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Supplementary Material 

 

Dataset 
 

Lensless microscope dataset  
We acquired 1-minute videos of 10 species of plankton (Carolina Biological Supply, Burlington, 

NC) using an in-house digital detector. The system used for acquisition employs the principles of 

a lensless microscope. Using a point light sources, shadows of the plankton are cast upon an 

image sensor. We use a CMOS 5-megapixel image sensor (OmniVision OV5647). Sample 

images for the acquired species are provided in Fig. 1. The microscope camera acquisition 

frequency is 30 frames/s. To extract plankton images, each frame was analyzed using a detector 

implemented in python with openCV. The detector is based on 5 different steps (see fig S1):  

-median blurring; 

-background subtraction to eliminate static objects (e.g., algae in our videos); 



   

 

   

 

-binarization of the image; 

-morphological closing; 

-contour extraction. 

The extracted contour, as well as the cropped plankton cell images, are used to extract a set of 

131 morphological descriptors, representing the input data for the unsupervised learning 

pipeline.  

 

Fig S1. Implemented detector to extract plankton images from the acquired videos. The bounding box corresponding to the 

final detected contour is used to crop the plankton image.   

 

 



   

 

   

 

Woods Hole Oceanographic Institution (WHOI) Dataset  

The WHOI makes available a data set comprising of millions of still images of microscopic 

marine plankton, organized according to category labels provided by researchers at the Woods 

Hole Oceanographic Institution. These images were collected in situ by automated submersible 

imaging-in-flow cytometry with an instrument called Imaging FlowCytobot (IFCB), designed 

and built by WHOI. We have used this dataset as a benchmark to test the unsupervised 

partitioning approach we have developed. We started collecting the complete set of 103 

categories acquired from 2011 to 2014. The WHOI dataset is strongly imbalanced, with number 

of images per classes varying from as low as ten images to several thousands. We have identified 

that 100 images is a low boundary for the size of our classes in order for the partitioning to be 

accurate (see fig S2). Thus, we eliminated all the classes which are represented in the database 

with less than 100 images, leaving us with 54 classes. The WHOI dataset has been acquired in 

the field, and then hand curated by experts. However, several of the annotated categories are 

macro categories containing more than one species of plankton (e.g., pennate_on_diatoms or 

Chaetoceros_other), for a total of 9 classes. We have decided to exclude these categories from 

the analysis. We have also excluded data which is not relevant to our work, like detritus or 

bubbles, for a total of 5 classes. After this trimming process, we obtained 40 species for which 

we were able to extract a random set of 100 images from the WHOI dataset. Fig S3 shows 

sample images extracted from the dataset for each of the selected species. We implemented a 

customized segmentation algorithm to make our pipeline compatible with static images, as the 

ones included into the WHOI dataset. The segmented image is the union between an adaptive 

gaussian thresholded image for detecting organism details, and a triangular thresholded image 

for reconstructing the organism body.  



   

 

   

 

 

 

Fig S2. Evaluation of purity with respect to the number of samples using the lensless microscope dataset. The results are 

very accurate with number of images per sample higher or equal to 100. Using 50 images results in an overlap between two 

clusters (corresponding to the species Paramecium bursaria and Blepharisma americanuum), and in a decrease of the 

performances (light gray bar). The corrected purity algorithm introduced in this supplement (see Customized purity algorithm 

section), allows for a more accurate result (patterned bar).  

