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Abstract: 

 

Background - Pulmonary vein isolation (PVI) is an effective treatment strategy for patients with 

atrial fibrillation (AF), but many experience AF recurrence and require repeat ablation 

procedures. The goal of this study was to develop and evaluate a methodology which combines 

machine learning (ML) and personalized computational modeling to predict, prior to PVI, which 

patients are most likely to experience AF recurrence after PVI.  

Methods - This single-center retrospective proof-of-concept study included 32 patients with 

documented paroxysmal AF who underwent PVI and had pre-procedural late gadolinium 

enhanced magnetic resonance imaging (LGE-MRI). For each patient, a personalized 

computational model of the left atrium simulated AF induction via rapid pacing. Features were 

derived from pre-PVI LGE-MRI images and from results of simulations (SimAF). The most 

predictive features were used as input to a quadratic discriminant analysis ML classifier, which 

was trained, optimized, and evaluated with 10-fold nested cross validation to predict the 

probability of AF recurrence post-PVI. 

Results - In our cohort, the ML classifier predicted probability of AF recurrence with an average 

validation sensitivity and specificity of 82% and 89%, respectively, and a validation AUC of 

0.82. Dissecting the relative contributions of SimAF and raw images to the predictive capability 

of the ML classifier, we found that when only features from SimAF were used to train the ML 

classifier, its performance remained similar (validation AUC=0.81). However, when only 

features extracted from raw images were used for training, the validation AUC significantly 

decreased (0.47).  

Conclusions - ML and personalized computational modeling can be used together to accurately 

predict, using only pre-PVI LGE-MRI scans as input, whether a patient is likely to experience 

AF recurrence following PVI, even when the patient cohort is small.  

 
 
 
 
 
Key words: magnetic resonance imaging; atrial fibrillation; pulmonary vein isolation; computer-
based model; machine learning 
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Non-standard Abbreviations and Acronyms 

PVI: pulmonary vein isolation 

ML: machine learning 

LGE-MRI: late gadolinium enhanced magnetic resonance imaging 

SimAF: simulations of atrial fibrillation induction 

AUC: area under the curve 

LA: left atrium 

RD: reentrant driver 

MAT: macro-reentrant atrial tachycardia 

MV: mitral valve 

PV: pulmonary vein 

QDA: quadratic discriminant analysis 

LIPV: left inferior pulmonary vein 

LSPV: left superior pulmonary vein 

LAA: left atrial appendage 

RIPV: right inferior pulmonary vein 

nRD+MAT: number of re-entrant drivers and macro-reentrant atrial tachycardias observed 

nRD: number of re-entrant drivers observed 

nMAT: number of macro-reentrant atrial tachycardias observed 

PRD+MAT: proportion of pacing locations from which AF (either re-entrant driver and macro-

reentrant atrial tachycardia) was induced 

PRD: proportion of pacing locations from which re-entrant driver was induced 

PMAT: proportion of pacing locations from which macro-reentrant atrial tachycardia was induced  
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Introduction 

Atrial fibrillation (AF) is the most common cardiac arrhythmia,1 with paroxysmal atrial 

fibrillation (PxAF) accounting for around 25% of AF cases.2 Untreated AF leads to increased 

risk of stroke and heart failure.2 For many PxAF patients, pulmonary vein isolation (PVI) 

ablation is a successful treatment strategy.2 However, in a meta-analysis of PVI outcomes, only 

78% of patients were free from AF at 12 months.3 Patients who experience AF recurrence may 

require repeat PVI or additional substrate modification in the fibrotic left atrium (LA).4,5 A 

methodology which identifies, prior to PVI, patients who are likely to experience post-PVI AF 

recurrence would allow development of targeted ablation strategies for these patients, reducing 

redo procedures and decreasing the risk of morbidity and mortality.6  

Given the importance of early and effective intervention for atrial arrhythmias, many 

machine learning (ML)-based healthcare technologies have focused on AF detection and clinical 

outcome prediction.7 There have been several attempts to use ML to predict AF recurrence after 

ablation, including a study which used deep learning-based LA shape analysis,8 and another 

which used ML on imaging and clinical biomarkers to predict cryo-balloon PVI outcomes.9 

However, ample experimental and clinical evidence supports the primary role of fibrosis 

remodeling in the atria in the pathophysiology of AF,10–13 which thus far has not been accounted 

for in ML approaches aimed at predicting AF recurrence after PVI. 

