et al. Drug-induced liver injury as predominant cause of acute liver failure in a monocenter study. Deutsche Medizinische Wochenschrift. 2014;139(17):878-82.
- 20. Bhatia V, Dhawan A, Arora NK, Mathur P, Das MK, Irshad M. Urinary potassium loss in children with acute liver failure and acute viral hepatitis. J Pediatr Gastroenterol Nutr. 2013;57(1):102-8.
- 21. Borkakoti JH, R. K.; Mohammad, A.; Kumar, A.; Kar, P. Does high viral load of hepatitis E virus influence the severity and prognosis of acute liver failure during pregnancy? Journal of Medical Virology. 2013;85(4):620-6.
- Bravo LC, Gregorio GV, Shafi F, Bock HL, Boudville I, Liu Y, et al. Etiology, incidence and outcomes of acute hepatic failure in 0-18 year old Filipino children. Southeast Asian J Trop Med Public Health. 2012;43(3):764-72.
- 23. Das AK, Begum T, Kar P, Dutta A. Profile of Acute Liver Failure from North-east India and Its Differences from other Parts of the Country. Euroasian J Hepatogastroenterol. 2016;6(2):111-5.
- 24. Gupta P, Mittal M, Bhat NK, Agarwal RK, Gupta P, Mittal G. A hospital based retrospective study on hepatotropic viruses as a cause of acute viral hepatitis in children in Uttarakhand, India. Indian Journal of Community Health. 2015;27(4):451-5.
- 25. Ho CM, Lee CH, Wang JY, Lee PH, Lai HS, Hu RH. Nationwide longitudinal analysis of acute liver failure in taiwan. Medicine (Baltimore). 2014;93(4):e35.
- 26. Latif N, Mehmood K. Risk factors for fulminant hepatic failure and their relation with outcome in children. J Pak Med Assoc. 2010;60(3):175-8.
- 27. Mamun Al M, Rahman S, Khan M, Karim F. HEV infection as an aetiologic factor for acute hepatitis: experience from a tertiary hospital in Bangladesh. J Health Popul Nutr. 2009;27(1):14-9.
 - 28. Manka P, Bechmann LP, Coombes JD, Thodou V, Schlattjan M, Kahraman A, et al. Hepatitis E Virus Infection as a Possible Cause of Acute Liver Failure in Europe. Clin Gastroenterol Hepatol. 2015;13(10):1836-42.e2; quiz e157-8.
 - Mendizabal MM, S.; Videla, M. G.; Anders, M.; Zerega, A.; Balderramo, D. C.; Chan, D.; Barrabino, M.; Gil, O.; Mastai, R.; Yantorno, S.;
 Gadano, A.; Silva, M. O. Changing etiologies and outcomes of acute liver failure: Perspectives from 6 transplant centers in Argentina. Liver Transplantation. 2014;20(4):483-9.
 - 30. Mishra SB, J.; Kumar, S.; Kar, P. Role of HEV antigen detection in HEV-related acute viral hepatitis and acute liver failure. Journal of Medical Virology. 2016;88(12):2179-85.
 - 31. Mumtaz K, Azam Z, Hamid S, Abid S, Memon S, Ali Shah H, et al. Role of N-acetylcysteine in adults with non-acetaminophen-induced acute liver failure in a center without the facility of liver transplantation. Hepatology International. 2009;3(4):563-70.
 - 32. Pandit A, Mathew LG, Bavdekar A, Mehta S, Ramakrishnan G, Datta S, et al. Hepatotropic viruses as etiological agents of acute liver failure and related-outcomes among children in India: a retrospective hospital-based study. BMC Res Notes. 2015;8:381.

BMJ Open

1		
2		
3	33.	Poovorawan Y, Chongsrisawat V, Shafi F, Boudville I, Liu Y, Hutagalung Y, et al. Acute hepatic failure among hospitalized Thai abildron Southeast Asian L Tran Mad Public Lealth 2013;44(4):50.2
4 5	34.	Schwarz KBO, Dominic Dell; Lobritto, Steven J.; Lopez, M. James; Rodriguez-Baez, Norberto; Yazigi, Nada A.; Belle, Steven H.; Zhang,
6		Song; Squires, Robert H.; for the Pediatric Acute Liver Failure Study, Group. Analysis of Viral Testing in Nonacetaminophen Pediatric
7	35.	Shalimar, Kedia S, Gunjan D, Sonika U, Mahapatra SJ, Navak B, et al. Acute Liver Failure Due to Hepatitis E Virus Infection Is
8		Associated with Better Survival than Other Etiologies in Indian Patients. Dig Dis Sci. 2017;62(4):1058-66.
9	36.	Silverio CE, Smithen-Romany CY, Hondal NI, Diaz HO, Castellanos MI, Sosa O. Acute liver failure in Cuban children. MEDICC Rev. 2015:17(1):48-54.
10	37.	Somasekar SL, D.; Rule, J.; Naccache, S. N.; Stone, M.; Busch, M. P.; S.; ers, C.; Lee, W. M.; Chiu, C. Y. Viral Surveillance in Serum
12		Samples from Patients with Acute Liver Failure by Metagenomic Next-Generation Sequencing. Clinical Infectious Diseases.
13	38.	Uddin Jamro BMC, S.; Mal Makheja, P.; Ahmed Soomro, A. Etiology, outcome and risk factors for fulminant hepatic failure in children
14	20	at a tertiary care hospital, Sukkur, Pakistan. Rawal Medical Journal. 2013;38(3):219-22.
15	39.	immunocompetent children. Pediatr Int. 2017;59(5):551-6.
16	40.	Zhao P, Wang CY, Liu WW, Wang X, Yu LM, Sun YR. Acute liver failure in Chinese children: a multicenter investigation. Hepatobiliary
17		Pancreat Dis Int. 2014;13(3):276-80.
10 19		
20		
21		
22		
23		
24		
25 26		
27		
28		
29		
30		
31		
32 33		
34		
35		
36		
37		
38		
39 40		
40		
42		
43		
44		
45		
40 47		
48		
49		
50		
51		
52		
55 54		
55		
56		
57		2
58		

FIGURE LEDENDS

2	
5 4	FIGURE LEDENDS
5	
6	Figure 1
7	PRISMA Flow Diagram describing selection of studies.
8	
9	Figure 2
10	Abbreviations: HAV = hepatitis A virus, ALF = acute liver failure, CI = confidence interval, I2 =
11	heterogeneity statistic
12	
13	Figure 3
14	Abbroviations: HDV - bonatitic Bivirus, ALE - asuto liver failure, CL - confidence interval, 12 -
15	Abbreviations. HBV – hepatitis B virus, ALF – acute iiver failure, CI – confidence interval, 12 –
16	neterogeneity statistic
17	
18	Figure 4
19	Abbreviations: ALF = acute liver failure, CI = confidence interval, I2=heterogeneity statistic, NA = not
20	applicable
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 21	
31 20	
22 22	
37	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	Dottorson Latal
74	

60

			TABLES				
Table 1: Characteristics	of included studies	3					
Study	Study Design	Aim	Country	Income Level	Start of Data Collection	End of Data Collection	ALF Case Definition
Alam et al., 2009 (17)	Prospective cohort	To evaluate the etiology, complications, and outcome of FHF	Bangladesh	Lower- middle	3-Nov	8-May	Occurrence of hepat encephalopathy withi weeks of onset of jaund patients with no previous disease and the presen coagulopathy as proved PT > 15 s or INR > 1
Asim et al., 2009 (18)	Cross- sectional	To analyze serum samples from patients with ALF for hepatitis A-G viral markers	India	Lower- middle	1-Jun	4-May	Patient become deep jaundiced and went in hepatic encephalopathy 8 weeks of onset of t disease, with no past hi of chronic hepatitis
Bechmann et al., 2014 (19)	Retrospective cohort	To identify currently predominant etiologies of ALF at a transplant center	Germany	High	1-Jan	12-Feb	Acute Liver Failure St Group Germany cas definition: INR > 1.5 a encephalopathy of any g Pre-existing liver diseas systemic cause of liver f were excluded
Bhatia et al., 2013 (20)	Prospective cohort	To analyze clinical features, liver function tests, hepatitis viral markers and clinical outcomes in patients with ALF	India	Lower- middle	Jun-99	1-Jan	Development of hepa encephalopathy within weeks of the first symp of acute hepatitis-like ill without any history o underlying liver disea
Borkakoti et al., 2013 (21)	Prospective cohort	To determine the viral load of HEV and its association with the disease severity in patients with ALF in comparison with patients with ALF due to other hepatides	India	Lower- middle	6-Jan	11-Dec	Development of encephalopathy within weeks of the onset of jaundice without any p history of chronic live disease; diagnosed as a limiting disease and a s aspartate aminotransfe elevation of at least fivef clinical jaundice or bo

Bravo et al., 2012 (22)	Prospective & retrospective cohort	To investigate the etiology, outcomes and incidence of AHF among children 0-18 years old	Philippines	Lower- middle	Jan-00	6-Dec	Onset of coagulopathy and/or encephalopathy ≤4 weeks after the onset of symptoms, a prothrombin time > 2, an increased bilirubin and evidence for liver failure complicated by encephalopathy
Cervio et al., 2011 (4)	Retrospective cohort	To investigate the impact of HAV UI on the trends in the occurrence of FHF in children	Argentina	High	Mar-93	5-Jul	Mieli-Vergani case definition: a multisystem disorder in which severe impairment of liver function, with or without encephalopathy, occurs in association with hepatocellular necrosis in a patient with or without recognized underlying chronic liver disease (Cheeseman & Mieli-Vergani, 2004)
Das et al., 2016 (23)	Prospective cohort	To determine the profile of ALF etiologies	India	Lower- middle	7-Jan	15-Dec	History of development of encephalopathy within 8 weeks of disease onset
Gupta et al., 2015 (24)	Retrospective cohort	To determine the profile of Hepatitis A, B, C and E as a cause of AHF in children in a tertiary care hospital	India	Lower- middle	11-Jan	14-Dec	Elevated ALT levels or AST of at least five-fold with clinical jaundice and without evidence of chronic liver disease. Patients who had INR > 1.5 with encephalopathy or INR > 2 without encephalopathy
Ho et al., 2014 (25)	Prospective cohort	To investigate the incidence, etiology, outcomes, and prognostic factors of ALF	Taiwan	High income	5-Jan	7-Sep	International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9- CM) code 570.0
Latif et al., 2010 (26)	Prospective cohort	To identify the risk factors for FHF and their relationship with the outcome in children	Pakistan	Lower- middle	6-Sep	7-Feb	Development of encephalopathy within 8 weeks of the onset of jaundice having evidence of coagulopathy i.e. PT deranges > 4 s of control and deranged liver function i.e. TSB > 1.5 mg/dl, AT > 40 IU/

