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Appendix 1. A lattice-based algorithm for

calculating spatial overlap of particles

of arbitrary geometry

The particles were regarded as ”hard” objects, meaning that translations
and rotations that resulted in any two particles occupying the same lattice
site were forbidden. To calculate whether particle overlap had occured dur-
ing the movement of a given particle, we developed the following algorithm
(Supplementary Fig. 2).

Particle geometries, as determined from PDB structures, were represented
by a matrix Pi of dimension 2×n where n is the number of lattice sites occu-
pied by the particle and the subscript i refers to the ith particle. The columns
of Pi contain the coordinates of lattice sites occupied by the particle.

We define the matrix M as the concatenation of all Pi along the column
axis, and is therefore a matrix which contains, in its columns, the coordinates
of the lattice sites occupied by all m particles

M(2×N) = [P1, P2, . . . , Pm] =

[
x1 x2 . . . xN

y1 y2 . . . yN

]
(1)

where N is the total number of occupied lattice sites for all particles.

During a given iteration of the simulation, the ith particle may be trans-
lated and rotated (ie. the particle may be moved). Now, the coordinates of
Pi have changed but the the other particles have not. So in order to assess
whether the new Pi is overlapping with any other particle, we can ascertain
whether there is any overlap with M |Pi, the matrix containing the lattice
sites occupied by all particles except Pi.
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Theorem 1. We define the function Nunique(M) as the number of unique
columns in M . Pi spatially overlaps at least one other particle if and only if

Nunique(M) < Nunique(Pi) + Nunique(M |Pi) (2)

where M |Pi is the columnwise concatenation of all Pj such that j 6= i.

Intuitively, if the total number of occupied lattice sites is less than the
number of occupied by the particle of interest plus the number occupied by
all other particles, and assuming there is no overlap of other particles, then
the particle of interest must share a lattice site with at least one other par-
ticle (Supplementary Fig. 2).

Proof. As Nunique(M) is equivalent to the number of elements in the set
of columns of M , or Nunique(M) = |Col(M)|, and because M by definition
(1) contains the columns of Pi Let x be an column in M . We have

x ∈ {Col(M)} =⇒

x ∈ {Col(Pi)} or x ∈ {Col(M |Pi)} or x ∈ {Col(Pi)} ∩ {Col(Pi)} (3)

and so

Nunique(M) = Nunique(Pi) + Nunique(M |Pi)−Nunique({Col(Pi)} ∩ {Col(Pi)})
(4)

Hence if
Nunique(M) < Nunique(Pi) + Nunique(M |Pi)

this implies
Nunique({Col(Pi)} ∩ {Col(Pi)}) > 0

and so there exists at least one column ( and therefore at least one lattice
site) common to both Pi and M |Pi.
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Optimisation of the particle overlap calculation.
We used existing Python libraries in the calculation of Nunique(M) but found
that we could significantly reduce the time taken to compute Nunique(M)
if lattice sites where given a unique index, effectively making the lattice
geometry 1-D.
In order to achieve this we define a suitable function

f : M(2×N)→M(1×N) (5)

such that the uniqueness of the columns of M is preserved. For 2 dimensions
we find a suitable f in the form

f(M) = CM (6)

where C is a 1× 2 matrix of the form

C = [c1 1] (7)

and c1 > x for all x elements in M . for example, let

M =

[
1 3 5
2 4 6

]
Since no elements of M are greater than or equal to 10, we may choose c1 = 10

C = [10 1]

then

f(M) = CM = [10 1]

[
1 3 5
2 4 6

]
= [12 34 56]

In this study we used c1 = 104.
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Theorem 2. Column i of f(M) = CM is unique in CM if column i in
M is unique in M .

Proof. Consider column

[
x
y

]
of M . From (6) and (7), we have

f(

[
x
y

]
) =

[
c1x + y

]
(8)

where c1 > x, y ∀x, y. Let x = 0. then

f(

[
x
y

]
) =

[
y
]

(9)

It is clear in this case f(

[
x
y

]
) is uniquely defined for all y.

Now for x > 0

f(

[
x
y

]
) =

[
c1x + y

]
<

[
c1x + c1

]
= f(

[
x + 1
y

]
) (10)

for any y. Note that the < sign in (10) is an elementwise less than relation
on the single element in the matrices. In summary, any change in x and/or

y result in a unique f(

[
x
y

]
) if c1 > x, y.