Atrial fibrosis promotes the initiation and perpetuation of re-entrant activity underlying 

AF by disrupting conduction and establishing regions of pro-fibrillatory substrate.11,13 However, 

it remains unknown to what degree the patient-specific fibrosis distribution prior to ablation is a 

contributing factor to AF recurrence after PVI. Personalized biophysically-detailed 

computational models of the atria based on the patient’s late gadolinium enhanced magnetic 
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resonance imaging (LGE-MRI), which visualizes the personalized fibrosis distribution, allow for 

clinically-validated,14 non-invasive investigation of the susceptibility of a patient’s fibrotic 

substrate to sustaining reentrant activity.15 Such atrial models of arrhythmogenic propensity may 

have potential to predict, pre-procedure, the probability of AF recurrence after PVI, but reducing 

hundreds of thousands of transmembrane voltage measurements over thousands of milliseconds 

to meaningful predictive features is a difficult task. In addition, mechanistic modeling does not 

explicitly consider clinical biomarkers or quantitative measures of the structural remodeling 

derived from raw imaging data. ML classifiers are ideal for identifying predictive patterns in 

high-dimensional data and combining predictive features derived from multiple sources, thus we 

hypothesize that a combination of ML and mechanistic modeling may provide accurate pre-

procedure prediction of AF recurrence after PVI.  

In this proof-of-concept study, we develop a novel approach that combines mechanistic 

computational modeling and ML to predict, before the ablation procedure, the individual 

patient’s probability of AF recurrence post-PVI. We show that this approach results in an ML 

classifier that achieves high validation sensitivity and specificity even when even when the 

patient cohort available for training is small.  

 

Methods  

Data Materials, and Code Disclosure 

The authors declare that all data supporting the findings of the study are available within the 

paper and its supplementary information. Source data for activation maps are available from the 

corresponding author upon request. The LGE-MRI images used to construct the personalized LA 
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computational models are available on request and on approval of the Johns Hopkins 

Institutional Review Board. 

Overview of Methodology 

In this institutional review board-approved retrospective study, we present a novel predictor of 

AF recurrence post-PVI using ML and personalized LA computational models in patients with 

PxAF and discernable fibrosis on LGE-MRI. The predictor is designed to be applied pre-

procedure; an overview of it is presented in Figure 1. In a cohort of 32 patients, we evaluated the 

predictive capability of this classifier. In doing so, for each patient, a personalized computational 

model of the LA was constructed from the pre-procedure LGE-MRI images and used to simulate 

AF induction via rapid pacing. Features were derived from the results of these simulations 

(SimAF) and from raw LGE-MRI images, and served as input into a quadratic discriminant 

analysis (QDA) ML classifier. Features from SimAF were chosen in two ways: i) they were 

based on general knowledge of AF dynamics, and ii) they were left to be chosen by the ML 

training algorithm, unsupervised. The classifier was trained, optimized, and evaluated with 10-

fold nested cross validation. Finally, we assessed the capabilities of ML risk predictors that used 

features from SimAF only and from LGE-MRI imaging only, thus distinguishing the relative 

contributions to the overall predictive capability. 

Patient Cohort and Cardiac MRI Image Acquisition 

This study included adult patients from a single center with documented PxAF who received pre-

procedural LGE-MRI scans and underwent PVI ablation between December 2011 and December 

2015. PxAF was defined as an episode of AF that terminated spontaneously or with intervention 

within 7 days.2 Patients were excluded from the study if their LGE-MRI had motion or breathing 

artifact or if the myocardium was not correctly nulled, resulting in insufficient visualization of 
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the LA geometry and fibrosis distribution for model reconstruction and ML. 32 patients were 

included in the study. 

All patients were observed overnight in the hospital for hemodynamic monitoring and 

resumption of anticoagulation. Routine follow‐up with electrocardiograms (ECGs) and clinical 

assessment was performed at 3, 6, and 12 months. Additional follow‐up for symptomatic patients 

was performed if necessary, including Holter monitoring. Any recurrence of AF/atrial 

tachycardia (AT) documented by ECG or a device‐recording system lasting ≥30 seconds, outside 

of a 3‐month post-procedure blanking period, was considered recurrence. 

Twelve (38%) patients experienced AF recurrence in the follow-up period. All patients 

had PVI with either radiofrequency (RF) or cryo-balloon ablation. 28 (88%) patients underwent 

circumferential linear RF ablation around the left and right pulmonary veins. The other 4 (12%) 

patients had cryo-balloon ablation performed with a 23 or 28mm cryo-balloon. The median time 

between the PVI procedure and last date of follow-up was 366 days (IQR: 365-467 days). The 

median time to reported AF recurrence was 310 days (IQR: 204-381 days).  