59

Mamun et al., 2009 (27)	Retrospective cohort	To assess the burden of HEV as a cause of ALF	Bangladesh	Lower- middle	4-Jun	6-Dec	Previously healthy pat who presented with se impairment of hepato-c function, i.e. encephalo coagulopathy, and jau within six months of on symptoms
Manka et al., 2015 (28)	Retrospective cohort	To investigate the causes of previously diagnosed indeterminate cases ALF	Germany	High	6-Nov	13-Dec	Significant liver dysfun with pathologically incre laboratory parameters ALT, AP], an existin coagulopathy in terms INR > 1.5, and with concomitant presence degree of encephalop
Mendizabal et al., 2014 (29)	Retrospective cohort	To determine the causes and short- term outcomes of ALF	Argentina	High	5-Jun	11-Dec	Presence of coagulop [INR > 1.5 or prothror index < 50%] and any of HE within 26 weeks first symptoms witho known underlying liv disease
Mishra et al., 2016 (30)	Retrospective cohort	To assess the relative efficacy of HEV antigen detection by ELISA in patients with ALF	India	Lower- middle	13-Nov	15-Jan	Any evidence of coagu abnormality, generally >1.5 and any degree mental alteration (encephalopathy) witho existing cirrhosis and w illness of < 4 weeks du
Mumtaz et al., 2009 (31)	Prospective cohort compared to historical control	To assess the etiology, prothrombin time (PT), alanine aminotransferase, creatinine, albumin for non- acetaminophen- induced ALF	Pakistan	Lower middle	Jan-00	7-Mar	Rapid development of liver injury with impai synthetic function a encephalopathy in a p who previously had a n liver
Pandit et al., 2015 (32)	Retrospective cohort	To assess the frequency of hepatotropic viruses as etiological agents of ALF	India	Lower- middle	3-Jan	5-Dec	Onset of encephalopath days after the onset symptoms with INR > 2 increased bilirubin complicated by

							without a previous history of liver disease
Poovorawan (33) et al., 2013	Prospective cohort	To determine the causes and outcomes of Thai children with AHF	Thailand	Upper- middle	2-Jan	5-Sep	International Association for the Study of the Liver case definition: (Tandon et al, 1999)
Schwarz et al., 2014 (34)	Retrospective cohort - Patient registry	To analyzed results of viral testing among non- acetaminophen ALF study participants	USA/Canada/UK	High	Dec-99	12-Dec	No known evidence of chroni liver disease, with evidence of acute liver injury, and hepatic based coagulopathy not corrected by vitamin K with the follow parameters: PT ≥ 15 s or INR ≥ 1.5 in the presence of clinical HE or a PT ≥ 20 s or INR ≥ 2.0 regardless of the presence of absence of clinical HE
Shalimar et al., 2017 (35)	Retrospective cohort	To assess the differences in the course of HEV- ALF as compared to other etiologies of ALF	India	Lower middle	Jan-86	15-Dec	International Association for the Study of Liver (IASL) cas definition: Occurrence of encephalopathy within 4 weeks from the onset of symptoms in the absence of preexisting liver disease
Silverio et al., 2015 (36)	Retrospective cohort	To describe the clinical features of children treated for ALF	Cuba	Upper- middle	5-Jan	11-Dec	Evidence of liver damage in the absence of prior known chronic liver disease; altered coagulation, expressed as P >15 s with encephalopathy; o PT > 20 s with or without encephalopathy—all this within eight weeks of onset of clinical symptoms
Somasekar et al., 2017 (37)	Retrospective cohort	To investigate the causes of previously diagnosed indeterminate cases ALF	United States	High	Jan-98	10-Dec	<i>United States Acute Liver</i> <i>Failure Study Group</i> case definition
Uddin Jamro et al., 2013 (38)	Retrospective cohort	To study the etiology, outcome and risk factors for FHF in children at	Pakistan	Lower- middle	7-Jul	12-Jun	Presence of acute liver failur (coagulopathy PT > 20 s or INR > 2), HE without pre- existing liver disease, within

		a tertiary care hospital					weeks of the onset of o
Tsunoda et al., 2017 (39)	Prospective cohort	To identify the roles of CMV, EBV and HHV in immunocompetent children with acute liver failure not resulting from hepatitis virus	Japan	High	7-Jan	13-Dec	Liver dysfunction w elevated AST and ALT IU/L
Zhao et al., 2014 (40)	Retrospective cohort	To investigate etiologies and outcomes of children with ALF	China	Middle	7-Jan	12-Dec	Coagulopathy [PTA ≤4 INR ≥ 1.5 excludin hematologic diseases jaundice [Tbil ≥ 171 µr within 4 weeks in a c without pre-existing I diseases
alkaline phosphatase; P	TA = plasma throm	nboplastin antecedent					
alkaline phosphatase; P	TA = plasma thron	boplastin antecedent					
alkaline phosphatase; P	TA = plasma throm	nboplastin antecedent					
alkaline phosphatase; P	TA = plasma throm	nboplastin antecedent					
alkaline phosphatase; P	TA = plasma throm	nboplastin antecedent					

Figure 1: Flow diagram for selection of studies

Page 23 of 32 BMJ Open Figure 2: Prevalence of HAV-induced ALF by country HAV immunization status

Sludy		Estimate (95% CI)	Country	Data start	Data er
No routine vaccination					
Asim et al., 2008		0.04 (0.00, 0.14)	India	Jun-01	May-04
Mumtaz et al., 2009	-	0.02 (0.00, 0.08)	Pakistan	Jan-00	Mar-07
Alam et al., 2009		0.07 (0.02, 0.17)	Bangladesh	Nov-03	May-08
Latif et al., 2010		0.56 (0.41, 0.70)	Pakistan	Sep-06	Feb-07
Cervio et al., 2011	+	0.50 (0.45, 0.55)	Argentina	Mar-93	Jul-05
Bravo et al., 2012		0.29 (0.10, 0.56)	Philippines	Jan-00	Dec-06
Bhati et al., 2013		0.52 (0.31, 0.72)	India	Jun-99	Jan-01
Uddin Jamro et al., 2013		0.81 (0.69, 0.90)	Pakistan	Jul-07	Jun-12
Borkakoti et al., 2013	-	0.07 (0.05, 0.11)	India	Jan-06	Dec-11
Bechmann et al., 2014	+	0.07 (0.04, 0.13)	Germany	Jan-01	Feb-12
Gupta et al., 2015		0.50 (0.29, 0.71)	India	Jan-11	Dec-14
Pandit et al., 2015		- 0.66 (0.49, 0.80)	India	Jan-03	Dec-05
Mishra et al., 2016		0.22 (0.10, 0.39)	India	Nov-13	Jan-15
Das et al., 2016	-	0.30 (0.24, 0.36)	India	Jan-07	Dec-15
Shalimar et al., 2017	-	0.02 (0.01, 0.02)	India	Jan-86	Dec-15
Subtotal (I ² = 98.52%)		0.27 (0.13, 0.43)			
Routine vaccination					
Mendizabal et al., 2014	-	0.01 (0.00, 0.05)	Argentina	Jun-05	Dec-11
Schwarz et al., 2014	-	0.02 (0.01, 0.04)	USA/Canada/UK	Dec-99	Dec-12
Somasekar et al., 2017	-	0.02 (0.01, 0.05)	United States	Jan-98	Dec-10
Subtotal (I ² = NA)	•	0.02 (0.01, 0.03)			

Figure 3: Prevalence of HBV-induced ALF by country HBV immunization status

2 3 4	Study			Estimate (95% CI)	Country	Data start	Data end
5	Introduced in data collection period						
6 7	Asim et al., 2008			0.14 (0.06, 0.27)	India	Jun-01	May-04
8 0	Mamun et al., 2009			0.35 (0.16, 0.57)	Bangladesh	Jun-04	Dec-06
10	Uddin Jamro et al., 2013			0.18 (0.09, 0.30)	Pakistan	Jul-07	Jun-12
11 12	Shalimar et al., 2017	-		0.09 (0.07, 0.10)	India	Jan-86	Dec-15
13 14	Subtotal ($I^2 = 81.55\%$)	\diamond		0.16 (0.07, 0.27)			
15 16	No universal immunization						
17 18	Mumtaz et al., 2009			0.27 (0.19, 0.38)	Pakistan	Jan-00	Mar-07
19	Latif et al., 2010			0.18 (0.09, 0.31)	Pakistan	Sep-06	Feb-07
20 21	Bhati et al., 2013			0.16 (0.05, 0.36)	India	Jun-99	Jan-01
22 23	Subtotal $(I^2 = NA)$	\diamond		0.22 (0.16, 0.30)			
24 25 26	Universal immunization						
20 27	Alam et al., 2009			0.19 (0.11, 0.31)	Bangladesh	Nov-03	May-08
28 20	Bravo et al., 2012			0.10 (0.01, 0.30)	Philippines	Jan-00	Dec-06
30	Poovorawan et al., 2013		-	0.09 (0.00, 0.41)	Thailand	Jan-02	Sep-05
31 22	Borkakoti et al., 2013			0.47 (0.41, 0.52)	India	Jan-06	Dec-11
33	Mendizabal et al., 2014			0.30 (0.23, 0.38)	Argentina	Jun-05	Dec-11
34 25	Schwarz et al., 2014	-		0.01 (0.00, 0.03)	USA/Canada/UK	Dec-99	Dec-12
36	Ho et al., 2014			0.73 (0.63, 0.81)	Taiwan	Jan-05	Sep-07
37 38	Bechmann et al., 2014			0.19 (0.13, 0.26)	Germany	Jan-01	Feb-12
39	Gupta et al., 2015			0.38 (0.19, 0.59)	India	Jan-11	Dec-14
40 41	Pandit et al., 2015			0.19 (0.09, 0.33)	India	Jan-03	Dec-05
42	Mishra et al., 2016			0.33 (0.19, 0.51)	India	Nov-13	Jan-15
43 44	Das et al., 2016	-		0.03 (0.01, 0.06)	India	Jan-07	Dec-15
45	Somasekar et al., 2017	-		0.02 (0.01, 0.05)	United States	Jan-98	Dec-10
46 47	Subtotal ($I^2 = 97.77\%$)	\diamond		0.20 (0.08, 0.35)			
48 49 50							
51			<u> </u>				
52 52	(D2 .	4 .6 .8	1			
55 54		For peer review	only - http://bmjopen.br	mj.com/site/about/guidelines.xht	ml		
55							

Figure 34: Prevalence of outcomes associated witheviral-induced ALF

Mortality rates associated with viral-induced ALF by country income status А

2			
\$tudy		Estimate (95% CI)	Country
4 5Lower-middle income			
6Mumtaz et al., 2009		0.63 (0.52, 0.73)	Pakistan
⁷ Alam et al., 2009		0.73 (0.61, 0.83)	Bangladesh
⁸ Mamun et al., 2009		- 0.91 (0.72, 0.99)	Bangladesh
9 Latif et al., 2010		0.60 (0.45, 0.74)	Pakistan
$_{1}$ Bravo et al., 2012		• 0.85 (0.65, 0.96)	Philippines
1 blddin Jamro et al., 2013		0.73 (0.60, 0.83)	Pakistan
1 B hati et al., 2013		0.36 (0.18, 0.57)	India
1 Borkakoti et al., 2013	-	0.22 (0.18, 0.27)	India
¹ Pandit et al., 2015		0.24 (0.13, 0.38)	India
16 Mishra et al., 2016		0.33 (0.19, 0.51)	India
1 1 Das et al., 2016	+	0.29 (0.23, 0.35)	India
1 § halimar et al., 2017	-	0.18 (0.17, 0.21)	India
2 G ubtotal (l ² = 96.76%)	\diamond	0.50 (0.36, 0.64)	
21	-	, i ,	
² High income			
23 - Cervio et al., 2011	-	0.39 (0.34, 0.44)	Argentina
24 ₂≓o et al., 2014		0.40 (0.31, 0.51)	Taiwan
26/endizabal et al., 2014	-	0.27 (0.20, 0.35)	Argentina
2Bechmann et al., 2014	-	0.12 (0.08, 0.19)	Germany
2§ubtotal (l ² = 93.81%)	\diamond	0.29 (0.17, 0.43)	
29			
30 Upper-middle income			
3 Boovorawan et al., 2013		0.45 (0.17, 0.77)	Thailand
3 Z hao et al., 2014		0.03 (0.00, 0.16)	China
3&ilverio et al., 2015		0.42 (0.25, 0.61)	Cuba
3 S ubtotal (I ² = NA)	$\langle \rangle$	0.26 (0.01, 0.63)	
36			
37			
<u>30</u> 39		1	

0 .2 .4 .6 .8 1

Study Estimate (95% CI) Country Renal failure Alam et al., 2009 Bangladesh 0.34 (0.23, 0.47) Mumtaz et al., 2009 0.22 (0.14, 0.32) Pakistan Shalimar et al., 2017 0.04 (0.03, 0.05) India Subtotal (I² = NA) 0.18 (0.02, 0.43) Encephalopathy Latif et al., 2010 - 0.90 (0.78, 0.97) Pakistan Cervio et al., 2011 0.83 (0.79, 0.87) Argentina Bravo et al., 2012 0.69 (0.48, 0.86) Philippines Uddin Jamro et al., 2013 ■ 1.00 (0.94, 1.00) Pakistan Poovorawan et al., 2013 0.91 (0.59, 1.00) Thailand 0.89 (0.77, 0.96) Pandit et al., 2015 India 0.89 (0.79, 0.97) Subtotal $(I^2 = 85.11\%)$ Liver transplant Cervio et al., 2011 0.62 (0.56, 0.67) Argentina Mendizabal et al., 2014 0.54 (0.46, 0.62) Argentina Bechmann et al., 2014 0.12 (0.07, 0.18) Germany Silverio et al., 2015 0.10 (0.02, 0.26) Cuba Tsunoda et al., 2017 0.04 (0.01, 0.12) Japan Subtotal $(l^2 = 98.22\%)$ 0.25 (0.06, 0.53) 0 .2 .4 .6 .8 1

