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Supplementary Methods 
 

Several criteria were used to select the features assessed in this work. Most importantly, features 

were selected that have been shown in previous studies to correlate with changes in blood volume 

while also having a clear physiological etiology; thus, feature-mining methods were not employed 

in this study. Though prior work has shown a correspondence between SCG (38) and PPG 

amplitude (39) and hemodynamic features related to hypovolemia, obtaining consistent, high-

quality amplitude features may be difficult in austere environments. Therefore, physiological 

features derived from signal amplitude itself were excluded from this work. 

i. Heart Rate Variability (HRV) 

The effect of BVS on HRV has been extensively observed in prior studies (40, 41). To compute 

HRV in this work, a vector of R-R intervals (RRIs) was first created for each recording session by 

computing the difference between adjacent elements in the vector of ECG R-peak indices (in 

samples) for the session. This vector was then converted from samples to seconds by dividing by 

the sampling frequency of 2kHz. For each point in the resulting vector, the HRV was computed 

by first extracting a five-minute window of RRIs centered on the point, truncated where 

insufficient data was available at the beginning and end of the session. The HRV for each window 

was then calculated using various methods. 

Notably, HRV may be assessed using a variety of time- and frequency-domain analysis 

methods, or via Poincaré plots (42). Time-domain methods quantify the variability in RRIs over 

the recording session. This is often performed by simply computing the standard deviation of the 



 
 

vector of RRIs (5). To compute time-domain HRV in this work, each window was first de-trended 

to remove linear trends in HR before obtaining the standard deviation of the resulting vector. 

Frequency-domain methods are based on the observation that sympathetic control of heart 

rhythm leads to increased low-frequency (LF) content of RRIs, while increased parasympathetic 

control leads to increased low- and high-frequency (HF) content (43). The ratio of LF to HF 

content is therefore used to infer sympathetic-parasympathetic balance. To compute this value, 

each window of RRIs was first up-sampled using spline interpolation such that the length was 

increased to the nearest power of two. The fast Fourier transform algorithm was then applied to 

the window and the power spectral density was computed as the squared amplitude of the Fourier 

transform output. An example result is shown in Supp. Fig. S7(a). LF power was obtained by 

integrating the PSD from 0.04Hz to 0.15Hz while HF power was obtained by integrating from 

0.15Hz to 0.40Hz (43). The LF-to-HF ratio was then obtained by dividing the LF power by HF 

power for each window. 

The third common method for computing HRV utilizes Poincaré plots, which capture RRI 

dynamics (5). To employ this method, we consider the column-vector x representing a window of 

RRIs, and the vector x̂ , which is an offset version of x such that i-1ˆ ˆ ˆx x xi i=  x . As shown in 

Supp. Fig. S7(b), plotting x and x̂  on a scatter plot results in a set of points that are contained in 

an ellipse. The red arrows in the figure represent the dimensions of the ellipse corresponding to 

the eigenvectors of the covariance matrix of [x; x̂ ] belonging to the first two eigenvalues λ1 and 

λ2. In a Poincaré plot, λ1 reflects the range of RRI values while λ2 reflects RRI variability between 

consecutive heartbeats. In this work and others, the ratio λ2/ λ1 is therefore used to quantify RRI 

variability between heartbeats normalized by the range in RRIs for the given window (5). 

ii. Pleth Variability Index (PVI) and Pulse Pressure Variability (PPV) 



 
 

The Frank-Starling curve describes the relationship between CO and preload, which is dependent 

on afterload and inotropy. When preload is low, small changes in preload lead to large changes in 

CO, while CO is relatively stable when preload is large (36). In the context of fluid resuscitation 

of hypovolemic patients, the slope of the Frank-Starling curve is thought to determine a patient’s 

fluid-responsiveness, or the physiological response to the addition of fluid to the vascular system 

(44). For patients undergoing mechanical respiration, small changes in preload are induced over 

the respiration cycle, which lead to cyclical variability in SV and CO. Prior studies have thereby 

linked respiratory variability in various markers of cardiac function to fluid responsiveness, often 

serving as a reflection of preload status (45). 