Pre-procedure LGE-MRI scans were acquired using a 1.5 T Avanto MR system for the 

purpose of visualizing and reconstructing the atrial geometry and fibrosis distribution. Scans 

were performed in the axial orientation 10–27min following 0.2mmol/kg of gadobenate 

dimeglumine contrast agent using a fat-saturated 3-dimensional (3D) IR-prepared fast spoiled 

gradient recalled echo sequence, with electrocardiogram-triggered and respiratory navigator 

gating. Image resolution was 1.25x1.25x2.5mm.  

Methodology for Personalized Atrial Computational Modeling  

A full description of the personalized atrial geometric model reconstruction workflow can be 

found in our previous publications.5,16,17 Briefly, the LA epicardial and endocardial walls were 
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manually delineated on the pre-procedure LGE-MRI using ITK-snap.18 Fibrotic voxels were 

classified with image intensity ratio greater than 1.22,19 this threshold has been validated 

clinically by using thresholded fibrosis in atrial models to predict AF ablation targets.16 High-

resolution tetrahedral finite-element meshes were generated from the up-sampled segmented 

images.20 Realistic myocardial fiber orientations were incorporated using a diffeomorphic 

mapping technique from an atlas geometry.17,21,22 

Electrophysiological properties were assigned to non-fibrotic and fibrotic tissue in the 

geometric models as described previously.14,23,24 Specifically, a human chronic AF action 

potential model25 with modifications to fit clinical monophasic action potential recordings from 

patients with AF26 was used to represent membrane kinetics in non-fibrotic myocardium. In 

fibrotic regions, further ionic modifications were implemented,27–29. At the tissue scale, fibrotic 

regions had reduced conductivities to represent impaired cell-to-cell coupling, as we have 

described previously.29 The rapid pacing atrial arrhythmia induction protocol is described on our 

previous publications, and involved rapid-pacing from 30 uniformly distributed locations on the 

LA.17,24 Simulations were performed in the CARP software package 

(https://carp.medunigraz.at/).30,31 Persistent reentrant drivers (RDs) were identified using the 

wavefront tip analysis method.32,33 We also identified macro-reentrant atrial tachycardias (MAT), 

wavefront propagation around a non-conductive obstacle such as the mitral valve (MV) or 

pulmonary vein (PV).17  

Extraction of Features from SimAF 

Once the personalized simulations of AF induction in all 32 models were completed, features 

from SimAF were selected for input into the ML classifier. These were chosen in two ways: i) by 

the authors based on general knowledge of AF dynamics (deductive features), and ii) by the ML 
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training algorithm, unsupervised (inductive features). Deductive features included presence of 

RDs, theorized to correlate with or predict likelihood of AF recurrence,5 as well as other features 

we thought might be meaningful, such as  the number of RDs inside the regions isolated by PVI. 

The latter could be predictive of AF recurrence in the case of PV reconnection, which has been 

shown to occur in as many as 85% of patients experiencing AF recurrence.34 In contrast, 

inductive features of SimAF were “learned” in an unsupervised manner during classifier training 

by analyzing SimAF in models of patients who experienced AF recurrence. This category of 

features was included to allow learning of predictive features of SimAF not previously described 

in the literature and to reduce bias that may be introduced by hand-crafting the choice of 

features. Detail regarding the extraction of inductive features from SimAF is presented in 

Supplementary Materials. A complete list of features extracted from SimAF is presented in Table 

1. 

Extraction of Features from LGE-MRI Images 

While LA models were based on pre-procedure LGE-MRI images, model reconstruction 

involved binarizing the fibrosis distribution via thresholding, as well as its interpolation and 

mapping to the 3D mesh. As unprocessed (raw) images of fibrosis distribution might contain 

additional prognostic information pertinent to AF recurrence, features from the pre-procedure 

LGE-MRI atrial scans were also made available to the classifier. A complete list of features 

extracted from LGE-MRI scans is presented in Table 1. They included, among others, the 

heterogeneity and quantity of the fibrosis distribution, both suggested to correlate with AF 

propensity,5 and a fractal dimension-based feature35 which quantifies how quickly the 

complexity of the 3D surface of the fibrosis volume decreases as resolution decreases; the latter 
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was calculated by analyzing the differences in the number of cubes of various sizes required to 

cover the entire surface of the fibrotic region.  