: Prevalence of clinical outcomes associated with viral-induces ALF

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

В

42 43

44

Supplementary Figure 1: Prevalence of HCV-induced ALF

1

2 3 4	Study		Estimate (95% CI)	Country	Data start	Data end
5 6 7 8	Asim et al., 2008	-	0.06 (0.01, 0.17)	India	Jun-01	May-04
9 10 11	Bravo et al., 2012		0.20 (0.01, 0.72)	Philippines	Jan-00	Dec-06
12 13 14	Uddin Jamro et al., 2013	-	0.02 (0.00, 0.09)	Pakistan	Jul-07	Jun-12
15 16 17	Borkakoti et al., 2013	-	0.25 (0.21, 0.31)	India	Jan-06	Dec-11
18 19 20	Ho et al., 2014		0.25 (0.17, 0.35)	Taiwan	Jan-05	Sep-07
21 22 23	Silverio et al., 2015	-	0.03 (0.00, 0.17)	Cuba	Jan-05	Dec-11
24 25 26	Somasekar et al., 2017		0.02 (0.01, 0.05)	United States	Jan-98	Dec-10
27 28 29	Overall (I ² = 94.01%)	\Diamond	0.09 (0.01, 0.21)			
30 31 32 33						
34 35 36 37 38	For peer re Abbreviations: HCV = hepatitis C virus, ALF = a	United Billing Contractions of the second se	3 mjopen.bmj.com/site/about/gui e, CI = confidence interval,	delines.xhtml I ² = heterogeneity s	tatistic	

Supplementary Figure 2: Prevalence of HEV-induced ALF

2 3 4	Study		Estimate (95% CI)	Ν	N Pregnant	Country	Date start	Date end
5 6 7	Asim et al., 2008		0.43 (0.29, 0.58)	49		India	Jun-01	May-04
8 9	Mamun et al., 2009		0.57 (0.34, 0.77)	23		Bangladesh	Jun-04	Dec-06
10 11	Alam et al., 2009		0.70 (0.58, 0.81)	67	10	Bangladesh	Nov-03	May-08
12 13	Mumtaz et al., 2009		0.44 (0.34, 0.55)	91	9	Pakistan	Jan-00	Mar-07
14 15 16	Bhati et al., 2013		0.24 (0.09, 0.45)	25		India	Jun-99	Jan-01
17 18	Borkakoti et al., 2013		0.33 (0.28, 0.39)	318	160	India	Jan-06	Dec-11
19 20	Gupta et al., 2015		0.12 (0.03, 0.32)	24		India	Jan-11	Dec-14
21 22 23	Manka et al., 2015		0.17 (0.09, 0.28)	70		Germany	Nov-06	Dec-13
24 25	Pandit et al., 2015		0.03 (0.00, 0.17)	54		India	Jan-03	Dec-05
26 27	Das et al., 2016	-	0.13 (0.09, 0.18)	255		India	Jan-07	Dec-15
28 29 30	Mishra et al., 2016		0.61 (0.43, 0.77)	36	5	India	Nov-13	Jan-15
31 32	Shalimar et al., 2017	-	0.29 (0.26, 0.31)	146	2 175	India	Jan-86	Dec-15
33 34 35 36 37	Overall (l ² = 92.60%)	\diamond	0.32 (0.24, 0.41)					
38 39 40 41 42	Abbreviations: HEV = hepatitis E	i I I I I ^D ^{.2} For peer review only virus, ALF = acute live	I ³ http://bmjopen.bmj.com/site/ab r failure, CI = confidence ir	out/g	uidelines.xhtml al, I ² = hetero	geneity statis	tic	

Supplementary Figure 3: Prevalence of HDV-, HHV/HSV-, CMV- and EBV-induced AFL

Study	Estimate (95% CI)	Country	Data start	Data en
HDV				
Ho et al., 2014	0.03 (0.01, 0.09)	Taiwan	Jan-05	Sep-07
Mumtaz et al., 2009	— 0.12 (0.06, 0.21)	Pakistan	Jan-00	Mar-07
Somasekar et al., 2017	0.00 (0.00, 0.03)	United States	Jan-98	Dec-10
Subtotal (I ² = NA)	• 0.04 (0.00, 0.13)			
HHV/HSV				
Mendizabal et al., 2014	0.01 (0.00, 0.04)	Argentina	Jun-05	Dec-11
Schwarz et al., 2014	- 0.12 (0.08, 0.16)	USA/Canada/Uł	C Dec-99	Dec-12
Silverio et al., 2015	0.06 (0.01, 0.21)	Cuba	Jan-05	Dec-11
Somasekar et al., 2017	0.03 (0.01, 0.07)	United States	Jan-98	Dec-10
Tsunoda et al., 2017	— 0.10 (0.04, 0.20)	Japan	Jan-07	Dec-13
Subtotal (l ² = 87.7%)	0.06 (0.01, 0.12)			
CMV				
Silverio et al., 2015	—— 0.26 (0.12, 0.45)	Cuba	Jan-05	Dec-11
Somasekar et al., 2017	0.00 (0.00, 0.03)	United States	Jan-98	Dec-10
Tsunoda et al., 2017	—— 0.19 (0.11, 0.30)	Japan	Jan-07	Dec-13
Zhao et al., 2014	—— 0.19 (0.07, 0.36)	China	Jan-07	Dec-12
Subtotal $(I^2 = 94.1\%)$	0.13 (0.01, 0.35)			
EBV				
Silverio et al., 2015	- 0.03 (0.00, 0.17)	Cuba	Jan-05	Dec-11
Somasekar et al., 2017	0.00 (0.00, 0.03)	United States	Jan-98	Dec-10
Tsunoda et al., 2017	—— 0.21 (0.12, 0.32)	Japan	Jan-07	Dec-13
Subtotal (I ² = NA)	0.06 (0.00, 0.24)			
0	.2 .4 .6 .8 1	1		

SUPPLEMENTARY TABLE

	-			Minim							
Study ID	Represent ation of the national populatio n	Represent ation of target populatio n	Rand om select ion or censu s	al likelih ood of non- respo nse bias	Data collecte d directly from particip ants	Accept able case definiti on	Valid measure ment	Same mode of data collect ion	Appropr iate length	Appropria te numerator (s) and denomina tor(s)	Sco re
Alam et al., 2009	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Asim et al., 2009	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Bechmann et al., 2014	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Bhati et al., 2013	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Borkakoti et al., 2013	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Bravo et al., 2012	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Cervio et al., 2011	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Das et al., 2016	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Gupta et al., 2015	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Ho et al., 2014	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Latif et al., 2010	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Mamun et al., 2009	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	9
Manka et al., 2015	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	8
Mendizabal et al., 2014	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	8
Mishra et al., 2016	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Mumtaz et al., 2009	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Pandit et al., 2015	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	8
Poovorawa n et al., 2013	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	9
Schwarz et al., 2014	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	9
Shalimar et al., 2017	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Silverio et al., 2015	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1(
Somasekar et al., 2017	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	8

Uddin Jamro et al., 2013	Yes	10									
Tsunoda et al., 2017	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	9
Zhao et al., 2014	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	8

tor occr texten only

Page 31 of 32

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Title Page
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	2
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2-3
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	3
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	3
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	3-4
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	4-5
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4

BMJ Open

PRISMA 2009 Checklist

4 Synthesis of results 14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency 2 5						
		Page 1 of 2				
Section/topic	#	Checklist item	Reported on page #			
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	4-5			
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	4			
RESULTS						
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5			
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	5			
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	6			
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	5-6			
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	5-6			
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	6			
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	5-6			
DISCUSSION						
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	6-8			
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	8			
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	9			
FUNDING						
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	10			

 44 From:
 Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.

 45 doi:10.1371/journal.pmed1000097
 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 45 doi:10.1371/journal.pmed1000097

Page 33 of 32

For more information, visit: www.prisma-statement.org.

BMJ Open

ration, visu. Page 2.

BMJ Open

A Systematic Review of the Global Epidemiology of Viral-Induced Acute Liver Failure

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037473.R2
Article Type:	Original research
Date Submitted by the Author:	04-Jun-2020
Complete List of Authors:	Patterson, Jenna; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Hussey, Hannah; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health & Family Medicine Silal, Sheetal; University of Cape Town, Department of Statistical Sciences; University of Oxford, Nuffield Department of Medicine Goddard, Liz; University of Cape Town, Department of Paediatrics, Red Cross War Memorial Children's Hospital Setshedi, Mashiko; University of Cape Town, Department of Medicine, Division of Gastroenterology, Groote Schuur Hospital Spearman, Wendy ; University of Cape Town, Department of Medicine, Division of Hepatology, Groote Schuur Hospital Hussey, Gregory; University of Cape Town Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Kagina, Benjamin; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Kagina, Benjami; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Kagina, Benjami; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine Muloiwa, Rudzani; University of Cape Town, 5Department of Pediatrics & Child Health, Red Cross War Memorial Children's Hospital; University of Cape Town Faculty of Health Sciences, Vaccines for Africa Initiative, School of Public Health and Family Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Infectious diseases
Keywords:	Epidemiology < INFECTIOUS DISEASES, Hepatology < INTERNAL MEDICINE, VIROLOGY
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

A Systematic Review of the Global Epidemiology of Viral-Induced Acute Liver Failure

Jenna Patterson^{1,2}, Hannah Sophia Hussey^{1,2}, Sheetal Silal^{3,4}, Liz Goddard⁵, Mashiko Setshedi⁶, C.

Wendy Spearman⁷, Gregory D. Hussey^{1,8} Benjamin M. Kagina^{1,2} and Rudzani Muloiwa^{1,5}

¹Vaccines for Africa Initiative, University of Cape Town, South Africa

²School of Public Health & Family Medicine, University of Cape Town, South Africa

³Modelling and Simulation Hub, Africa, Department of Statistical Sciences, Faculty of Science, University of Cape Town, South Africa

⁴Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom

⁵Department of Pediatrics & Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town ⁶Department of Medicine, Division of Gastroenterology, Groote Schuur Hospital, University of Cape Town, South Africa

⁷Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, South Africa

⁸Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa

⁵Department of Pediatrics & Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town

Corresponding author: Jenna Patterson

Corresponding author's ORCID iD: 0000-0002-3927-037X

Corresponding author's email address: pttjen005@myuct.ac.za

Corresponding author's postal address: Vaccines for Africa Initiative, Room N2.09A, Werner Beit North, Health Sciences Campus, Anzio Road, Observatory, 7925

H.S. Hussey email address: hshussey@gmail.com

- S. Silal email address: sheetal.silal@uct.ac.za
- E. Goddard email address: liz.goddard@uct.ac.za
- M. Setshedi email address: mashiko.setshedi@uct.ac.za

W. Spearman email address: wendy.spearman@uct.ac.za

- G.D. Hussey email address: gregory.hussey@uct.ac.za
- B.M. Kagina email address: benjamin.kagina@uct.ac.za
- R. Muloiwa email address: rudzani.muloiwa@uct.ac.za

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
25	
26	
20	
27	
20	
30	
30	
27	
22	
21	
24 25	
22	
20 27	
رد 20	
20	
29 40	
40 ⊿1	
+ı ∕\)	
4Z 12	
رب ۸۸	
44 15	
45 16	
40 //7	
4/ 10	
+0 ∕10	
49 50	
50 51	
ו כ בי	
52 52	
55 E/	
54 57	
55	
50	
5/	
58	

60

REQUIRED STATEMENTS

Conflict of interest disclosure

All authors have no conflicts of interest to declare.

Ethics approval statement

This study did not require ethics approval as it uses publicly available, published data.

Patient consent statement

This study did not require consent from patients as it uses no individual data.