 



   

 

   

 

 

Fig S3. Example images from the considered datasets. a-z13 WHOI dataset (names as they are labeled in the dataset) z14-z23 

lensless microscope dataset. a Ceratium b Chrysochromulina c Coscinodiscus d  Dactyliosolen e Gyrodinium f 

Strombidium_morphotype1 g Dino30  h Euglena i Eucampia j Flagellate_sp3 k Pyramimonas_longicauda  l Thalassionema m 

Delphineis n Pleurosigma o Chaetoceros_didymus_flagellate p Dictyocha q DactFragCerataul r Emiliania_huxleyi s Corethron t 

Kiteflagellates u Tintinnid v Dinobryon w Ephemera x Thalassiosira_dirty y Skeletonema z Pseudochattonella_farcimen z0 

Proterythropsis_sp z1 Heterocapsa_triquetra z2  Rhizosolenia z3 Prorocentrum z4 Pleurosigma z5 Phaeocystis z6 Laboea 

Strobila z7 Katodinium_or_Torodinium z8 Mesodinium_sp z9 Paralia z10 Guinardia_striata z11 Asterionellopsis z12 

Amphidinium_sp z13 Pennate_morphotype1 z14 Blaepharisma Americanum z15 Euplotes Eurystomus z16 Spirostomum 

ambiguum z17 Volvox z18 Arcella Vulgaris  z19 Actinosphaerium Nucleofilum z20 Dileptus z21 Stentor Coeruleous z22 

Paramecium Bursaria z23 Didinium nasutum. 

 

 

 

 



   

 

   

 

Clustering algorithms  
 

 

 

Customized purity algorithm  
 

We measure clustering accuracy using purity: 

 

 

where the class k is associated to the cluster j with the highest number of occurrences. A purity 

value of one corresponds to clusters that overlaps perfectly to the ground truth. Purity decreases 

when samples belonging to the same class are split between different clusters, or when two or 

more clusters overlap with the same species. However, these two sources of error are very 

different. In fact, if two or more species are assigned to the same cluster, it means simply that 

they present very similar morphological features, and the clustering algorithm has joined them 

into the same cluster (see fig S4). If the morphological similarity is such that the overlapping 

species are fully assigned to the same cluster, the system is still capable of accurately 

representing the data, since the differentiation in the feature space of choice is, by construction, 

not be possible. We have customized the purity coefficient to take into account the possibility of 

these occurrences, by considering the overlap in the evaluation of the coefficient. Thus, if two 

species are morphologically indistinguishable and assigned to the same cluster, the index 

corresponding to total number of clusters is reduced by one in the calculation of the purity. On 

the other hand, when a species is assigned to multiple clusters, the error cannot be corrected 



   

 

   

 

since there would be no way to know that such error has occurred. We have observed errors of 

the first kind in the WHOI dataset. The number of potential misclassifications is correlated with 

the dimension of the training set, namely, the more images are available to the algorithm, the 

more accurate the separation in feature space, the lower the number of cluster overlaps. The 

maximum number of cluster misclassifcations is 5 for the subset of the WHOI we have 

considered, corresponding to using 50 images per class, in our analysis.  

 
 

Fig S4. Examples of species that are incorrectly assigned to the same cluster by our algorithm because of their 

morphological similarity in our feature space. Similarity is intended from left to right a Proterythropsis_sp  b 

Heterocapsa_triquetra c Amphidinium_sp  d Pseudochattonella_farcimen e Gyrodinium f Prorocentrum  

 

 

 

 

 

 

Estimation of the number of classes  
 

We implemented three different methods to automatically determine the number of clusters, Z, to 

be used by the fuzzy k-means partitioning algorithm. The Partition Entropy (PE) is described in 

the main text, and its explanation will be excluded. 

Partition Coefficient (PC) 

The partition coefficient has been introduced in 1 and is defined as: 



   

 

   

 

 

 

 

                                                                                                              (2) 

 

 

The PC is evaluated for number of clusters greater or equal to 1, and the maximum value is 

adopted as an estimation of the total number of classes. The PC takes values in range [1/K,1]. 

The closer it is to 1/K, the smaller the separation between the analyzed data.  

 

Xie-Beni coefficient  

The Xie-Beni coefficient has been introduced in 2 and is defined as: 

 

 

                                                                                                      (3) 

 

 

 

Where: 

 

 
 

 xj represents a N-dimensional feature vector that is used as input to the clustering algorithm. The 

Xie-Beni coefficient is also defined as compactness and separation coefficient. The logic of 

determination for the number of clusters relies in maximizing separation between clusters and 

compactness within the same cluster.  