By induction, the uniqueness of f(

[
0
0

]
) =

[
0
]

implies f(

[
x
y

]
) is unique for

all x, y.
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Supplementary	Figure	1.	Equilibration	of	model	prior	to	Monte	Carlo	sampling.	Samples	were	
taken	after	107	iterations	to	ensure	the	system	had	reached	equilibrium.	This	corresponds	to	4.5	
and		5.6	time	constants	(Tau)	of	the	energy	decay	with	the	number	of	iterations	for	A,	State	I	and	
B,	State	II	respectively.
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Supplementary	Figure	2.	Overlap	algorithm	for	particles	of	arbitrary	geometry.	A,	Particle	one	
(blue	circles)	does	not	overlap	particle	two	(red	squares).	In	this	case,	the	number	of	unique	
columns	in	the	M	matrix	(which	contains	the	lattice	sites	occupied	by	all	particles)	is	equal	to	the	
total	number	of	columns	in	M.	B,	Here,	particle	one	and	particle	two	share	a	lattice	site	(1,3)	and	
so	they	overlap.	As	a	consequence	the	number	of	unique	columns	of	M	is	less	than	the	total	
number	of	columns	of	M.	C,	The	scalability	of	the	overlap	algorithm	applied	to	M	(red)	and	the	
transform	f(M)	which	transforms	M	into	a	1-D	vector	(blue).
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Supplementary	Figure	3.	Test	simulations	with	minimal	components.	A-D,	Images	from	LHCII	
only	simulations	with	lateral	and	stacking	interactions	(a),	Lateral	interactions	only	(b),	Stacking	
interactions	only	(c),	and	no	interactions	(random,	d).	E,F,	images	from	LHCII	and	PSI	only	
simulations	with	PSI-LHCII	interactions	(State	II,	e)	or	not	interactions	(f).	G,	Nearest	neighbour	
distances	for	LHCII	particles	in	the	same	layer	from	simulations	shown	in	a-d.	H,		Nearest	
neighbour	distances	for	LHCII	particles	in	adjacent	layers	from	simulations	shown	in	a-d.	I,	
Fraction	of	LHCII	in	the	stromal	lamellae	from	simulations	in	e,f.
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Supplementary	Figure	4.	Construction	of	Chlorophyll	networks.	Edges	(black	lines)	between	any	
two	protein	complexes	(LHCII	and	PSII)	are	assigned	if	any	chlorophyll	on	one	complex	is	less	than	
a	certain	distance	called	the	distance	threshold	(d)	from	any	chlorophyll	on	the	other	complex.	As	
the	distance	threshold	is	increased,	the	chlorophyll	network	becomes	more	connected.	We	
investigated	the	structure	of	the	networks	arising	from	simulations	containing	lateral	and/or	
stacking	interactions	over	a	range	of	distance	thresholds	(2-8	nm	shown	above).

d	<	2	nm d	<	4	nm d	<	6	nm d	<	8	nm
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Supplementary	Figure	5.	Measured	ratio	of	chlorophyll	a	to	chlorophyll	b	in	Spinacia	oleracea.	
Error	bars	represent	mean	and	standard	deviation.
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Supplementary	Figure	6.	The	area	of	grana	as	a	percentage	of	total	grana	area	is	determined	by	
the	PSI	to	PSII	ration	in	this	model.	A	PSI	to	PSII	ratio	of	1	was	used	in	this	study,	resulting	in	a	
thylakoid	composed	of	55%	grana	by	area.	
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Supplementary	Figure	7.	AFM	analysis	of	the	density	of	grana	and	stromal	lamellae	
membranes.	A,B,	AFM	images	of	stromal	lamellae	(A)	grana	(B)	with	colour	threshold	to	show	
lipid	zones	in	red	(regions	<0.5	nm	above	the	membrane	surface),	proteins	of	low	topographic	
relief	(regions	>0.5	nm	and	<2.5	nm	above	the	membrane	surface)	and	large	extrinsic	membrane	
protrusions	(regions	>2.5	nm	above	the	membrane)	in	blue/white.	C,	A	comparison	of	lipid,	
protein	and	protruding	regions	in	grana	(red)	and	stromal	lamellae	(blue)	thylakoids	(displaying	
mean	and	standard	error,	N	=	5,	*	indicates	p	≤	0.001	by	t-test).
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Supplementary	Figure	8.	Crystalline	regions	of	PSII-LHCII	in	AFM	images	of	Arabidopsis	thaliana	
grana.	a.	PSII-LHCII	crystalline	region	in	double-layer	grana	membrane.	b.	Cross	seckon	height	profile	
of	red	and	blue	dashed	lines	in	(a).	c.	Model	of	PSII-LHCII	(C2S2M2,	PDB	:	5MDX)	crystal	(20x25	nm).	
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Figure 3.13. Crystalline regions of PSII-LHCII in AFM images of Arabidopsis thaliana 
grana. a. PSII-LHCII crystalline region in double-layer grana membrane. b. Cross section 
height profile of red and blue dashed lines in (a). c. Model of PSII-LHCII (C2S2M2, PDB : 
5MDX) crystal (20x25 nm).
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Supplementary	Figure	9.	The	difference	in	the	percentage	of	PSI-LHCII	complexes	in	state	II	between	

the	inner	and	outer	stromal	lamellae.	PSI	complexes	were	classed	as	belonging	to	the	“inner”	stromal	
lamellae	if	their	centre	point	was	closer	to	the	outer	edge	of	the	grana	than	the	outer	edge	of	the	
stromal	lamellae	and	classed	as	“outer”	if	they	were	closer	to	the	outer	edge	of	the	stromal	lamellae	
than	to	the	grana.	
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