Permission to reproduce material from other sources

This study has cited all references which are published and publicly available.

ABBREVIATIONS

- Acute liver failure (ALF)
- Hepatitis A virus (HAV)
- Hepatitis B virus (HBV)
- Hepatitis C virus (HCV)
- Hepatitis D virus (HDV)
- Hepatitis E virus (HEV)
- Epstein Barr virus (EBV)
- Herpes simplex virus-1 (HSV1)
- Herpes simplex virus-2 (HSV2)
- Varicella-zoster virus (VZV)
- Human parainfluenza viruses (HPIVs)
- Yellow fever virus (YFV)
- Human herpesvirus 6 (HHV-6)
- Cytomegalovirus (CMV)
- Coxsackievirus (CA16)
- Adenovirus (HAdVs)
- Medical Subject Headings (MESH)
- Low- and middle- income countries (LMICs)

1	ABSTRACT
2	Objectives: The etiology and burden of viral-induced acute liver failure (ALF) remains unclear, globally. It
3	is important to understand the epidemiology of viral-induced ALF to plan for clinical case management
4	and case prevention.
5	Participants: This systematic review was conducted to synthesize data on the relative contribution of
6	different viruses to the etiology of viral-induced ALF in attempt to compile evidence that is currently
7	missing in the field. EBSCOhost, PubMed, ScienceDirect, Scopus and Web of Science were searched for
8	relevant literature published from 2009 to 2019. The initial search was run on 9 April 2019 and updated
9	via PubMed on 30 September 2019 with no new eligible studies to include. Twenty-five eligible studies
0	were included in the results of this review.
1	Results: This systematic review estimated the burden of acute liver failure following infection with HBV,
2	HAV, HBV, HCV, HEV, HSV/HHV, CMV, EBV, and parvo-virus B19. Data were largely missing for ALF
3	following infection with VZV, HPIVs, YFV, CA16 and/or HAdVs. The prevalence of HAV-induced ALF was
4	markedly lower in countries with routine HAV immunization vs no routine HAV immunization. Hepatitis
5	E virus was the most common etiological cause of viral-induced ALF reported in this review. In addition,
6	viral-induced ALF had poor outcomes as indicated by high fatality rates, which appear to increase with
7	poor economic status of the studied countries.
8	Conclusions: Immunization against HAV and HBV should be prioritized in LMICs to prevent high viral-
9	induced ALF mortality rates, especially in settings where resources for managing acute liver failure are
0	lacking. The expanded use of HEV immunization should be explored as HEV was the most common cause
21	of ALF.
22	Registration: PROSPERO registration number CRD42017079730
	Strengths and limitations
	Comprehensive and exhaustive search for relevant studies from several databases.
	• Comprehensive diagnostic inclusion criteria for acute liver failure cases according to international
	guideline.
	• Lack of language restrictions in search lead to inclusion of geographically diverse data.
	• Findings are limited by lack of data for some of the viral etiologies of ALF which may have led to
	an underestimation of the global burden of viral-induced ALF.
	Diversity of viruses attributable to ALF cases and viral detection methods led to high
	heterogeneity and low statistical power in meta-analyses conducted.

 BMJ Open

1		
2	24	MANUSCRIPT
4 5 6 7 8 9 10 11 12 13 14 15 16	25	
	26	Background
	27	Acute liver failure (ALF) refers to the development of encephalopathy and synthetic function impairment
	28	following acute liver injury in an individual without pre-existing liver disease (1). The presence of
	29	encephalopathy is not required to define ALF in paediatrics, but is an essential component of the
	30	definition in adults (1). Possible causes of ALF include viral infections, drugs and toxins, pregnancy
	31	related liver diseases, vascular causes and/or malignancies. Acute viral hepatitis has been identified as
	32	the most common cause of ALF among all ages in Asia and Africa and one of the most common causes of
17 18	33	ALF in children in Asia and South America (2, 3). The incidence of viral-induced ALF has substantially
19 20 21	34	declined in Europe following the introduction of universal immunization against the hepatitis B virus
	35	(HBV), with only 19% of all ALF cases now attributable to viral infection in the European population (4).
22	36	The introduction of routine immunization against the hepatitis A virus (HAV) in Argentina has reduced
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	37	the number of hepatitis A induced ALF cases by more than 25% (4).
	38	Fatality rates associated with ALF vary between 60% and 80%, depending on the disease etiology as well
	39	as a patient's access to care (5, 6). Liver transplantation plays a central role in the management of ALF
	40	and remains the only definitive treatment for patients who fail to demonstrate spontaneous recovery
	41	(7). A large proportion of patients with ALF in both high and low resource settings, however, are deemed
	42	to have contraindications to transplantation or deteriorate beyond transplantation before a liver donor
	43	is found (8-10).
	44	The burden of viral-induced ALF around the world still remains unclear, with little to no data collected
39 40	45	regarding the disease incidence (3). Establishing the etiology of viral-induced ALF is important for early
41 42 43 44 45 46 47 48 49 50	46	initiation of treatment, determining the prognosis of the liver failure and identifying potential
	47	contraindications to liver transplantation. Most importantly, understanding the epidemiology of vaccine-
	48	preventable etiologies of ALF should be prioritised in under-resourced regions with limited access to
	49	facilities for transplantation. This review aims to synthesize data on the relative contribution of different
	50	viruses to the etiology of viral-induced ALF in attempt to compile evidence that is currently missing in
	51	the field.
51 52		
52 53 54 55 56	52	Bernal et al. 2010 completed a review of the burden of acute and fulminant liver failure based on
	53	literature published between 1997 and 2009. The review became the bases for guidelines for clinical

3	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
2 i 22	
22	
23	
24	
25	
26	
27	
28	
29	
20	
50	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
51	
52	
53	
51	
54 57	
55	
56	
57	
58	
59	

60

1 2

practice (5). In this systematic review, we assess whether data have changed following the Bernal
publication, and whether there is evidence to warrant a review of clinical practice.

56	Objectives
57	• To estimate the prevalence of hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus
58	(HCV), hepatitis D virus (HDV), hepatitis E virus (HEV), Epstein Barr virus (EBV), herpes simplex
59	virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella-zoster virus (VZV), parvo-virus B19,
60	human parainfluenza viruses (HPIVs), yellow fever virus (YFV), human herpesvirus 6 (HHV-6),
61	cytomegalovirus (CMV), coxsackievirus (CA16) and/or adenovirus (HAdVs) among patients with
62	ALF.
63	• To estimate the mortality rate for cases of ALF following infection with HAV, HBV, HCV, HDV,
64	HEV, EBV, HSV1, HSV2, VZV, parvo-virus B19, HPIVs, YFV, HHV-6, CMV, CA16 and/or HAdVs
65	• To estimate the prevalence and incidence of liver transplantation for cases of ALF following
66	infection with HAV, HBV, HCV, HDV, HEV, EBV, HSV1, HSV2, VZV, parvo-virus B19, HPIVs, YFV,
67	HHV-6, CMV, CA16 and/or HAdVs
68	
69	Methods
70	This systematic review was registered with PROSPERO (registration number CRD42017079730) and the
71	methods for its conduction have been published (11). The results of the review are reported using the
72	Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines checklist.
73	
74	Study eligibility criteria
75	

Published cross-sectional, surveillance and cohort studies reporting the outcomes of interest in patients
with ALF following infection with HAV, HBV, HCV, HDV, HEV, EBV, HSV1, HSV2, VZV, parvo-virus B19,
HPIVs, YFV, HHV-6, CMV, CA16 and/or HAdVs were eligible for inclusion in this study. Studies were
eligible for inclusion if they had clearly stated case definitions of viral-induced ALF and confirmed ALF
cases using both clinical and serological, molecular or culture diagnostic methods.

81 Search strategy

82 A combination of the following search terms (including the use of Medical Subject Headings (MESH))

83 was used and adapted for each of the relevant electronic databases: epidemiology, prevalence,

84 incidence, burden, mortality, morbidity, fulminant hepatic failure, fulminant liver failure, acute hepatic
Page 7 of 33

1 2 BMJ Open

3	85	failure, acute liver failure, Hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV),
4 5	86	hepatitis D virus (HDV), hepatitis E virus (HEV), Epstein Barr virus (EBV), herpes simplex virus-1 (HSV1),
6 7	87	herpes simplex virus-2 (HSV2), varicella-zoster virus (VZV), parvo-virus B19, human parainfluenza viruses
8	88	(HPIVs), yellow fever virus (YFV), human herpesvirus 6 (HHV-6), cytomegalovirus (CMV), coxsackie virus
9 10	89	and adenovirus.
11 12	90	
13 14	91	The following electronic databases were searched for relevant literature published from 2009 to 2019:
15	92	EBSCOhost, PubMed, ScienceDirect, Scopus and Web of Science. The search was run on 9 April 2019 and
16 17	93	updated via PubMed on 30 September 2019 with no new eligible studies to include.
18 19	94	
20	95	Data extraction
21 22	96	Study characteristics and outcomes of interests were extracted from the included studies on a pre-
23 24	97	designed data extraction form by two independent reviewers (JP and HH). Prior to use by the two
25	98	reviewers, the reliability of the extraction form was assessed by piloting 10 randomly selected articles
26 27	99	that met the inclusion criteria. The study team resolved any disagreements in data extraction through
28 29	100	consensus in consultation with RM. In cases where studies were in German, HH provided translation. In
30 21	101	cases where studies were not available in English or German, google translate was used to translate the
32	102	article to English (12).
33 34	103	
35 36	104	Data synthesis and analysis
37	105	A random-effects model was fitted to the study data as it included data taken from a series of
38 39	106	independently performed studies in different populations. We assessed heterogeneity by calculating ${\sf I}^2$
40 41	107	statistics (threshold $I^2 > 40\%$). The values of I^2 were categorized for heterogeneity as follows: "not
42	108	important" ($\leq 40\%$), "moderate" ($> 40\%$ to $\leq 60\%$) and "considerable" ($> 60\%$ to $\leq 80\%$) and
43 44	109	"substantial" ($> 80\%$ to $\leq 100\%$). Where "not important" or "moderate" heterogeneity existed
45 46	110	between studies (I ² \leq 60%), pooled outcome measures were reported with 95% confidence intervals for
47	111	each respective outcome. Where "considerable" or "substantial" heterogeneity exists between studies
48 49	112	(I ² > 60%), forest plots and prevalence ranges calculated using the random-effects model were used to
50 51	113	narratively describe each outcome.
52	114	
53 54	115	Risk of bias assessment
55 56		
57		4
58 59		Patterson, J et al.
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Each included study was assessed for risk of bias and quality using the Hoy et al., 2012 tool for observational studies (13, 14). Studies were judged as having 'low risk' if scored 8-10, 'moderate risk' if scored 5-7 and 'high risk' if scored 0-5. All risk of bias judgements were made by both JP and HH. In case of disagreement in risk of bias and quality assessment, a final decision was made through consensus in consultation with RM. Patient and public involvement This review was developed as part of an ongoing project by the research team that aims to generate evidence to facilitate evidence-based decision-making of introducing routine hepatitis A vaccination in South Africa. The findings of this review contribute to the knowledge base that aims to enhance global vaccination strategies against viral-associated ALF. As this is a systematic review, no patient involvement was required; however, it is hoped that the findings of this review will help to highlight the burden that ALF places on populations without routine vaccination. Results The initial database searches yielded 6,952 records, from which 3,545 duplicates were removed. A further 3,263 were excluded following the screening of titles and abstracts (Figure 1). The full text of the remaining 144 records were screened by JP and HH, from which 25 studies were deemed to meet the final inclusion criteria. Twenty-four (96%) of the included studies were cohort studies. As detailed in Table 1, the included studies were published between 2009 and 2017. Included studies were conducted globally, with 7 studies and 3 studies conducted in India and Pakistan, respectively. The populations represented by the included studies spanned all age groups and included participants primarily from hospital settings. As the data in this review was sourced from a variety of countries, age groups and settings, the heterogeneity was considerable and/or substantial for all results. Thus, we narratively and graphically reported estimates of combined prevalence rates and the spreads of prevalence. Vaccine-preventable viral-induced ALF We narratively report the prevalence of HAV- and HBV-induced ALF by country immunization status. The point prevalence of HAV-induced ALF in countries with no routine HAV immunization at the time of data collection ranged from 2% to 81% with a combined of 27% (95% Cl 13, 43), while the prevalence in countries with routine HAV immunization at the time of data collection ranged from 1% to 2% with a combined of 2% (95% Cl 1, 3) (Figure 2). In Argentina, the prevalence of HAV-induced ALF prior to Patterson, J et al. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 33