 



   

 

   

 

Both PC and Xie-Beni have been applied to the lensless microscope dataset, and have yielded 

incorrect results with respect to the PE (see fig S5). 

 

 

Fig S5. Estimated number of clusters adopting the partition coefficient. a and the XIE-BENI index b as a function of sample 

size (species). The results are less precise if compared with the partition entropy (see fig 2e in the main text). However, both the 

algorithms can reconstruct correctly the number of clusters for subset of 3 species and 5 species. The number of clusters on the y 

axis is the distribution of ten runs on random subsets of all species. For example, for the leftmost box, 3 species have been 

randomly chosen from the lensless microscope database. This procedure is repeated ten times and the mode is then used as the 

estimated number of clusters.  

 

K-MEANS 
 

K-mean is a is a clustering algorithm widely used in data mining, for clustering large sets of data. 

The term k-means was introduced for the first time by James MacQueen in 3. The standard 

version of the algorithm, we are going to briefly describe in this section, is also referred as 

Lloyd’s algorithm and was introduced by Lloyd in 4. The algorithm consists of two different 

steps. The first one consists in choosing the centroids ci for each of the k clusters. The second 

one consists in assigning each point to a cluster, minimizing an objective function. Let us 



   

 

   

 

consider a set of observations , with . The k-mean algorithm will separate 

the observations into k partitions , as to minimize the intra-partition variance: 

 

(4) 

 

After the first k centroids are choose, the algorithm assigns each observation x to the cluster 

correspondent to the nearest centroid (according to Euclidian distance). Then, the centroids are 

updated using the mean intra-cluster value, iterating the procedure until convergence (defined as 

no update in the centroids). The k-mean algorithm is a crispy clustering algorithm, i.e. there is a 

hard membership forcing a given point to belong exclusively to one cluster.  

 

 

FUZZY K-MEANS 
 

The fuzzy clustering is a set of algorithms that relaxes the crispy constraint of hard memberships, 

allowing each point to belong to two or more clusters. The fuzzy k-means was introduced in 5 

and 6. Given a set of observations , with , the algorithm aims to minimize 

the following objective function:  

 

 (5) 

The parameter m is defined fuzziness,  is the degree of membership for observation  in 

cluster j,  is the centroids for cluster j, ||*|| can be any norm to express similarity between 



   

 

   

 

observations and centroids. The centroids and the degree of memberships are updated according 

to Eq. (6) and (7): 

 

  

 

                    (6) 

 

(7) 

 

 

The algorithm converges to a saddle point for the objective function in Eq. (2), when there is a 

maximum change in the degree of membership lower than a given tolerance .   

 

 

MIXTURES OF GAUSSIAN MODELS 
 

Gaussian Mixture Model (GMM) is a parametric statistical model assuming data are generated 

from a linear combination of normal gaussian sources7. Given a set of observations , 

with , the GMM model associates each observation xi with a probability p(xi) according 

to equation (8): 

 

   (8) 



   

 

   

 

   

Where (*) is a normal multivariate distribution with mean  and covariance , K is the 

number of gaussians distribution to consider, which corresponds to the number of clusters to 

partition the observations in.  are the coefficient of the gaussians linear combination, with the 

constraint   and  . The complete set of parameters  is equal to the vector 

(  To estimate ,  an Expectation-Maximization 

(EM) approach is adopted. Starting from an initial value for  (e.g., random), the E-step 

basically consists in computing the N x K matrix of the degree of membership for each 

observation  in cluster j as:   

 

(9) 

 

The degree of memberships satisfies the condition: . The M-step consists in update 

the parameter set  according to the estimated degree of membership matrix, according to Eq. 