Training, Optimization, and Evaluation of QDA Classifier 

Ten-fold nested cross-validation was used to train, validate, and test the classifier.36 Random 

forests were used for unbiased feature selection,37 then a QDA classifier was trained38,39 using 

the selected features to predict the probability of AF recurrence after PVI. The selected features 

are listed in Table 1; all of these were extracted, as described, either directly from raw pre-PVI 

LGE-MRI or from SimAF in computational LA models reconstructed from pre-PVI LGE-MRI. 

Features extracted from raw images and those derived from SimAF were not treated differently 

in any way in the fully automatic feature section process, thus preventing bias towards either 

subset of features. Optimized hyperparameters included the number of features selected for the 

classifier and various parameters used to calculate the inductive SimAF features. The inductive 

SimAF features learned during training were recorded for further analysis. Further details 

regarding ML are provided in the online Supplementary Methods. 

 

Results 

Clinical Characteristics of Study Cohort 

There were no significant differences in clinical characteristics, including several known AF risk 

factors, between patients who did and did not experience AF recurrence (Table 2). Accordingly, 

we did not attempt to train classifiers with any of these clinical biomarkers as none of them were 

associated with AF recurrence in this retrospective cohort. 
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AF Inducibility in Patient-Specific LA Models 

Figure 2 presents several examples of reconstructed LA models showing the pre-procedure 

patient-specific atrial geometries and fibrosis distributions, as well as examples of induced 

reentrant activity following the rapid pacing protocol in the models. A MAT was observed 

around the left inferior pulmonary vein (LIPV) in the LA model of Patient 1 (Fig. 2A). An RD 

was found on the posterior left atrium adjacent to the MV in the LA model of patient 2 (Fig. 2B). 

In the LA model of patient 3, RDs were found on the inferior posterior wall and LIPV, and a 

MAT perpetuated around the RIPV (Fig. 2C).   

We first tested whether the results of SimAF themselves could be used, pre-procedure, to 

predict AF recurrence post-PVI. We found that reentry was induced from a larger number of 

pacing sites in the LA models of patients who experienced AF recurrence post-PVI (9.2±1.8) 

compared to those of patients who did not (5.7±1.7), but this did not reach statistical significance 

(p=0.19, Fig. 2D). We also examined whether the number of pacing sites from which reentry was 

induced in the models was associated with AF recurrence after PVI-- the resulting AUC was 

0.72. More RDs and MATs were observed in the models of patients who experienced AF 

recurrence (2.6±0.4) compared to those of patients who did not (1.7±0.4), but this also did not 

reach statistical significance (p=0.18, Fig. 2E). Using the number of pre-ablation simulated RDs 

and MATs to predict have AF recurrence after PVI, the AUC was 0.69 and the sensitivity and 

specificity were 75% and 60%. The lack of statistical significance in the hand-picked features 

and relatively low training AUCs indicates that this approach may not perform well when 

applied to previously unseen patients.  
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Prediction of Post-PVI AF Recurrence Using ML on Features from Pre-Procedure LGE-

MRI Imaging and SimAF 

Our risk predictor, which used ML on features extracted from both pre-procedure LGE-MRI 

imaging and SimAF, predicted post-PVI AF recurrence with an average validation sensitivity 

and specificity of 82% and 89%, respectively, and a validation AUC of 0.82 (Fig. 3). The 

training AUC was similar: 0.90. This indicates that the classifier is generalizable, or likely to 

correctly predict whether a previously unseen patient will experience AF recurrence after PVI, 

despite the small data set available for training.  

When only features derived from SimAF we used in an ML classifier, the predictive 

capability was similar: an average validation sensitivity and specificity of 79% and 89%, 

respectively, and a validation AUC of 0.81. This indicates that, in this small cohort, features 

extracted directly from raw images did not bestow additional predictive capabilities to the ML 

classifier, over those based solely on SimAF features, as pre-procedure LGE-MRIs are already 

included in the personalized models. 