BMJ Open

1 2		
3	148	routine immunization was approximately 50% (95% CI 45, 55), compared to approximately 1% (95% CI 0,
4 5	149	5) after immunization was introduced. The point prevalence of HBV-induced ALF in countries without
6 7	150	universal HBV immunization at the time of data collection ranged from 16% to 27% with a combined of
8	151	22% (95% CI 16, 30) (Figure 3). The point prevalence of HBV-induced ALF in countries with universal HBV
10	152	immunization at the time of data collection ranged from 0% to 83% with a combined of 20% (95% $CI = 8$,
11 12	153	35).
13 14	154	
15	155	ALF attributable to non-vaccine-preventable viral infections
16 17	156	The point prevalence of HCV-induced ALF ranged from 2% to 25% with a combined of 9% (95% CI = 1,
18 19	157	21) (Supplementary Figure 1). The point prevalence of HEV-induced ALF ranged from 3% to 70% with a
20	158	combined of 32% (95% CI 24, 41) (Supplementary Figure 2) . The point prevalence of HDV-, HHV/HSV-,
21 22	159	CMV-, and EBV-induced ALF were estimated to have combined prevalences of 4% (95% CI 0, 13), 6%
23 24	160	(95% Cl 1, 12), 13% (95% Cl 1, 35) and 6% (95% Cl 0, 24), 10% (95% Cl 2, 22), 2% (95% Cl 0, 5), and 1%
25	161	(95% CI 0, 5), respectively (Supplementary Figure 3). Data was not available to estimate the burden of
26 27	162	ALF following infection with HDV, VZV, HPIVS, YFV, CA16 and/or HAdVs as outlined per the published
28 29	163	protocol (11).
30	164	
31 32	165	Outcomes of viral-induced ALF
33 34	166	The narratively reported outcomes of viral-induced ALF were found to be severe. The mortality rates
35	167	associated with viral-induced ALF in lower-middle income countries ranged from 18% to 91% with a
30 37	168	combined mortality rate of 50% (95% CI 36, 64) (Figure 4A). The mortality rates associated with viral-
38 39	169	induced ALF in upper-middle income countries ranged 3% to 45% with a combined mortality rate of 26%
40	170	(95% CI 1, 63) (Figure 4A). The mortality rates associated with viral-induced ALF in high income countries
41	171	ranged from 12% to 40% with a combined mortality rate of 29% (95% Cl 17, 43) (Figure 4A). The rate of
43 44	172	encephalopathy associated with viral-induced ALF cases in children ranged from 69% to 100% with a
45 46	173	combined rate of 89% (95% CI 79, 97) (Figure 4B). The need for liver transplantation with viral-
40 47	174	associated ALF ranged from 4% to 62% with a combined rate of 25% (95% CI 6, 53) (Figure 4B). The need
48 49	175	for renal transplant in viral-associated ALF cases ranged from 4% to 34% with a combined rate of 18%
50 51	176	(95% Cl 2, 43) (Figure 4B).
52	177	
53 54	178	Methodological quality
55 56		
57		6
58 59		Patterson, J et al.
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Risk of bias scores were assigned by two reviewers (JP and HH) and are described in **Supplementary**

Table 1. Overall, a majority of the included studies were judged as having 'low risk' of bias. Only one

included study was judged as having 'moderate risk' of bias due to lack of clarity around the

representativeness of the study population to the national population, methods of participant selection

and methods employed to reduce the likelihood of non-response.

Discussion

This systematic review estimated the burden of ALF following infection with HAV, HBV, HCV, HEV, HSV/HHV, CMV, EBV, and parvo-virus B19. The prevalence of HAV-induced ALF is markedly lower in countries with routine HAV immunization while HEV was the most common etiological cause of viral-induced ALF reported in this review. In addition, viral-induced ALF had poor outcomes as indicated by high fatality rates, which seem to increase with poor economic status of the studied countries.

The estimated prevalence of HAV-induced ALF in countries with routine HAV immunization was markedly lower than the estimated prevalence in countries without routine HAV immunization. When looking at countries with data before and after the introduction of routine HAV immunization, the reduction of HAV-induced ALF due to vaccination is further highlighted. The combined prevalence of HBV-induced ALF was the same in settings with or without universal HBV immunization. Countries without universal HBV immunization programs are likely to have weak healthcare systems; thus, the reported prevalence of HBV-induced ALF is assumed to be an underestimate of the true burden in these populations due to weak routine testing and reporting systems. Currently, there is one HEV vaccine (Hecolin) licensed in China that has shown promise with a high degree of efficacy in preventing HEV genotype IV infection in healthy individuals 16 to 65 years (15). Further exploration of the efficacy of this vaccine for prevention of infection with genotypes I and II in different populations should to explore it's application in different countries and HEV endemicity settings (16).

This review estimated the mortality rate for viral-induced ALF to be approximately 50% in low- and middle- income countries (LMICs) and less than 30% in upper-middle- and high-income countries. Previous studies have estimated that mortality rates associated with ALF vary between 60% and 80%, depending on the disease etiology as well as a patient's access to care. Our review shows that although viral-induced ALF still carries a significant mortality, though possibly lower than that reported for other ALF etiologies (5, 6). Mortality data largely comes from hospitals with the capacity to diagnose viral-

Page 11 of 33

1

BMJ Open

2		
3 4	211	induced ALF, thus deaths outside of the hospital system or ALF deaths without virological testing may
5	212	not be captured in these mortality estimates. Liver transplantation is required by approximately 25% of
6 7	213	viral-induced ALF cases and approximately 18% of viral-induced ALF cases required renal
8 9	214	transplantation, globally. In addition to general lack of resources for transplantation, a significant
10	215	proportion of potential candidates have contraindications to transplant related to poor socioeconomic
11 12	216	status in LMICs. The transplant data included in this review may only reflect successful and unsuccessful
13 14	217	transplants, not those that were needed but not carried out due to resource constraints or
15	218	contraindications.
16 17	219	
18 10	220	This review is limited by lack of data for some of the viral etiologies of ALF including for VZV, HPIVs, YFV,
20	221	CA16 and/or HAdVs, which may have led to an underestimation of the global burden of viral-induced
21 22	222	ALF. Additionally, we believe that our findings underestimate the global burden of viral-induced ALF as
23 24	223	some important causes of ALF (e.g. HSV/HHV) are believed to be underrecognized as they require PCR
25	224	testing for diagnosis. The included studies also used varying methods of virus detection including
26 27	225	serology and molecular tests which further added to the heterogeneity in the results of our review. This
28 20	226	is a well-recognized limitation in studies of ALF where diagnostics are often limited by cost in under-
30	227	resourced regions where viral causes of ALF are more prevalent. The limited availability of data,
31 32	228	including lack of same country data on burden of disease before and after introduction of immunization,
33 34	229	hindered most of the planned sub-group analyses outlined in the study protocol. Where data were
35	230	available, high heterogeneity of the data led to planned meta-analyses and meta-regression analyses
36 37	231	not being possible. Lastly, the diversity of viruses attributable to ALF cases led to low statistical power in
38 39	232	meta-analyses conducted.
40	233	
41 42	234	Future research should assess the burden of viral-induced ALF following infection with HDV, VZV, HPIVS,
43 44	235	YFV, CA16 and HAdVs. Collectively, high-quality data on all viral etiologies of ALF would allow for better
45	236	pooling of results. The review team encourages future studies to incorporate health economic estimates
46 47	237	and mathematical modelling where data permits to assist health policy decision-makers to better design
48 49	238	strategies for the prevention and management of viral-induced ALF. Epidemiological-economic
50	239	modelling of immunization against HAV, HBV and HEV may well show that introduction of vaccination
51 52	240	could lead to future cost savings in the long run due to prevented medical care and liver failure.
53 54	241	
55	242	Conclusions
50 57		8
58 59		Patterson J et al

60

3	243	We successfully addressed the aim of the study although data on VZV, HPIVs, YFV, CA16 and/or HAdV	/s
5	244	were missing. Notwithstanding the noted limitations, it is clear that HAV, HBV and HEV – vaccine-	
6 7	245	preventable ALF etiologies – account for a large proportion of ALF (approximately 21%, 20%, 32% of	
8	246	viral-induced ALF cases, respectively). The burden of ALF that is associated with vaccine-preventable	ALF
9 10	247	etiologies should be used in conjunction with other available key evidence to inform practice and	
11 12	248	policies on immunization, particularly in LMICs. A majority of LMICs have established universal	
13	249	vaccination against HBV. The Word Health Organization has recently recommended the introduction	of
14 15	250	an HBV birth dose which is aimed at elimination of the virus and, if successful, will subsequently redu	ice
16 17	251	the burden of HBV-induced ALF. Routine HAV immunization in LMICs, however, are lacking. More dat	ta is
18	252	urgently needed to guide routine use of the vaccine in prevention of morbidity and mortality caused	by
19 20	253	the virus. Lastly, further applicability of HEV vaccines should be explored, especially in LMICs where	
21 22	254	resources for managing viral-induced ALF are glaringly lacking.	
23	255		
24 25			
26 27			
27			
29 30			
31			
32 33			
34			
35 36			
30 37			
38			
39 40			
41			
42 43			
44			
45 46			
46 47			
48			
49			
50 51			
52			
53			
54			
55 56			
50 57			9
58			,
59		Patterson, J et al.	
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 ว		
2	256	Contributors
4 5	257	JP, GDH, BK and RM conceived this study. JP implemented the review under the supervision of RM. JP
6 7	258	and HSH performed the study search, screening and extraction of data under the guidance of RM. GDH
8	259	and BK provided methodological expertise for this review. SS, LG, MS, and WS provided content
9 10	260	expertise for this review and all authors will provided comments on the final manuscript before
11 12	261	publication. JP is the guarantor of this review.
13	262	Funding
14 15	263	This research received no specific grant from any funding agency in the public, commercial or not-for-
16 17	264	profit sectors. The Vaccines for Africa Initiative (VACFA) has funded the costs associated with the
18	265	research and dissemination of the results, including publications.
19 20	266	Competing interests
21 22	267	None declared.
23	268	Data availability
24 25	269	All data were taken from published articles available in the public domain.
26 27	270	Patient consent for publication
28	271	Not required.
29 30		
31 32		
33		
34 35		
36 37		
38		
39 40		
41 42		
42 43		
44 45		
46		
47 48		
49 50		
51		
52 53		
54		
55 56		
57 58		
59		Patterson, J et al.
60		r or peer review only intep.//binjopen.binj.com/site/about/guidelines.xhtml

REFERENCES

- 1. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. Journal of Hepatology. 2017;66(5):1047-81.
- 2. Morabito V, Adebayo D. Fulminant Hepatitis: Definitions, Causes and Management. Health. 2014;06(10):1038-48.
 - European Association for the Study of the Liver. Electronic address eee, Clinical practice guidelines p, Wendon J, Panel m, Cordoba J, Dhawan A, et al. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J Hepatol. 2017;66(5):1047-81.
 - Cervio G, Trentadue J, D'Agostino D, Luque C, Giorgi M, Armoni J, et al. Decline in HAV-associated fulminant hepatic failure and liver transplant in children in Argentina after the introduction of a universal hepatitis A vaccination program. Hepat Med. 2011;3:99-106.
 Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet. 2010;376(Seminar):190-201.
- Wlodzimirow KA, Eslami S, Abu-Hanna A, Nieuwoudt M, Chamuleau RA. Systematic review: acute liver failure one disease, more than 40 definitions. Aliment Pharmacol Ther. 2012;35(11):1245-56.
- 7. Lee WM, Stravitz RT, Larson AM. Introduction to the revised American Association for the Study of Liver Diseases Position Paper on acute liver failure 2011. Hepatology. 2012;55(3):965-7.
- 8. Spearman CW, McCulloch M, Millar AJ, Burger H, Numanoglu A, Goddard E, et al. Liver transplantation at Red Cross War Memorial Children's Hospital. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde. 2006;96(9 Pt 2):960-3.
- 9. O'Grady JG. Acute liver failure. Postgrad Med J. 2005;81(953):148-54.