10, 11 and 12: 

 

 

(10) 

 

 

(11) 

(12) 



   

 

   

 

 

 

the two-step process is iterated until convergence, defined as a change in the log-likelihood for 

the space of parameter lower than a determined tolerance .  

 

Shape descriptors  

 

Hu moments 

 

The Hu moments descriptors are introduced in8, where six absolute orthogonal invariants and 

one skew orthogonal invariant from the normalized image central moments are derived. The two-

dimensional image moments of order (p + q) are defined as follows:  

 

 

 
 

 

The moment  is uniquely determined if f (x, y) is a continuous piecewise bounded function. 

The moments defined in Eq. (10) are not invariant with respect to rotation, translation and 

scaling operations. To reach invariance with respect to rotation, it is possible to consider the 

central moments: 

 

 



   

 

   

 

 

Where  and  and ( , ) is the centroid of the image, f (x, y).  

 

Starting from the translation invariant central moments, scaling invariance is obtained by 

introducing the normalized central moments for the image f (x, y): 

 

 

 
 

 

 

Starting from the normalized central moments, Hu derived 7 invariant moments: 

 

  

 

 

 

 

 

 

 

 

 

 



   

 

   

 

 

                                                                                                

 

     (16) 

Hu moments are invariant with respect to rotation, scaling and translation. 

 

Zernike moments 

 

The Zernike moments9 are a set of complexes, orthogonal polynomials defined over the interior 

of the unit circle . The two-dimensional Zernike moment for order (p, q) is defined 

as: 

 

 

 
 

 

With m = 0,1, 2, …, ∞, * denotes the complex conjugate, f(x, y) is the function to describe and n 

is an integer where m-  is even and  is lower or equal to m and . 

 

 orthogonal polynomial can be expressed in polar coordinate as: 
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Zernike moments show robustness to noise, expression efficiency and fast computation. We 

implemented a customized version of Zernike moments starting from 10. 

 

Gray Scale Co-occurrence Matrix (GSCM) and Haralick features  

 

The GSCM is one of the earliest methods for texture feature extraction proposed by Haralick 

et.al. back in 197311. It describes the distribution of gray scale values in image by counting the 

occurrence of each of the possible sequence of intensity values between two pixels, with an 

offset (dx, dy). Given an image I with size (N x N), the GSCM is defined as: 

 

 p (i, j) =  

   



   

 

   

 

In its original definition, the GSCM is not invariant with respect to rotations. To reach a degree 

of rotational invariance it is possible to consider the offset (dx, dy) at multiple of 45 degrees, 

computing the resulting average GSCM. 

Haralick introduced 14 features to be extracted from the GSCM. Considering p (i, j) the entrance 

(i, j) of the gray scale co-occurrence matrix, Ng the number of the image’s gray levels, and px(i) 

and py(j) the marginal probabilities: 

 

  

 

  

  

And  and σ are the average value and the standard deviation of the marginal probabilities, 

respectively. In the following section, we will define the 13 Haralick features implemented and 

used for our application: 

 

 

 

 

 

 



   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

   

 

 

 

  

 

 

    

     

 

where Hxy1 and Hxy2 are defined as: 

 

 

 

 

 
 

 
 

Local Binary Pattern (LBP) 

LBP12 are grey-scale and rotation invariant texture operators, widely used in the last years in 

several application of computer vision and image processing. LBP summarizes structures of the 

image comparing each pixel to its neighborhood13. Given a pixel I(i, j) in an image I, we consider 



   

 

   

 

a window of size k x k centered in (i, j). The intensity value of the pixel (i, j) is subtracted from 

all the pixels inside window, binarizing the resulting differences: each positive value is set to 

one, each negative (or null) value is set to zero. The resulting matrix is used to build a binary 

code concatenating each digit starting from the one on the up left, in clockwise sense. The built 

code is referred as local binary pattern (see fig S6). It is possible to use a subset of 2p LBP to 

describe the texture of an image. 