In comparison, an ML classifier using as input only features extracted from raw LGE-

MRI (without imaging-based simulations) had validation sensitivity and specificity of 57% and 

61% respectively. This classifier achieved a training AUC similar to that of the classifier using 

combined inputs (0.85 vs. 0.90, respectively), but a much lower validation AUC (0.47 vs. 0.82, 

respectively), the latter indicating that it was not generalizable. This suggests that data from a 

much larger patient cohort would be required to train an ML classifier to correctly predict AF 

recurrence risk of a previously unseen patient using only features extracted from raw LGE-MRI 

images, further supporting the inclusion of features extracted from imaging-based simulation 

results regarding AF propensity in ML-based AF recurrence risk prediction.  
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Analysis of Inductive Features Learned by the ML Algorithm from SimAF  

To gain insight into how the ML classifier predicted AF recurrence after PVI, we analyzed the 

inductive SimAF features learned from the training data in each “outer loop” of cross-validation. 

Figure 4 presents the learned features of SimAF (reentry locations and pacing locations) that 

were most predictive of AF recurrence and were thus selected by the ML classifier. All of the 

most predictive reentry-inducing pacing locations that contributed to the selected inductive 

SimAF features were outside the PVs. Additionally, the most predictive inductive features 

frequently involved the numbers of RDs and MATs on the LIPV and mid anterior wall, as well 

as the MV for MAT.  

 

Discussion 

The goal of this study is to develop and evaluate a novel methodology for prediction of AF 

recurrence post-PVI using ML and personalized mechanistic modeling of AF induction in the 

LA of patients with PxAF and fibrotic remodeling on LGE-MRI. The ML classifier is designed 

to be applied before the ablation procedure, using only data available up to that time point. It 

uses as inputs features extracted from LGE-MRI-based simulation results for AF propensity in 

the fibrotic substrate, as well as those extracted from raw pre-procedure LGE-MRI images. We 

demonstrate that this approach results in a highly predictive and generalizable classifier, even 

when the patient cohort used for training is small. Our approach achieved an average validation 

sensitivity and specificity of 82% and 89%, respectively, and a validation AUC of 0.82, 

indicating that the classifier is generalizable and likely to accurately predict the AF risk of a 

previously unseen patient. To our knowledge, this is the first study to demonstrate that ML and 
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mechanistic cardiac modeling can be used together to develop an accurate and generalizable 

classifier that predicts the risk of adverse clinical events.   

Our ML-based AF recurrence risk prediction methodology incorporated both inductive 

SimAF features learned during training of the ML classifier and deductive SimAF features 

chosen prior to training. The inclusion of inductive features is analogous to deep learning, a 

popular form of ML in which feature extraction is performed in the process of training a 

classifier, rather than prior to training.40 Analysis of the inductive features extracted during 

training confirms that the classifier can learn patterns of SimAF which have not necessarily been 

previously evaluated for correlation with AF recurrence, but are clinically explainable in the 

context of published studies describing mechanisms of AF recurrence. For example, all pacing 

locations selected by the unsupervised algorithm for inductive SimAF feature extraction were 

outside the PVs, which is supported by research suggesting that triggers outside the PVs 

contribute to AF recurrence.4  

Additionally, among the most predictive inductive SimAF features were the numbers of 

RDs and MATs on the LIPV and mid anterior wall, and the number of MATs around the MV. 

Since the mid anterior wall and the MV are outside the PV region and would not be electrically 

isolated by PVI, it is understandable that fibrosis distribution that can result in RDs and MATs 

forming there would be highly predictive of post-PVI AF recurrence. Furthermore, while it may 

seem counter-intuitive that reentry around the LIPV would predict AF recurrence, since PVI 

should electrically isolate this region, this feature might predict in which patients AF would recur 

should PVs reconnect after the ablation procedure. Jiang et al. found that re-connection of 1 or 

more PVs occurs in 85.5% of patients with AF recurrence, and 58.6% in patients without AF 

recurrence,34 which supports our findings.  
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In designing this study, we hypothesized that an ML classifier which included features 

extracted from both image-based SimAF and the raw LGE-MRI images would provide the best 

prediction of post-PVI AF recurrence. However, we found that the features extracted from the 

raw LGE-MRI images did not contribute significantly to the predictive capability of the ML 

classifier. This indicates that while model generation from LGE-MRI images effectively reduced 

the dimensionality of the images, it nonetheless retained enough image information about the 

fibrotic substrate to be able to accurately predict whether a given patient will experience post-

PVI AF recurrence. 

When we constructed an ML classifier which only included features extracted from raw 

LGE-MRI images, in our small training cohort it achieved a much lower validation AUC than 

training AUC. This result indicates that an ML classifier based on raw images (that does not 

incorporate personalized simulations) would need to be trained on a much larger imaging data set 

to be able to correctly predict AF recurrence post-PVI of a previously unseen patient.  