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57 58

59

- 10. O'Grady J. Liver transplantation for acute liver failure. Best Pract Res Clin Gastroenterol. 2012;26(1):27-33.
- 11. Patterson J, Hussey HS, Abdullahi LH, Silal S, Goddard L, Setshedi M, et al. The global epidemiology of viral-induced acute liver failure: a systematic review protocol. BMJ Open. 2019.
- 12. Balk E, Ching M, Chen M, Trikalinos T, L KWC. Assessing the Accuracy of Google Translate to Allow Data Extraction From Trials Published in Non-English Languages. Rockville, USA: Agency for Healthcare Research and Quality; 2013 Jan 2013. Contract No.: EHC145-EF.
- 13. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C. Assessing risk of bias in prevalence studies: Modification of an existing tool and evidence of interrater aggreement. Journal of Clinical Epidemiology. 2012;65:934-9.
- 14. Werfalli M, Musekiwa A, Engel ME, Ross I, Kengne AP, Levitt NS. The prevalence of type 2 diabetes mellitus among older people in Africa: a systematic review study protocol. BMJ Open. 2014.
- 15. Li SW, Zhao Q, Wu T, Chen S, Zhang J, Xia NS. The development of a recombinant hepatitis E vaccine HEV 239. Hum Vaccin Immunother. 2015;11(4):908-14.
- 16. Wu X, Chen P, Lin H, Hao X, Liang Z. Hepatitis E virus: Current epidemiology and vaccine. Human Vaccines and Immunotherapeutics. 2016;12(10):2603-10.
- 17. Alam S, Azam G, Mustafa G, Azad AK, Haque I, Gani S, et al. Natural course of fulminant hepatic failure: the scenario in Bangladesh and the differences from the west. Saudi J Gastroenterol. 2009;15(4):229-33.
- 18. Asim M, Singla R, Gupta RK, Kar P. Clinical & molecular characterization of human TT virus in different liver diseases. Indian Journal of Medical Research. 2010;131(4):545-54.
- 19. Bechmann LP, Manka P, Best J, Saner FH, Paul A, Canbay A, et al. Drug-induced liver injury as predominant cause of acute liver failure in a monocenter study. Deutsche Medizinische Wochenschrift. 2014;139(17):878-82.
- 20. Bhatia V, Dhawan A, Arora NK, Mathur P, Das MK, Irshad M. Urinary potassium loss in children with acute liver failure and acute viral hepatitis. J Pediatr Gastroenterol Nutr. 2013;57(1):102-8.
- 21. Borkakoti JH, R. K.; Mohammad, A.; Kumar, A.; Kar, P. Does high viral load of hepatitis E virus influence the severity and prognosis of acute liver failure during pregnancy? Journal of Medical Virology. 2013;85(4):620-6.
- 22. Bravo LC, Gregorio GV, Shafi F, Bock HL, Boudville I, Liu Y, et al. Etiology, incidence and outcomes of acute hepatic failure in 0-18 year old Filipino children. Southeast Asian J Trop Med Public Health. 2012;43(3):764-72.
- 23. Das AK, Begum T, Kar P, Dutta A. Profile of Acute Liver Failure from North-east India and Its Differences from other Parts of the Country. Euroasian J Hepatogastroenterol. 2016;6(2):111-5.
- 24. Gupta P, Mittal M, Bhat NK, Agarwal RK, Gupta P, Mittal G. A hospital based retrospective study on hepatotropic viruses as a cause of acute viral hepatitis in children in Uttarakhand, India. Indian Journal of Community Health. 2015;27(4):451-5.
- 25. Ho CM, Lee CH, Wang JY, Lee PH, Lai HS, Hu RH. Nationwide longitudinal analysis of acute liver failure in taiwan. Medicine (Baltimore). 2014;93(4):e35.
- 26. Latif N, Mehmood K. Risk factors for fulminant hepatic failure and their relation with outcome in children. J Pak Med Assoc. 2010;60(3):175-8.
- 27. Mamun Al M, Rahman S, Khan M, Karim F. HEV infection as an aetiologic factor for acute hepatitis: experience from a tertiary hospital in Bangladesh. J Health Popul Nutr. 2009;27(1):14-9.
 - 28. Manka P, Bechmann LP, Coombes JD, Thodou V, Schlattjan M, Kahraman A, et al. Hepatitis E Virus Infection as a Possible Cause of Acute Liver Failure in Europe. Clin Gastroenterol Hepatol. 2015;13(10):1836-42.e2; quiz e157-8.
 - Mendizabal MM, S.; Videla, M. G.; Anders, M.; Zerega, A.; Balderramo, D. C.; Chan, D.; Barrabino, M.; Gil, O.; Mastai, R.; Yantorno, S.;
 Gadano, A.; Silva, M. O. Changing etiologies and outcomes of acute liver failure: Perspectives from 6 transplant centers in Argentina. Liver Transplantation. 2014;20(4):483-9.
 - 30. Mishra SB, J.; Kumar, S.; Kar, P. Role of HEV antigen detection in HEV-related acute viral hepatitis and acute liver failure. Journal of Medical Virology. 2016;88(12):2179-85.
 - 31. Mumtaz K, Azam Z, Hamid S, Abid S, Memon S, Ali Shah H, et al. Role of N-acetylcysteine in adults with non-acetaminophen-induced acute liver failure in a center without the facility of liver transplantation. Hepatology International. 2009;3(4):563-70.
 - 32. Pandit A, Mathew LG, Bavdekar A, Mehta S, Ramakrishnan G, Datta S, et al. Hepatotropic viruses as etiological agents of acute liver failure and related-outcomes among children in India: a retrospective hospital-based study. BMC Res Notes. 2015;8:381.

BMJ Open

1		
2		
3	33.	Poovorawan Y, Chongsrisawat V, Shafi F, Boudville I, Liu Y, Hutagalung Y, et al. Acute hepatic failure among hospitalized Thai
4	24	children. Southeast Asian J Trop Med Public Health. 2013;44(1):50-3.
5	34.	Schwarz RBO, Dominic Dell; Lobritto, Steven J.; Lopez, M. James; Rodriguez-Baez, Norderto; Yazigi, Nada A.; Belle, Steven H.; Zhang, Song: Squires, Robert H.; for the Pediatric Acute Liver Failure Study, Group, Analysis of Viral Testing in Nonacetaminophen Pediatric
6		Acute Liver Failure. Journal of Pediatric Gastroenterology & Nutrition. 2014;59(5):616-23.
7	35.	Shalimar, Kedia S, Gunjan D, Sonika U, Mahapatra SJ, Nayak B, et al. Acute Liver Failure Due to Hepatitis E Virus Infection Is
8	36	Associated with Better Survival than Other Etiologies in Indian Patients. Dig Dis Sci. 2017;62(4):1058-66. Silveria CE, Smithen-Romany CV, Hondal NJ, Diaz HO, Castellanos MJ, Sosa O, Acute liver failure in Cuban children, MEDICC Rev
9	50.	2015;17(1):48-54.
10	37.	Somasekar SL, D.; Rule, J.; Naccache, S. N.; Stone, M.; Busch, M. P.; S.; ers, C.; Lee, W. M.; Chiu, C. Y. Viral Surveillance in Serum
17		Samples from Patients with Acute Liver Failure by Metagenomic Next-Generation Sequencing. Clinical Infectious Diseases.
12	38.	Uddin Jamro BMC, S.: Mal Makheia, P.: Ahmed Soomro, A. Etiology, outcome and risk factors for fulminant hepatic failure in children
14		at a tertiary care hospital, Sukkur, Pakistan. Rawal Medical Journal. 2013;38(3):219-22.
15	39.	Tsunoda T, Inui A, Iwasawa K, Oikawa M, Sogo T, Komatsu H, et al. Acute liver dysfunction not resulting from hepatitis virus in
16	40	immunocompetent children. Pediatr Int. 2017;59(5):551-6. Zhao P. Wang CY. Liu W.W. Wang X. Yu L.M. Sun YR. Acute liver failure in Chinese children: a multicenter investigation. Hepatohiliary
17	40.	Pancreat Dis Int. 2014;13(3):276-80.
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30 21		
31 20		
32		
32		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
4/		
48		
49 50		
50		
52		
53		
54		
55		
56		
57		2
58		

FIGURE LEDENDS

Figure 1: Flow diagram for selection of studies

Figure 2: Prevalence of HAV-induced ALF by country HAV immunization status

• Abbreviations: HAV = hepatitis A virus, ALF = acute liver failure, CI = confidence interval, I2 = heterogeneity statistic

Figure 3: Prevalence of HBV-induced ALF by country HBV immunization status

• Abbreviations: HBV = hepatitis B virus, ALF = acute liver failure, CI = confidence interval, I2 = heterogeneity statistic

Figure 4: Prevalence of outcomes associated with viral-induced ALF

• Abbreviations: ALF = acute liver failure, CI = confidence interval, I2=heterogeneity statistic, NA = not applicable

			TABLES				
Table 1: Characteristics	of included studies	3					
Study	Study Design	Aim	Country	Income Level	Start of Data Collection	End of Data Collection	ALF Case Definitio
Alam et al., 2009 (17)	Prospective cohort	To evaluate the etiology, complications, and outcome of FHF	Bangladesh	Lower- middle	3-Nov	8-May	Occurrence of hepat encephalopathy withi weeks of onset of jaund patients with no previou disease and the presen coagulopathy as proved PT > 15 s or INR > 1
Asim et al., 2009 (18)	Cross- sectional	To analyze serum samples from patients with ALF for hepatitis A-G viral markers	India	Lower- middle	1-Jun	4-May	Patient become deep jaundiced and went in hepatic encephalopathy 8 weeks of onset of t disease, with no past hi of chronic hepatitis
Bechmann et al., 2014 (19)	Retrospective cohort	To identify currently predominant etiologies of ALF at a transplant center	Germany	High	1-Jan	12-Feb	Acute Liver Failure St Group Germany cas definition: INR > 1.5 a encephalopathy of any g Pre-existing liver diseas systemic cause of liver f were excluded
Bhatia et al., 2013 (20)	Prospective cohort	To analyze clinical features, liver function tests, hepatitis viral markers and clinical outcomes in patients with ALF	India	Lower- middle	Jun-99	1-Jan	Development of hepa encephalopathy withir weeks of the first symp of acute hepatitis-like ill without any history o underlying liver disea
Borkakoti et al., 2013 (21)	Prospective cohort	To determine the viral load of HEV and its association with the disease severity in patients with ALF in comparison with patients with ALF due to other hepatides	India	Lower- middle	6-Jan	11-Dec	Development of encephalopathy withi weeks of the onset jaundice without any p history of chronic liv disease; diagnosed as a limiting disease and a s aspartate aminotransfe elevation of at least five clinical jaundice or bo

Bravo et al., 2012 (22)	Prospective & retrospective cohort	To investigate the etiology, outcomes and incidence of AHF among children 0-18 years old	Philippines	Lower- middle	Jan-00	6-Dec	Onset of coagulopathy and/or encephalopathy ≤4 weeks after the onset of symptoms, a prothrombin time > 2, an increased bilirubin and evidence for liver failure complicated by encephalopathy
Cervio et al., 2011 (4)	Retrospective cohort	To investigate the impact of HAV UI on the trends in the occurrence of FHF in children	Argentina	High	Mar-93	5-Jul	Mieli-Vergani case definition: a multisystem disorder in which severe impairment of liver function, with or without encephalopathy, occurs in association with hepatocellular necrosis in a patient with or without recognized underlying chronic liver disease (Cheeseman & Mieli-Vergani, 2004)
Das et al., 2016 (23)	Prospective cohort	To determine the profile of ALF etiologies	India	Lower- middle	7-Jan	15-Dec	History of development of encephalopathy within 8 weeks of disease onset
Gupta et al., 2015 (24)	Retrospective cohort	To determine the profile of Hepatitis A, B, C and E as a cause of AHF in children in a tertiary care hospital	India	Lower- middle	11-Jan	14-Dec	Elevated ALT levels or AST of at least five-fold with clinical jaundice and without evidence of chronic liver disease. Patients who had INR > 1.5 with encephalopathy or INR > 2 without encephalopathy
Ho et al., 2014 (25)	Prospective cohort	To investigate the incidence, etiology, outcomes, and prognostic factors of ALF	Taiwan	High income	5-Jan	7-Sep	International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9- CM) code 570.0
Latif et al., 2010 (26)	Prospective cohort	To identify the risk factors for FHF and their relationship with the outcome in children	Pakistan	Lower- middle	6-Sep	7-Feb	Development of encephalopathy within 8 weeks of the onset of jaundice having evidence of coagulopathy i.e. PT deranges > 4 s of control and deranged liver function i.e. TSB > 1.5 mg/dl, AT > 40 IU/L