In this study, respiratory variability is calculated from femoral PPG and femoral pressure 

waveforms. When computed using PPG sensors, this is commonly referred to as the pleth 

variability index (PVI), while this quantity calculated from femoral pressure waveforms is known 

as pulse pressure variability (PPV) (46). For both signals, PVI and PPV, respiratory variability 

was calculated via 
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where PPmax and PPmin are the maximum ranges of the signal during inspiration and expiration 

respectively. An illustration of PPmax and PPmin is shown in Supp. Fig. S7(c). This calculation 

resulted in a single value for the PVI for each respiration cycle, which was upsampled using linear 

interpolation to obtain an estimate for each heartbeat for the purposes of model training. 

The PVI is often related to the concepts of PPV and stroke volume variability (SVV), 

having been shown to correlate strongly with these values (46, 47). Notably, though amplitude-

based features were excluded from this work, the reliance of PVI on relative differences in 



 
 

amplitude rather than amplitude itself led to its inclusion in this study. Furthermore, it should be 

noted that PVI may not be effective in spontaneously breathing patients, as it is reliant on 

mechanically-induced changes in preload (46). Therefore, PVI it may be inadvisable to integrate 

in BVS assessment models in which subjects are not mechanically ventilated. 

iii. Pre-Ejection Period (PEP) 

The PEP is an important feature of cardiomechanical function, quantifying the duration of time 

between ventricular depolarization and aortic opening (AO) (48). Notably, prior studies have 

correlated the PEP to blood volume changes (49). Using the catheter-based system, PEP was 

computed as the duration between the ECG R-peak and the point of maximal second derivative of 

the aortic pressure wave before the global maximum. Derivatives were computed in this work by 

computing the difference between adjacent elements. An illustration is given in Supp. Fig. S7(d). 

PEP may also be estimated using SCG. A previously-reported automated algorithm (50) was used 

to identify the most consistent peak in the first 250ms of each SCG signal segment, which was 

then selected as the AO point. While the extracted feature may be offset from true AO, changes in 

these peaks have been shown to strongly co-vary with true AO (50). In the same manner, the 

duration between the ECG R-peak and this value was used to compute PEP from the wearable 

system. 

iv. Left Ventricular Ejection Time (LVET) 

The LVET is the duration between AO and aortic closing (AC), and is another important 

cardiomechanical feature that has been shown to co-vary with blood volume (51). With the 

catheter-based system, AC was identified as the point of minimal second derivative after the global 

maximum, as illustrated in Supp. Fig. S7(d). Using the wearable system, AC may be estimated 

similarly to AO; the same algorithm (50) was used to find the most consistent peak in the final 



 
 

250ms of the SCG signal segment. With SCG-derived AC as well, the estimated interval may be 

offset from true AC, however the two values typically co-vary strongly. For both the catheter-

based and wearable systems, LVET was calculated as the difference between the AO and AC 

points. Beyond LVET in isolation, the ratio of PEP to LVET (PEP/LVET) is a feature of noted 

significance in assessing left ventricular function (20), and has been shown previously to correlate 

with changes in blood volume (52). Because of this, PEP/LVET was analyzed in this study, and 

was calculated by dividing PEP by LVET for each heartbeat. 

v. Pulse Arrival/Transit Time (PAT/PTT) 

Although PTT has been studied in simulated hypovolemia (49), it has most often been used for 

cuffless estimation of arterial BP (10). In this work, PTT was found by subtracting PEP from PAT. 

PAT is defined as the duration between the ECG R-peak and blood pulse arrival at a distal location. 

This was found for the catheter-based and wearable systems by identifying the maximum second 

derivative of the femoral pressure waveform and femoral PPG waveform respectively, as 

illustrated in Supp. Fig. S7(d). 

vi. HR-Normalized Pulse Arrival Time (nPAT) 

Prior work has utilized nPAT as a correlate of blood volume changes (53). During absolute 

hypovolemia, nPAT is expected to increase due to decreases in RRI magnitude and increases in 

PEP due to decreased preload (53). Since this feature was initially described while using PPG 

sensors placed on the distal arm, it is more commonly known as the indexed heart-to-arm time 

when this sensor setup is used. In this work, nPAT was computed for each heartbeat in the 

recording session by dividing the catheter- and PPG-derived PAT by the ECG-derived RRI. 

vii. Vascular Pressures 



 
 

Though subject to compensatory mechanisms, arterial and venous pressures at various locations 

in the vascular system have been extensively correlated to changes in blood volume (54, 55). In 

particular, right atrial pressure and PCWP are widely used as analogues of preload, which 

decreases during periods of decreased blood volume (13, 14). Because of this, all four pressure 

waveforms were heartbeat-separated, and the mean of the resulting waveform was recorded for 

each heartbeat. This resulted in four additional features for the catheter-based system: MARP, 

mean femoral artery pressure, mean right atrial pressure, and mean PCWP. Though estimation of 

these features was not available for the wearable system, they were included for the catheter-based 

system to further establish a gold-standard baseline for comparison. 