The validation AUC of the ML classifier which included only features derived from 

SimAF to predict AF recurrence (Fig. 3B) was higher than the AUCs achieved using measures of 

AF inducibility in the LA models without ML (Fig. 2F). While both risk prediction methods 

relied on the same underlying SimAF in the same LA models, the ML classifier training 

algorithm allowed selection of multiple features derived from SimAF and weighting of these 

features, so the resulting classifier was finely tuned. In contrast, the non-ML method predicted 

the risk of AF recurrence via thresholding of a single measure of AF propensity (number of 

reentry locations or number of reentry-inducing pacing sites); it did not consider multiple 

features, their relative importance, or inductive features learned from the training data. 
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In the presented approaches to predict post-PVI AF recurrence here, LGE-MRI is a 

central data input, as it has the ability to accurately visualize LA geometry and spatial 

distribution of fibrosis. This ability is paramount to our study and to many others that have 

utilized atrial LGE-MRI in clinical studies.5,16 Fibrosis on LGE-MRI has been shown to correlate 

with that in histological studies of biopsied patients.10 Furthermore, the measure used to define 

fibrosis in our study (image intensity ratio) has been validated by correlation with local 

intracardial LA bipolar voltage measurements.19 Finally, Chubb et al. 41 found excellent 

reproducibly of LGE-MRI, demonstrating that LGE scar assessment is very specific, albeit not 

particularly sensitive. The latter is an advantage in our study as it prevents us from predicting 

false AF inducibility in a “false-positive” fibrotic substrate. 

A limitation of this study is the small data set, often a serious concern in ML studies. 

However, by using 10-fold nested cross-validation and aggregating the results, we demonstrated 

nonetheless excellent predictive capability. Our combined approach achieved similarly high 

validation and training AUCs, indicating that the resulting classifier was generalizable despite 

the small data set. Prospective validation in a larger cohort would confirm the predictive 

capability of the proposed post-PVI AF risk prediction methodology. Further, although this study 

only included PxAF patients with adequate clinical follow-up at 3, 6, and 12 months, the 

methods for defining recurrence of AF are a limitation of any clinical study that uses such 

follow-up, especially the difficulty in identifying asymptomatic recurrent AF.  

Another limitation is the lack of published detailed methods and quantitative results for 

previously proposed imaging-based ML AF recurrence prediction methodologies, which limited 

our ability to compare these with our methodology. A recent approach which used only imaging 

features8 achieved a F1-score (harmonic mean of precision and recall) of 0.33, while our 
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approach achieved a testing F1-score of 0.70. However, the study did not state what part of the 

data (training, testing, or validation) this F1-score applied to, so this may be a poor comparison. 

Further, two clinical risk scores have been proposed to predict the risk of AF recurrence after 

PVI: the ATLAS score42 and the CAAP-AF score43, but our retrospective registry did not contain 

all the necessary variables to calculate either of these risk scores. However, we note that our ML 

classifier achieved a validation AUC of 0.82, which is greater than the censored C-statistic of 

0.75 achieved by the ATLAS score and the development AUC of 0.69 achieved by the CAAP-

AF score.  

In this study, we developed an ML classifier able to accurately predict, pre-procedure, AF 

recurrence post-PVI. The classifier uses as inputs features extracted from LGE-MRI-based 

simulation results for AF propensity in the fibrotic substrate and those extracted from raw pre-

procedure LGE-MRI images. The ML classifier is designed to be applied before the ablation 

procedure. Our vision for the use of this classifier is that should it predicts that AF will recur 

post-PVI, then the patient’s LA model would be used to also predict the treatment strategy, i.e. 

the personalized ablation targets outside the wide-area PVI, as we have done prospectively in a 

recent study.16 An important characteristic of our resulting classifier is that it considers the 

potential patient-specific mechanisms of arrhythmogenesis resulting from the fibrotic substrate in 

the LA, making it clinically explainable. To our knowledge, this is the first study to demonstrate 

the potential of combining computational cardiac modeling and ML to make clinical predictions. 
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Table 1. List of all features extracted from raw LGE-MRI images and imaging-based simulation results. 
 