59

Mamun et al., 2009 (27)	Retrospective cohort	To assess the burden of HEV as a cause of ALF	Bangladesh	Lower- middle	4-Jun	6-Dec	Previously healthy pat who presented with se impairment of hepato-c function, i.e. encephalo coagulopathy, and jau within six months of on symptoms
Manka et al., 2015 (28)	Retrospective cohort	To investigate the causes of previously diagnosed indeterminate cases ALF	Germany	High	6-Nov	13-Dec	Significant liver dysfun with pathologically incre laboratory parameters ALT, AP], an existin coagulopathy in terms INR > 1.5, and with concomitant presence degree of encephalop
Mendizabal et al., 2014 (29)	Retrospective cohort	To determine the causes and short- term outcomes of ALF	Argentina	High	5-Jun	11-Dec	Presence of coagulop [INR > 1.5 or prothror index < 50%] and any of HE within 26 weeks first symptoms witho known underlying liv disease
Mishra et al., 2016 (30)	Retrospective cohort	To assess the relative efficacy of HEV antigen detection by ELISA in patients with ALF	India	Lower- middle	13-Nov	15-Jan	Any evidence of coagu abnormality, generally >1.5 and any degree mental alteration (encephalopathy) witho existing cirrhosis and w illness of < 4 weeks du
Mumtaz et al., 2009 (31)	Prospective cohort compared to historical control	To assess the etiology, prothrombin time (PT), alanine aminotransferase, creatinine, albumin for non- acetaminophen- induced ALF	Pakistan	Lower middle	Jan-00	7-Mar	Rapid development of liver injury with impai synthetic function a encephalopathy in a p who previously had a n liver
Pandit et al., 2015 (32)	Retrospective cohort	To assess the frequency of hepatotropic viruses as etiological agents of ALF	India	Lower- middle	3-Jan	5-Dec	Onset of encephalopath days after the onset symptoms with INR > 2 increased bilirubin complicated by

							without a previous history of liver disease
Poovorawan (33) et al., 2013	Prospective cohort	To determine the causes and outcomes of Thai children with AHF	Thailand	Upper- middle	2-Jan	5-Sep	International Association for the Study of the Liver case definition: (Tandon et al, 1999)
Schwarz et al., 2014 (34)	Retrospective cohort - Patient registry	To analyzed results of viral testing among non- acetaminophen ALF study participants	USA/Canada/UK	High	Dec-99	12-Dec	No known evidence of chroni liver disease, with evidence of acute liver injury, and hepatic based coagulopathy not corrected by vitamin K with the follow parameters: PT ≥ 15 s or INR ≥ 1.5 in the presence of clinical HE or a PT ≥ 20 s or INR ≥ 2.0 regardless of the presence of absence of clinical HE
Shalimar et al., 2017 (35)	Retrospective cohort	To assess the differences in the course of HEV- ALF as compared to other etiologies of ALF	India	Lower middle	Jan-86	15-Dec	International Association for the Study of Liver (IASL) cas definition: Occurrence of encephalopathy within 4 weeks from the onset of symptoms in the absence of preexisting liver disease
Silverio et al., 2015 (36)	Retrospective cohort	To describe the clinical features of children treated for ALF	Cuba	Upper- middle	5-Jan	11-Dec	Evidence of liver damage in the absence of prior known chronic liver disease; altered coagulation, expressed as P >15 s with encephalopathy; o PT > 20 s with or without encephalopathy—all this within eight weeks of onset of clinical symptoms
Somasekar et al., 2017 (37)	Retrospective cohort	To investigate the causes of previously diagnosed indeterminate cases ALF	United States	High	Jan-98	10-Dec	<i>United States Acute Liver</i> <i>Failure Study Group</i> case definition
Uddin Jamro et al., 2013 (38)	Retrospective cohort	To study the etiology, outcome and risk factors for FHF in children at	Pakistan	Lower- middle	7-Jul	12-Jun	Presence of acute liver failur (coagulopathy PT > 20 s or INR > 2), HE without pre- existing liver disease, within

		a tertiary care hospital					weeks of the onset of o liver disease
Tsunoda et al., 2017 (39)	Prospective cohort	To identify the roles of CMV, EBV and HHV in immunocompetent children with acute liver failure not resulting from hepatitis virus	Japan	High	7-Jan	13-Dec	Liver dysfunction w elevated AST and ALT IU/L
Zhao et al., 2014 (40)	Retrospective cohort	To investigate etiologies and outcomes of children with ALF	China	Middle	7-Jan	12-Dec	Coagulopathy [PTA ≤4 INR ≥ 1.5 excludin hematologic diseases jaundice [Tbil ≥ 171 µr within 4 weeks in a c without pre-existing I diseases

Figure 1: Flow diagram for selection of studies

Page 23 of 33 Figure 2: Prevalence of HAV-induced ALF by country HAV immunization status

Sludy		Estimate (95% CI)	Country	Data start	Data er
No routine vaccination					
Asim et al., 2008		0.04 (0.00, 0.14)	India	Jun-01	May-04
Mumtaz et al., 2009	-	0.02 (0.00, 0.08)	Pakistan	Jan-00	Mar-07
Alam et al., 2009		0.07 (0.02, 0.17)	Bangladesh	Nov-03	May-08
Latif et al., 2010		0.56 (0.41, 0.70)	Pakistan	Sep-06	Feb-07
Cervio et al., 2011	+	0.50 (0.45, 0.55)	Argentina	Mar-93	Jul-05
Bravo et al., 2012		0.29 (0.10, 0.56)	Philippines	Jan-00	Dec-06
Bhati et al., 2013		0.52 (0.31, 0.72)	India	Jun-99	Jan-01
Uddin Jamro et al., 2013		0.81 (0.69, 0.90)	Pakistan	Jul-07	Jun-12
Borkakoti et al., 2013	-	0.07 (0.05, 0.11)	India	Jan-06	Dec-11
Bechmann et al., 2014	+	0.07 (0.04, 0.13)	Germany	Jan-01	Feb-12
Gupta et al., 2015		0.50 (0.29, 0.71)	India	Jan-11	Dec-14
Pandit et al., 2015		- 0.66 (0.49, 0.80)	India	Jan-03	Dec-05
Mishra et al., 2016		0.22 (0.10, 0.39)	India	Nov-13	Jan-15
Das et al., 2016	-	0.30 (0.24, 0.36)	India	Jan-07	Dec-15
Shalimar et al., 2017	-	0.02 (0.01, 0.02)	India	Jan-86	Dec-15
Subtotal (I ² = 98.52%)		0.27 (0.13, 0.43)			
Routine vaccination					
Mendizabal et al., 2014	-	0.01 (0.00, 0.05)	Argentina	Jun-05	Dec-11
Schwarz et al., 2014	-	0.02 (0.01, 0.04)	USA/Canada/UK	Dec-99	Dec-12
Somasekar et al., 2017	-	0.02 (0.01, 0.05)	United States	Jan-98	Dec-10
Subtotal (I ² = NA)	•	0.02 (0.01, 0.03)			

Figure 3: Prevalence of HBV-induced ALF by country HBV immunization status

2 3 4	Study			Estimate (95% CI)	Country	Data start	Data end
5	Introduced in data collection period						
6 7	Asim et al., 2008			0.14 (0.06, 0.27)	India	Jun-01	May-04
8 0	Mamun et al., 2009			0.35 (0.16, 0.57)	Bangladesh	Jun-04	Dec-06
10	Uddin Jamro et al., 2013			0.18 (0.09, 0.30)	Pakistan	Jul-07	Jun-12
11 12	Shalimar et al., 2017	-		0.09 (0.07, 0.10)	India	Jan-86	Dec-15
13 14	Subtotal ($I^2 = 81.55\%$)	\diamond		0.16 (0.07, 0.27)			
15 16	No universal immunization						
17 18	Mumtaz et al., 2009			0.27 (0.19, 0.38)	Pakistan	Jan-00	Mar-07
19	Latif et al., 2010			0.18 (0.09, 0.31)	Pakistan	Sep-06	Feb-07
20 21	Bhati et al., 2013			0.16 (0.05, 0.36)	India	Jun-99	Jan-01
22 23	Subtotal (I ² = NA)	\diamond		0.22 (0.16, 0.30)			
24 25 26	Universal immunization						
20 27	Alam et al., 2009			0.19 (0.11, 0.31)	Bangladesh	Nov-03	May-08
28 20	Bravo et al., 2012			0.10 (0.01, 0.30)	Philippines	Jan-00	Dec-06
30	Poovorawan et al., 2013		-	0.09 (0.00, 0.41)	Thailand	Jan-02	Sep-05
31 22	Borkakoti et al., 2013			0.47 (0.41, 0.52)	India	Jan-06	Dec-11
33	Mendizabal et al., 2014			0.30 (0.23, 0.38)	Argentina	Jun-05	Dec-11
34 25	Schwarz et al., 2014	-		0.01 (0.00, 0.03)	USA/Canada/UK	Dec-99	Dec-12
36	Ho et al., 2014			0.73 (0.63, 0.81)	Taiwan	Jan-05	Sep-07
37 38	Bechmann et al., 2014			0.19 (0.13, 0.26)	Germany	Jan-01	Feb-12
39	Gupta et al., 2015			0.38 (0.19, 0.59)	India	Jan-11	Dec-14
40 41	Pandit et al., 2015			0.19 (0.09, 0.33)	India	Jan-03	Dec-05
42	Mishra et al., 2016			0.33 (0.19, 0.51)	India	Nov-13	Jan-15
43 44	Das et al., 2016	-		0.03 (0.01, 0.06)	India	Jan-07	Dec-15
45	Somasekar et al., 2017	-		0.02 (0.01, 0.05)	United States	Jan-98	Dec-10
46 47	Subtotal ($I^2 = 97.77\%$)	\diamond		0.20 (0.08, 0.35)			
48 49 50							
51			<u> </u>				
52 52	(D2 .	4 .6 .8	1			
55 54		For peer review	only - http://bmjopen.br	mj.com/site/about/guidelines.xht	ml		
55							

Figure 4: Prevalence of outcomes associated with wiral-induced ALF

Mortality rates associated with viral-induced ALF by country income status А

2			
\$tudy		Estimate (95% CI)	Country
4 5Lower-middle income			
6Mumtaz et al., 2009		0.63 (0.52, 0.73)	Pakistan
⁷ Alam et al., 2009		0.73 (0.61, 0.83)	Bangladesh
⁸ Mamun et al., 2009		- 0.91 (0.72, 0.99)	Bangladesh
9 1 Latif et al., 2010		0.60 (0.45, 0.74)	Pakistan
$_1$ Bravo et al., 2012		0.85 (0.65, 0.96)	Philippines
1 bddin Jamro et al., 2013		0.73 (0.60, 0.83)	Pakistan
1 B hati et al., 2013		0.36 (0.18, 0.57)	India
¹ Borkakoti et al., 2013	-	0.22 (0.18, 0.27)	India
15 Pandit et al., 2015		0.24 (0.13, 0.38)	India
16 1 Mishra et al., 2016		0.33 (0.19, 0.51)	India
1 1 Das et al., 2016	+	0.29 (0.23, 0.35)	India
1 § halimar et al., 2017	-	0.18 (0.17, 0.21)	India
2 9 ubtotal (l ² = 96.76%)	\diamond	0.50 (0.36, 0.64)	
21			
² High income			
23 Cervio et al., 2011	+	0.39 (0.34, 0.44)	Argentina
24 2 Ho et al., 2014		0.40 (0.31, 0.51)	Taiwan
28 endizabal et al., 2014	+	0.27 (0.20, 0.35)	Argentina
2Bechmann et al., 2014	+	0.12 (0.08, 0.19)	Germany
2§ubtotal (I ² = 93.81%)	\diamond	0.29 (0.17, 0.43)	
29			
³⁰ Upper-middle income			
3 Boovorawan et al., 2013		0.45 (0.17, 0.77)	Thailand
3 g hao et al., 2014		0.03 (0.00, 0.16)	China
3 \$ ilverio et al., 2015		0.42 (0.25, 0.61)	Cuba
3Subtotal (I ² = NA)	\bigcirc	0.26 (0.01, 0.63)	
36			
3/ 20			
<u>39</u>		1	

