Figures

Fig S1 TraDIS results at K. pneumoniae capsule loci

Fig S2 Further validation of TraDIS hits

Fig S3 Flow cytometry-based analysis of C3b-positive cell populations

Fig S4 Flow cytometry-based analysis of C5b-9-positive cell populations, and cytoplasmic marker release from B5055 $\Delta rfaH$

Tables

Included in this document

Table S1 Strains, plasmids and primers used in this study

Separate documents

Table S2 Sequencing data summary

Table S3 TraDIS full results for four K. pneumoniae strains

Table S4 Genes identified as complement resistance determinants by TraDIS

Fig S1 TraDIS results at *K. pneumoniae* **capsule loci** Insertion plots for TraDIS sequencing at the capsule locus of each strain. Read numbers correspond to the height of the vertical bars, which are coloured blue for plus strand and red for minus strand, respectively. Genes are coloured yellow for hits, grey for essential, and blue for not hits.

Fig S2 Further validation of TraDIS hits (A) Serum killing assays with additional capsule locus mutants of ATCC43816 (n = 5) and RH201207 (n = 3). Exponential phase cells were incubated with 66% human serum and survival monitored over 3 hours. Statistical significance as determined by two-factor repeated measures ANOVA was p<0.0001 for both ATCC43816 and RH201207 (note that these data are derived from the same set of experiments as that shown in Fig 4, and were analysed together). Strain-wise differences relative to wild type at t=180 were determined by one-way ANOVA followed by Dunnett's test. **p<0.01 (B) Growth of *K. pneumoniae* Δlpp mutants (n = 2, 7 technical replicates each). Strains were grown with shaking at 37°C in a 96-well plate (200µl/well) in a Pherastar plate reader, and OD600 measured every 6 minutes. Growth of WT and Δlpp strains was compared by two-factor repeated measures ANOVA and was not found to be significant.

Fig S3 Flow cytometry-based analysis of C3b-positive cell populations Flow cytometry overlay plots illustrate the increase in C3b levels on the bacterial cell surface after 15 min (T15) or 180 min (T180) incubation in human pooled serum at 37°C, compared to T0. C3b positive populations are showed in Q2 quadrants. Data for the four *K. pneumoniae* wildtypes and $\Delta rfaH$ and Δlpp mutants.

Fig S4 (A) Flow cytometry-based analysis of C5b-9-positive cell populations. Flow cytometry overlay plots illustrate the increase in C5b-9 formation on the bacterial cell surface after 15 min (T15) or 180 min (T180) incubation in human pooled serum at 37°C, compared to T0. C5b-9 positive populations are showed in Q2 quadrants. Data for the four *K. pneumoniae* wildtypes and $\Delta rfaH$ and Δlpp mutants. (B) Release of cytoplasmic GFP from B5055 $\Delta rfaH$ carrying the pFLS21 fluorescence marker

vector following incubation in normal or heat-inactivated human serum (n = 2). Results were compared by two-way repeated measures ANOVA.

Table S1 Strains, plasmids and primers used in this study

Datter fai strains			
Strain	Description/genotype	Source	
Klebsiella pneumoniae ATCC	Hypervirulent, ST493, K-type 2, commonly used in	American Type Culture	
43816	mouse studies	Collection; ¹	
Klebsiella pneumoniae NTUH-	Hypervirulent, liver abscess isolate, ST23, K-type 1	Jin-Town Wang, National	
K2044	reference strain	Taiwan University Hospital; ²	
Klebsiella pneumoniae B5055	Mouse-virulent sequence type 66, K-type 2 reference	3	
	strain		
Klebsiella pneumoniae	Colistin-resistant UK gut isolate, ST258, K-type 106	Public Health England; ⁴	
RH201207		-	
<i>Escherichia coli</i> β2163	F ⁻ RP4-2-Tc::Mu <i>∆dapA</i> ::(<i>erm-pir</i>)	5	
K. pneumoniae ATCC43816	Δlpp	This study	
K. pneumoniae ATCC43816	$\Delta \hat{rfa}H$	6	
K. pneumoniae ATCC43816	Tn-wza	This study	
K. pneumoniae ATCC43816	Tn-wcaJ	This study	
K. pneumoniae B5055	Δlpp	This study	
K. pneumoniae B5055	ΔrfaH	This study	
K. pneumoniae NTUH-K2044	Δlpp	This study	
K. pneumoniae NTUH-K2044	$\Delta r f a H$	6	
K. pneumoniae RH201207	$\Delta r f a H$	This study	
K. pneumoniae RH201207	Tn5-wza	This study	
K. pneumoniae RH201207	Tn5-wzc	This study	