 
  



 
 

Supplementary Tables 

Table S1. Performance of Physiological Features and Overall Models for Predicting 
Cardiovascular Collapse. 

Feature 
Catheter-Based System Wearable System 

Sensitivity Specificity AUC Sensitivity Specificity AUC 
HR - - - 0.89 0.90 0.88 

HRV 
(Time-Domain) 

- - - 0.70 0.99 0.88 

HRV 
(Spectral) 

- - - 0.24 0.97 0.65 

HRV 
(Poincaré Plot) 

- - - 0.46 0.96 0.80 

PEP 0.60 0.49 0.56 0.60 0.70 0.72 
LVET 0.73 0.85 0.86 0.79 0.82 0.81 

PEP/LVET 0.66 0.89 0.89 0.83 0.81 0.87 
PAT 0.66 0.55 0.60 0.50 0.57 0.55 
PTT 0.53 0.54 0.55 0.54 0.47 0.52 

nPAT 0.80 0.88 0.84 0.77 0.91 0.86 
PPV, PVI 0.71 0.94 0.91 0.55 0.54 0.55 

MARP 0.55 0.89 0.87 - - - 
MFP 0.54 0.89 0.83 - - - 

MPCWP 0.54 0.55 0.55 - - - 
MRAP 0.75 0.61 0.75 - - - 

Overall Model 0.84 0.95 0.93 0.75 0.90 0.91 
 
  



 
 

Supplementary Figures 

 

Supp. Fig. S1. Shared Physiological Features during Exsanguination. Average % change from 

baseline for each level of BVL for each animal. Colors correspond to labels assigned in Fig. 4(d). 

Features in this figure are those that were computed separately for the catheter-based and wearable 

systems. 

  



 
 

 

Supp. Fig. S2. HR-Based Physiological Features during Exsanguination. Average % change 

from baseline for each level of BVL for each animal. Colors correspond to labels assigned in Fig. 

4(d). Features in this figure were derived from the ECG and were included in both the catheter-

based and wearable systems. 

  



 
 

 

Supp. Fig. S3. Catheter-Based Physiological Features during Exsanguination. Average % 

change from baseline for each level of BVL for each animal. Colors correspond to labels assigned 

in Fig. 4(d). Features in this figure were derived from the catheter-based system only and did not 

have analogs in the wearable system. 

  



 
 

 

Supp. Fig. S4. Correlation of Physiological Features. Coefficient of determination (R2) 

computed for each pair of features from all data collected from all animal subjects during the 

protocol. The analysis was performed separately for both the (a) catheter-based and (b) wearable 

system. 

  



 
 

 

Supp. Fig. S5. Hyperparameter Effect on BVS Estimation. RMSE between ground-truth and 

estimated blood volume status for models trained using (a) catheter-based and (b) wearable 

systems averaged across animal subjects. The RMSE is plotted against the size of the random 

forest ensemble and maximum depth of each regression tree. 

  



 
 

 
Supp. Fig. S6. SV Response to Preload Changes. Scatterplots of SV and preload (mean right 

atrial pressure) recorded during the exsanguination protocol for each animal subject. Best-fit lines 

(black, dashed) and their corresponding equations are overlaid. 

  



 
 

 

Supp. Fig. S7. Derivation of Physiological Features. (a) Sample frequency spectrum for a 500-

heartbeat interval of RRIs at rest. LF: low-frequency, HF: high-frequency. (b) Sample Poincaré 

plot for 500-hearbeat interval from (a). λ1 and λ2 represent the first and second eigenvalues of the 

covariance matrix respectively. (c) Extraction of PPmin and PPmax for a sample femoral artery 

pressure waveform (black, solid) over a single respiration cycle. Mean femoral artery pressure is 

overlaid (black, dotted). (d) Cardiac timing interval extraction from wearable- (blue) and catheter-

based (green) signals for a sample heartbeat. PSD: power spectral density. 
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