0 .2 .4 .6 .8 1

Study Estimate (95% CI) Country Renal failure Alam et al., 2009 Bangladesh 0.34 (0.23, 0.47) Mumtaz et al., 2009 0.22 (0.14, 0.32) Pakistan Shalimar et al., 2017 0.04 (0.03, 0.05) India Subtotal (I² = NA) 0.18 (0.02, 0.43) Encephalopathy Latif et al., 2010 - 0.90 (0.78, 0.97) Pakistan Cervio et al., 2011 0.83 (0.79, 0.87) Argentina Bravo et al., 2012 0.69 (0.48, 0.86) Philippines Uddin Jamro et al., 2013 ■ 1.00 (0.94, 1.00) Pakistan Poovorawan et al., 2013 0.91 (0.59, 1.00) Thailand 0.89 (0.77, 0.96) Pandit et al., 2015 India 0.89 (0.79, 0.97) Subtotal $(I^2 = 85.11\%)$ Liver transplant Cervio et al., 2011 0.62 (0.56, 0.67) Argentina Mendizabal et al., 2014 0.54 (0.46, 0.62) Argentina Bechmann et al., 2014 0.12 (0.07, 0.18) Germany Silverio et al., 2015 0.10 (0.02, 0.26) Cuba Tsunoda et al., 2017 0.04 (0.01, 0.12) Japan Subtotal $(l^2 = 98.22\%)$ 0.25 (0.06, 0.53) 0 .2 .4 .6 .8 1

: Prevalence of clinical outcomes associated with viral-induces ALF

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

В

42 43

44

Supplementary Figure 1: Prevalence of HCV-induced ALF

1

2 3 4	Study		Estimate (95% CI)	Country	Data start	Data end
5 6 7 8	Asim et al., 2008	-	0.06 (0.01, 0.17)	India	Jun-01	May-04
9 10 11	Bravo et al., 2012		0.20 (0.01, 0.72)	Philippines	Jan-00	Dec-06
12 13 14	Uddin Jamro et al., 2013	-	0.02 (0.00, 0.09)	Pakistan	Jul-07	Jun-12
15 16 17	Borkakoti et al., 2013	-	0.25 (0.21, 0.31)	India	Jan-06	Dec-11
18 19 20	Ho et al., 2014		0.25 (0.17, 0.35)	Taiwan	Jan-05	Sep-07
21 22 23	Silverio et al., 2015	-	0.03 (0.00, 0.17)	Cuba	Jan-05	Dec-11
24 25 26	Somasekar et al., 2017		0.02 (0.01, 0.05)	United States	Jan-98	Dec-10
27 28 29	Overall (I ² = 94.01%)	\Diamond	0.09 (0.01, 0.21)			
30 31 32 33						
34 35 36 37 38	For peer re Abbreviations: HCV = hepatitis C virus, ALF = a	United Billing	3 mjopen.bmj.com/site/about/gui e, CI = confidence interval,	delines.xhtml I ² = heterogeneity s	tatistic	

Page 27 of 33 Supplementary Figure 2: Prevalence of HEV-induced ALF

2 3 4	Study	Estimate (95%	CI) N	I N	I Pregnant	Country	Date start	Date end
5 6 7	Asim et al., 2008	0.43 (0.29, 0.	58) 4	9		India	Jun-01	May-04
, 8 9	Mamun et al., 2009	0.57 (0.34, 0.	77) 2	3		Bangladesh	Jun-04	Dec-06
10 11	Alam et al., 2009	0.70 (0.58, 0.	81) 6	7	10	Bangladesh	Nov-03	May-08
12 13 14	Mumtaz et al., 2009	0.44 (0.34, 0.	55) 9	1	9	Pakistan	Jan-00	Mar-07
15 16	Bhati et al., 2013	0.24 (0.09, 0.	45) 2	5		India	Jun-99	Jan-01
17 18	Borkakoti et al., 2013	0.33 (0.28, 0.	39) 3	18	160	India	Jan-06	Dec-11
19 20	Gupta et al., 2015	0.12 (0.03, 0.	32) 2	24		India	Jan-11	Dec-14
21 22 23	Manka et al., 2015	— <u> </u>	28) 7	0		Germany	Nov-06	Dec-13
24 25	Pandit et al., 2015	0.03 (0.00, 0.	17) 5	4		India	Jan-03	Dec-05
26 27	Das et al., 2016		18) 2	55		India	Jan-07	Dec-15
28 29 30	Mishra et al., 2016	0.61 (0.43, 0.	77) 3	6	5	India	Nov-13	Jan-15
31 32	Shalimar et al., 2017	— 0.29 (0.26, 0.	31) 1	462	175	India	Jan-86	Dec-15
33 34 35 36 37	Overall (I ² = 92.60%)	0.32 (0.24, 0.	41)					
38 39 40 41	Abbreviations: HEV = hepatitis E	I I I I I .2 For peer review only - http://bmjopen.bmj. rirus, ALF = acute liver failure, CI = con	com/site/abou fidence inte	it∕guid erval,	delines.xhtml 1 ² = heterog	geneity statisti	с	

Supplementary Figure 3: Prevalence of HDV-, HHV/HSV-, CMV- and EBV-induced AFL

Olddy		Estimate (95% CI)	Country	Data start	Data en
HDV					
Ho et al., 2014	-	0.03 (0.01, 0.09)	Taiwan	Jan-05	Sep-07
Mumtaz et al., 2009		0.12 (0.06, 0.21)	Pakistan	Jan-00	Mar-07
Somasekar et al., 2017	+	0.00 (0.00, 0.03)	United States	Jan-98	Dec-10
Subtotal (I ² = NA)	\diamond	0.04 (0.00, 0.13)			
HHV/HSV					
Mendizabal et al., 2014	+	0.01 (0.00, 0.04)	Argentina	Jun-05	Dec-11
Schwarz et al., 2014	-	0.12 (0.08, 0.16)	USA/Canada/Uk	C Dec-99	Dec-12
Silverio et al., 2015		0.06 (0.01, 0.21)	Cuba	Jan-05	Dec-11
Somasekar et al., 2017	-	0.03 (0.01, 0.07)	United States	Jan-98	Dec-10
Tsunoda et al., 2017		0.10 (0.04, 0.20)	Japan	Jan-07	Dec-13
Subtotal (l ² = 87.7%)	\diamond	0.06 (0.01, 0.12)			
<u>CMV</u>					
Silverio et al., 2015		0.26 (0.12, 0.45)	Cuba	Jan-05	Dec-11
Somasekar et al., 2017	+	0.00 (0.00, 0.03)	United States	Jan-98	Dec-10
Tsunoda et al., 2017	_ 	0.19 (0.11, 0.30)	Japan	Jan-07	Dec-13
Zhao et al., 2014		0.19 (0.07, 0.36)	China	Jan-07	Dec-12
Subtotal (I ² = 94.1%)		0.13 (0.01, 0.35)			
<u>EBV</u>					
Silverio et al., 2015	-	0.03 (0.00, 0.17)	Cuba	Jan-05	Dec-11
Somasekar et al., 2017	+	0.00 (0.00, 0.03)	United States	Jan-98	Dec-10
	_ 	0.21 (0.12, 0.32)	Japan	Jan-07	Dec-13
Tsunoda et al., 2017					

SUPPLEMENTARY TABLE

	-			Minim							
Study ID	Represent ation of the national populatio n	Represent ation of target populatio n	Rand om select ion or censu s	al likelih ood of non- respo nse bias	Data collecte d directly from particip ants	Accept able case definiti on	Valid measure ment	Same mode of data collect ion	Appropr iate length	Appropria te numerator (s) and denomina tor(s)	Sco re
Alam et al., 2009	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Asim et al., 2009	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Bechmann et al., 2014	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Bhati et al., 2013	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Borkakoti et al., 2013	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Bravo et al., 2012	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Cervio et al., 2011	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Das et al., 2016	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Gupta et al., 2015	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Ho et al., 2014	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Latif et al., 2010	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9
Mamun et al., 2009	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	9
Manka et al., 2015	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	8
Mendizabal et al., 2014	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	8
Mishra et al., 2016	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Mumtaz et al., 2009	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Pandit et al., 2015	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	8
Poovorawa n et al., 2013	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	9
Schwarz et al., 2014	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	9
Shalimar et al., 2017	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
Silverio et al., 2015	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1(
Somasekar et al., 2017	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	8

Uddin Jamro et al., 2013	Yes	10									
Tsunoda et al., 2017	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	9
Zhao et al., 2014	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	8

tor occr texten only

Page 31 of 33

The PRISMA for Abstracts Checklist

TITLE	CHECKLIST ITEM	REPORTED ON PAGE #
1. Title:	Identify the report as a systematic review, meta-analysis, or both.	1
BACKGROUND		
2. Objectives:	The research question including components such as participants, interventions, comparators, and outcomes.	1
METHODS		
3. Eligibility criteria:	Study and report characteristics used as criteria for inclusion.	1
4. Information sources:	Key databases searched and search dates.	1
5. Risk of bias:	Methods of assessing risk of bias.	1
RESULTS		
6. Included studies:	Number and type of included studies and participants and relevant characteristics of studies.	1
7. Synthesis of results:	Results for main outcomes (benefits and harms), preferably indicating the number of studies and participants for each. If meta-analysis was done, include summary measures and confidence intervals.	1
8. Description of the effect:	Direction of the effect (i.e. which group is favoured) and size of the effect in terms meaningful to clinicians and patients.	1
DISCUSSION		
9. Strengths and Limitations of evidence:	Brief summary of strengths and limitations of evidence (e.g. inconsistency, imprecision, indirectness, or risk of bias, other supporting or conflicting evidence)	1
10. Interpretation:	General interpretation of the results and important implications	1
OTHER		
11. Funding:	Primary source of funding for the review.	1
12. Registration:	Registration number and registry name.	1

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Title Page
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	2
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2-3
METHODS			
Protocol and registration	rotocol and registration5Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.		3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	3
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	3
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	3-4
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4
Data items	ms 11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.		4
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	4-5
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4

46

Page 33 of 33

2 3

PRISMA 2009 Checklist

14	(e.g., I ²) for each meta-analysis.	4
	Page 1 of 2	
#	Checklist item	Reported on page #
15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	4-5
16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	4
17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5
18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	5
19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	6
20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	5-6
21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	5-6
22	Present results of any assessment of risk of bias across studies (see Item 15).	6
23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	5-6
	·	
24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	6-8
25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	8
26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	9
27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	10
	14 # 15 16 17 18 19 20 21 22 23 24 25 26 27	 14 Describe the methods of narbining data and combining feedults, in done, including measures of consistency (e.g., P) for each meta-analysis. Page 1 of 2 <i>#</i> Checklist item 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified. 17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram. 18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. 19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). 20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. 21 Present results of each meta-analysis done, including confidence intervals and measures of consistency. 22 Present results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). 24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). 26 Provide a general interpretation of the results in the context of other evidence, and implications for future research. 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.

BMJ Open

 44 From:
 Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.

 45 doi:10.1371/journal.pmed1000097
 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 45 doi:10.1371/journal.pmed1000097

PRISMA 2009 Checklist

For more information, visit: www.prisma-statement.org.

.smation, visit. Page 2 o.