Feature 
Category Feature Description Included in 

classifier (%) 

Inductive SimAF nRD+MAT within N most predictive anatomical regions 100% 
 nRD within N most predictive anatomical regions  20% 
 nMAT within N most predictive anatomical regions   

 Mean pRD+MAT per anatomical region which induced RD or MAT localized to single most 
predictive anatomical region  

 Mean pRD per anatomical region which induced RD localized to single most predictive 
anatomical region  

 Mean pMAT per anatomical region which induced which induce MAT localized to single most 
predictive anatomical region  

 Mean pRD+MAT per anatomical region which induced RD or MAT localized to any of N most 
predictive anatomical regions   10% 

 Mean pRD per anatomical region which induced RD localized to any of N most predictive 
anatomical regions   10% 

 Mean pMAT per anatomical region which induced MAT localized to any of N most predictive 
anatomical regions   10% 

 pRD+MAT within P most predictive anatomical regions 20% 
 pRD within P most predictive anatomical regions  
 pMAT within P most predictive anatomical regions  

 pRD+MAT within P most predictive anatomical regions that induce RD or MAT localized to any 
of N most predictive reentry locations 40% 

 pRD within P most predictive anatomical regions that induce RD localized to any of N most 
predictive RD locations  

 pMAT within P most predictive anatomical regions that induce MAT localized to any of N most 
predictive MAT locations 10% 

Deductive 
SimAF pRD+MAT (all pacing locations)  

 pRD (all pacing locations)  
 nRD (all locations)  
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 nMAT (all locations)  
 nRD localized to PV region  
 nRD localized outside PV region  
 nMAT localized outside PV region  
 pRD that lead to RDs outside PV region (all pacing locations)  
 nRD+MAT (all locations)  
 nRD / pRD (number of RDs per inducible pacing site)  
Imaging Ratio of fibrotic tissue to entire atrial myocardium  
 Ratio of fibrotic tissue to non-fibrotic tissue  
 Fibrosis entropy  
 Difference in ratio of FD of fibrosis between 13 to 23 voxels and 23 to 43 voxels 10% 
 Difference in ratio of FD of fibrosis between 23 to 43 voxels and 43 to 83 voxels  
 Difference in ratio of FD of fibrosis between 43 to 83 voxels and 83 to 163 voxels  
 Difference in ratio of FD of fibrosis between 83 to 163 voxels and 163 to 323 voxels 10% 
 Difference in ratio of FD of fibrosis between 163 to 323 voxels and 323 to 643 voxels  
 Difference in ratio of FD of fibrosis between 323 to 643 voxels and 643 to 1283 voxels  
 Difference in ratio of FD of fibrosis between 643 to 1283 voxels and 1283 to 2563 voxels  

 
Features extracted for each patient from raw LGE-MRI images and imaging-based simulation results and the frequency with which each feature 
was selected for inclusion in the ML classifier. 10 outer loops of cross validation were performed; for example, 100% indicates that the feature 
was among the most predictive in all 10 outer loops. machine learning (ML), simulations of atrial fibrillation induction (SimAF), reentrant driver 
(RD), macro-reentrant tachycardia (MAT), number of RD and MAT observed (nRD+MAT), number of RD observed (nRD), number of MAT observed 
(nMAT), proportion of pacing sites that led to RD or MAT (pRD+MAT), proportion of pacing sites that led to RD (pRD), proportion of pacing sites that 
led to  MAT (pMAT), pulmonary vein (PV), fractal dimension (FD) 
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Table 2. Baseline characteristics of the paroxysmal AF patient cohort. 
 

Clinical Characteristics Freedom from AF (n=20) AF Recurrence (n=12) p 

Age (years) 63 ± 8 63 ± 9 0.87 

Male sex 9 4 0.71 

Body mass index (kg/m3) 27 ± 6 27 ± 5 0.99 

Hypertension  10 (50%) 7 (58%) 0.73 

Impaired Glucose or Diabetes 5 (25%) 1 (8%) 0.63 

Congestive heart failure 4 (20%) 2 (17%) 1 

Ablation Procedure Details 

Cryo Ablation 3 (15%) 1 (8%) 1 

Flutter Line 5 (20%) 3 (25%) 1 
 
P-values were calculated with Student’s t-test or Fisher’s exact test as appropriate. atrial fibrillation (AF) 
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Figure Legends: 

 

Figure 1. Overview of AF recurrence risk prediction methodology. The flowchart shows our 

novel machine learning (ML) methodology to predict, before the ablation procedure, atrial 

fibrillation (AF) recurrence following pulmonary vein isolation for patients with paroxysmal AF. 