 

 

Fig S6. Local Binary Pattern computation. 

 

Shape signatures and Fourier Descriptors (FD) 

 

A shape signature14 is a contour-based local representation of shape features, characterized by 

sensitivity to noise and not robustness. It has been showed that using shape signatures for 

computing FD improve the accuracy of the representation. A shape signature is a 1-D  

function representing 2D contour of an image. In our work, we used the centroid distance: 

 

  

  

 



   

 

   

 

Where ( is the image’s centroid. The centroid distance is invariant with respect to 

translation.  

Fourier transformation of the shape signature has been widely used for shape analysis and 

retrieval15. 

We used the set of points defining the contour of the analyzed shape provided by OpenCV to 

compute the FD. In detail, after computing the centroid distance signature, we evaluate the Fast 

Fourier Transform (FFT).  Given our shape signature z(t), the FFT of z(t) is: 

 

 
 

 

To get the rotation invariance, only the real part of the FFT[z(t)] is considered. A normalization 

with respect to the first Fourier coefficient is used to get scaling invariance: 

 

FD = ( )                                                                                                           (25) 

 

It has been proved that the first ten FD can be enough to accurately describe image’s shapes for 

retrieval and classification14. 

 

Multidimensional plot 

 



   

 

   

 

A major problem for graphical representation of multivariate data is the dimensionality. In this 

manuscript, we exploited two different methods for visualizing our multidimensional set of 

features: parallel coordinates and Andrew’s curve.  

 

 

PARALLEL COORDINATES  

 

Parallel coordinates are a method of graphical representation of multidimensional data. It was 

introduced in 16, and consists in associating a N-dimensional data with N vertical parallel axis. 

Each observation will be represented by a multiline whose vertex on the j-th vertical axes 

represents the j-th coordinate for the observation, that is the specific value of the observation, 

among dimension j.  

 

 

ANDREW’S CURVE 

 

Andrew’s curve 17 provides visualization of multidimensional data by mapping them into a 

function, defined as: 

 

      (26) 

 



   

 

   

 

It has been proved that Andrew’s curves preserve mean, distance and variance of the 

multidimensional data, meaning that close Andrew’s curves correspond to close data 

observations. 

 

 

PLANKTON SPECIES MORPHOLOGICAL FEATURES SPACE 
 

As reported in the main text of this manuscript, after a preprocessing detection step, we perform 

feature selection and extraction, which results in 131 features. Features were selected according 

to four characteristic classes, each shown to perform an efficient unsupervised partitioning and 

subsequent classification. Here we report a list of the designed features: geometric features (14 

features), feature based on invariant moments (32 features), including Hu (7) and Zernike (25, up 

to order 5) moments, texture based features (67 features), including Haralick features, extracted 

from the grey scale co-occurrence matrix and the Local Binary Patterns (LBP), and, finally, the 

Fourier Descriptors (10 features). A full table of features is reported in the main text. 

This set of features spans a 131-dimensional space, whose shape represents the projection of the 

biological diversity of the collection of organisms. In this section we report a graphical 

representation for each subset of features, previously described. For every subset of features, it is 

possible to appreciate the separation between the 10-species induced by the designed descriptor  

(see figs S7-S14) 

 



   

 

   

 

 

 

Fig S7. Multi-dimensional representation for the Haralick subset of features. a Andrew’s 

curve. b Parallel coordinates  



   

 

   

 

 

Fig S8. Multi-dimensional representation for the Hu-moments subset of features. a Andrew’s curve. b Parallel coordinates 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

   

 

 

 

 

Fig S9. Multi-dimensional representation for the features extracted from the gray values histogram. a Andrew’s curve. b 

Parallel coordinates  

 



   

 

   

 

Fig S10. Multi-dimensional representation for the LBP subset of features. a Andrew’s curve. b Parallel coordinates 



   

 

   

 

 