Plasmids Description Name Source pDS1028 Transposon delivery vector, Tn5-Cm^R ori6K, pRL27-derived 5 pKNG101-Tc Allelic exchange vector, Tc^R 8 Overexpression vector, Ara-inducible, Cm^R pBAD33 pFLS16 pKNG101-Tc derivative, ATCC43816 rfaH flanking region 6 pDiGc derivative containing Tc^R cassette from pKNG101-Tc derivative, ATCC43816/B5055 *lpp* flanking region pFLS21 This study pFLS31 pFLS33 pKNG101-Tc derivative, NTUH lpp flanking region, constructed with FS342-345 This study pFLS34 pKNG101-Tc derivative, RH201207 rfaH flanking region, constructed with FS136-FS139 This study This study pFLS37 pBAD33 derivative, ATCC43816 lpp gene, no promoter pFLS38 pBAD33 derivative, ATCC43816 *lpp* gene Δ K78, no promoter This study pMJD82 pACYC184 derivative, NTUH-K2044 rfaH gene with native promoter This study

Primers

Name	Sequence 5' – 3'	Description
FS57	gaccacacgtcgactagtgcnnnnnnnnnagag	Random-prime PCR
FS58	gaccacacgtcgactagtgcnnnnnnnnnacgcc	Random-prime PCR
FS59	gaccacacgtcgactagtgcnnnnnnnnngatac	Random-prime PCR
FS60	gaccacacgtcgactagtgc	Random-prime PCR
FS108	aatgatacggcgaccaccgagatctacaccaggaacacttaacggctgacatgg	pDS1028 Tn 1
FS109	agceteteaaagcaattttgagtgaca	pDS1028 Tn 2
FS136	tgtgactagtagcggcggcatct	RfaH KO Fwd
FS137	tgacattaacggcgtaatgactcattccacttc	RfaH KO Rev overlap
FS138	tgtgactagtgacggtagcagctgga	RfaH KO Rev
FS139	gtggaatgagtcattacgccgttaatgtcaa	RfaH KO Fwd overlap
FS342	gctactagtcgcgctgtgcgcaaatac	Lpp KO Fwd
FS343	tagagggtattaatagagttctggtaataaaaatgg	Lpp KO overlap 1
FS344	ttattaccagaactctattaataccctctagat	Lpp KO overlap 2
FS345	gctactagtccggccggaccgaacaa	Lpp KO Rev
FS335	ctctggtaccctcgcggggcgcttttt	Lpp into pBAD33 Fwd, KpnI
FS336	ctctaagcttttacttacggtaagagtgagc	Lpp into pBAD33 Rev, HindIII
FS337	ctctaagcttttaacggtaagagtgagcctg	Lpp∆C-terminal Lysine into pBAD33
		Rev, HindIII
FS346	cctgatcagggttgagatgtgtataagagacag	RH201207 Tn primer 1
FS347	attgtaggcgccgccctatacctt	RH201207 Tn primer 2
MJD112	ccggatccggtaacggcgcgatgctgtaattttgttaaattag	RfaH Fwd
MJD113	ccgtcgacattagattttctggaagtcggtatttttaac	RfaH Rev

Bacterial strains

- Broberg, C.A., Wu, W., Cavalcoli, J.D., Miller, V.L., Bachman, M.A. 2014. Complete Genome Sequence of *Klebsiella pneumoniae* Strain ATCC 43816 KPPR1, a Rifampin-Resistant Mutant Commonly Used in Animal, Genetic, and Molecular Biology Studies. Genome Announcements. 2 (5), e00924-14-e00924-14
- Wu, K.M. et al. 2009. Genome sequencing and comparative analysis of *Klebsiella pneumoniae* NTUH-K2044, a strain causing liver abscess and meningitis. *Journal of Bacteriology*. 191 (14), 4492–4501
- Nassif, X., Sansonetti, P.J. 1986. Correlation of the virulence of *Klebsiella pneumoniae* K1 and K2 with the presence of a plasmid encoding aerobactin. Infection and immunity. 54 (3), 603–608
- 4. Jana, B. et al. 2017. The secondary resistome of multidrug-resistant *Klebsiella pneumoniae*. Scientific Reports. 7, 42483
- Demarre, G., Guérout, A.M., Matsumoto-Mashimo, C., Rowe-Magnus, D.A., Marlière, P., Mazel, D. 2005. A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPα) conjugative machineries and their cognate *Escherichia coli* host strains. Research in Microbiology. 156 (2), 245–255
- Dorman, M.J., Feltwell, T., Goulding, D.A., Parkhill, J., Short, F.L. 2018. The Capsule Regulatory Network of *Klebsiella pneumoniae* Defined by density-TraDISort. mBio. 9 (6), doi: 10.1128/mBio.01863-18
- 7. Monson, R. et al. 2015. A Plasmid-Transposon Hybrid Mutagenesis System Effective in a Broad Range of Enterobacteria. Frontiers in Microbiology. 6, 1442
- Guzman, L.M., Belin, D., Carson, M.J., Beckwith, J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. Journal of bacteriology. 177, 4121–4130