For each patient, a personalized computational model of the left atrium was constructed from late 

gadolinium enhanced magnetic resonance imaging (LGE-MRI) to simulate AF induction via 

rapid pacing. Features were derived from the results of simulations (SimAF) as well as from the 

raw LGE-MRI images to serve as inputs into a quadratic discriminant analysis classifier. 

Features from SimAF were chosen in two ways: i) based on general knowledge of AF dynamics, 

and ii) left to be chosen by the ML training algorithm, unsupervised. The ML classifier was 

trained, optimized, and validated with 10-fold nested cross validation, resulting in the validation 

receiver operating characteristic curve shown (right). 

 

Figure 2. Mechanistic modeling results of AF induction in patient-specific LA models. (a) 

Reconstructed 3-dimensional (3D) left atrial model for patient 2. Pacing locations which did 

(yellow) and did not (red) induce reentrant drivers (RD) and/or macro-reentrant tachycardias 

(MAT) (left). Activation map showing MAT around the left inferior pulmonary vein (right). (b) 

Reconstructed 3D left atrial model for patient 4 (left). Activation map showing RD adjacent to 

mitral valve on posterior left atrium adjacent to the mitral valve (right). (c) Reconstructed 3D 

atrial model for patient 7 (far left). Activation maps showing RD inferior to the pulmonary vein 

(middle left), RD at left inferior pulmonary vein (middle right), and MAT around right inferior 

pulmonary vein (far right). (d) Number of AF-inducing pacing sites for each patient vs. 
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pulmonary vein isolation (PVI) outcome. (e) Number of RDs and MATs for each patient vs. PVI 

outcome. (f) Receiver operating characteristic curves for prediction of AF recurrence after PVI 

using the number of AF-inducing pacing sites (solid red line) and number of RDs and MATs 

(dashed blue line). reentrant driver (RD), macro-reentrant tachycardia (MAT), area under the 

curve (AUC). 

 

Figure 3. Prediction of AF recurrence post-PVI using ML on Features Derived from raw LGE-

MRI and SimAF. Training (a), validation (b), and testing (c) receiver operating characteristic 

(ROC) curve for quadratic discriminant analysis classifier trained using features derived from 

imaging and SimAF (solid yellow line), imaging only (dashed blue line), and SimAF only 

(dashed red line). ROC curves were calculated by aggregating the results of 10-fold nested cross 

validation. simulations of atrial fibrillation induction (SimAF), imaging (I), area under the curve 

(AUC). 

 

Figure 4. Analysis of inductive features learned by the ML algorithm from SimAF. (a) Reentry 

(reentrant driver, RD, and macro-reentrant tachycardia, MAT) locations most predictive of atrial 

fibrillation (AF) recurrence (red). (b) RD locations most predictive of AF recurrence (yellow). 

(c) MAT locations most predictive of AF recurrence (gray). (d) Locations (in purple) of the 

highest proportion of reentry-inducing pacing sites found to be predictive of AF recurrence. (e) 

The proportion of pacing sites in these locations (light blue) inducing MAT was predictive of AF 

recurrence. (f) Frequency with which each characteristic of SimAF was used to calculate an 

inductive feature selected by the random forest for inclusion in the ML classifier in the 10 outer 
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loops of cross validation. mitral valve (MV), left superior pulmonary vein (LSPV), left inferior 

pulmonary vein (LIPV), left atrial appendage (LAA), right inferior pulmonary vein (RIPV) 
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What is known? 

• In patients with paroxysmal atrial fibrillation (AF), recurrence of AF after ablation 

treatment via pulmonary vein isolation (PVI) is high. 

• Atrial fibrosis promotes re-entrant activity underlying AF, thus presence of fibrosis in the 

atria could be a factor contributing to AF recurrence after PVI. 

• Currently, there are no approaches to predict, before the ablation procedure, the 

individual patient’s probability of AF recurrence post-PVI.  

 

What this study adds:  

• A personalized approach to predict pre-procedure the probability of AF recurrence after 

PVI is developed, which combines machine learning and MRI-image-based 

computational modeling of AF inducibility in the fibrotic atrial substrate. 

• The machine learning (ML) algorithm uses as input features from the patient’s LGE-MRI 

and from the results of the personalized mechanistic simulations. 

• The optimized ML algorithm predicts AF recurrence following PVI with an average 

validation sensitivity of 82%, specificity of 89%, and area under the curve of 0.82. 

• The inclusion, in the ML algorithm, of features extracted from the results of personalized 

mechanistic simulations of AF inducibility results in a highly generalizable AF 

recurrence prediction even for a small training data set. 
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