Fig S11. Multi-dimensional representation for the Fourier Descriptors subset of features. a Andrew’s curve. b Parallel 

coordinates 

 

 



   

 

   

 

 

Fig S12. Multi-dimensional representation for the Zernike moments subset of features. a Andrew’s curve. b Parallel 

coordinates 

 

FEATURES RANKING  

 

We used an algorithm based on decision trees to define a ranking for the 131 designed shape 

descriptors, based on their capacity to separate the 10 plankton classes used for training of the 



   

 

   

 

developed system. Fig S13 shows the results in form of a histogram. It is possible to appreciate 

that the geometric, the first two Hu-moments and the Haralick descriptors are the most important 

features in separating the training species. On the other hand, the Fourier descriptors seem to be 

the less interesting features for our specific problem. However, removing them caused a little 

decrease in the total accuracy, thus, we included them in the final set of designed descriptors.    

 

 

 

Fig S13 Histogram reporting the normalized ranking score for the set of designed descriptors. 

 

 

FROM OBSERVATION TO IDENTIFICATION 

 

In this paragraph, we will describe briefly how the DEC detectors are assembled together into the 

architecture designed to provide a continuous and real-time environmental monitoring (see fig 

S14). Specifically, each observation (i.e., the array of features extracted from the detected 



   

 

   

 

plankton cell image into the acquired videos) is given as input to each of the N detectors 

correspondent to the N species used for the training. A sample is assigned to class i, if and only if 

the i class detectors output is 1 and all the other detectors anomaly output is equal to 1. A sample 

is classified as anomaly in case that the anomaly output for all the implemented detectors are 

equal to 1. Finally, if more than one detector recognizes the observation as belonging to the 

correspondent class (i.e., if more than one detector’s class output is equal to 1), the observation is 

assigned to the most activated detector, and labeled as retrain sample. These retrain samples will 

be used to retrain the correspondent detectors to reach a higher accuracy. 

 

 

 
 
Fig S14. Schematic work flow describing how an observation is associated to the three possible outpus of the developed 

system: retraining class, anomaly or belonging to a trained class 

 



   

 

   

 

Pipeline Performance  
 

COMPUTATIONAL TIME ON RASPERRY-PI  
We performed a test on a raspberry-pi 3.0 to determine the computational time necessary to 

classify a sample plankton image from the acquired video. Table S1 summarizes the results, 

divided by computational module. In detail, we computed the requested time to detect and crop 

the image, to extract the array of features and to test the resulting features vector by means of the 

DEC detector. Here we report the results relative to the analysis of 1 seconds of videos (30 

frames) containing two plankton cells (Stentor coeruleous). The total average computational time 

for one sample is 0.64 seconds. The computational time increases of about 0.05 seconds for each 

DEC detector included into the analysis.  

                            

Table S1. Computational time on raspberry pi for the analysis of one sample. The standard deviation is computed among the 

objects contained into the 60 frames of the analyzed video.  

 

COMPUTATIONAL TIME ON PC 
 

We used a PC with CPU quad core i7 2.9 GhZ, 32 GB of RAM and GPU NVIDIA GeForce 940 

MX with 2 GB of RAM. The computational time requested for the image processor module 

applied to the 40 species included into the WHOI dataset is around 49 seconds. The total 

computational time requested for the image processor module applied to the 100 images for each 

of the 40 species included into the WHOI dataset is around 49 seconds. The features extraction 

module for the same dataset requires 720 seconds (around 0.18 seconds per sample). The 



   

 

   

 

partitioning algorithm requires 32 seconds for the complete dataset, while the classification 

module based on random forest required  31 seconds (0.007 seconds per sample). 

 

TIME REQUIRED FOR DEC-DETECTORS TRAINING ON PC  
 

We trained the DEC detectors using the 500 training images for each of the ten species included 

into the lensless microscope dataset. The average time for training (see main text for training 

process details) is t = 39.2 ± 3.4 seconds. 
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