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ABSTRACT The mechanosensitive channel of large conductance (MscL) fromMycobacterium tuberculosis has been used as
a structural model for rationalizing functional observations in multiple MscL orthologs. Although these orthologs adopt similar
structural architectures, they reportedly present significant functional differences. Subtle structural discrepancies on mechano-
sensitive channel nanopockets are known to affect mechanical gating and may be linked to large variability in tension sensitivity
among these membrane channels. Here, we modify the nanopocket regions of MscL from Escherichia coli and M. tuberculosis
and employ PELDOR/DEER distance and 3pESEEM deuterium accessibility measurements to interrogate channel structure
within lipids, in which both channels adopt a closed conformation. Significant in-lipid structural differences between the two con-
structs suggest a more compact E. coliMscL at the membrane inner-leaflet, as a consequence of a rotated TM2 helix. Observed
differences within lipids could explain E. coli MscL’s higher tension sensitivity and should be taken into account in extrapolated
models used for MscL gating rationalization.
SIGNIFICANCE Despite their reported significant functional differences, two orthologous mechanosensitive channels of
large conductance (MscL) originating from two different bacterial species (Escherichia coli and Mycobacterium
tuberculosis) are expected to adopt a very similar structure. Mechanical sensing and response of mechanosensitive
channels is highly sensitive to modifications occurring at the entrance of transmembrane nanopockets of these proteins.
Here, using pulsed electron-electron double resonance (or double electron-electron resonance) and three-pulse electron
spin envelope echo modulation spectroscopy, we found within lipid membranes that substantial structural differences exist
within the pressure-sensitive domains of these mechanosensitive channels, which may account for their large
discrepancies in their tension sensitivity and therefore functional diversity.
INTRODUCTION

Mechanosensitive (MS) channels form pores in the cell
membrane and convert mechanical stimuli into biochemical
responses (1,2). Their importance is demonstrated by their
ubiquity in all kingdoms of life. In prokaryotic cells, they
alter their structure during cell membrane deformations to
facilitate equilibration of the osmotic pressure between the
opposite sides of the membrane through the flux of solutes
(3). In humans, they are involved in hearing, touch, and car-
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diovascular architecture (4,5). Bacterial MS channels were
first reported in the late 1980s (6), and the first MS channel
to be cloned was the MS channel of large conductance
(MscL) (7), which is found ubiquitously in bacteria and
archaea, and is absent from eukaryotes. Escherichia coli
MscL (EcMscL) consists of a nonselective pore which could
reach an estimated diameter of �30 Å (8) when �12 mN/m
tension is applied, resulting in �3 nS (7) of conductance.
Such a large pore opening in the membrane could allow sol-
utes and even small proteins to pass through (9), which
makes MscL an attractive drug target (10) and delivery sys-
tem (11). In contrast, Mycobacterium tuberculosis MscL
(TbMscL) requires substantially higher tension to be
applied (approximately double) to reach full opening in
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Structure-Guided Mechanosensitivity
either giant unilamellar vesicles or spheroplasts (12–14),
despite it presenting similar pore dimensions and total
conductance to EcMscL.

To date, two crystal structures of pentameric MscL ortho-
logs in a closed state have been reported, orthologs from
M. tuberculosis (TbMscL) (Protein Data Bank, PDB:
2OAR) (15) and archaeal Methanosarcina acetivorans
(PDB ID: 4Y7K) (16), both obtained from detergent purified
samples. Although their overall structural architecture is
similar, they present significant functional differences
(16). The TbMscL channel structure was the first to be
solved and served as a structural model for interpreting
functional, computational, biophysical, and spectroscopic
observations obtained for the majority of other MscL ortho-
logs, mostly EcMscL, for which the TM domain structure
remains unknown. EcMscL presents high amino acid
sequence similarity (�46%) with TbMscL (Fig. 1 a; Table
S1). Hence, in studies in which EcMscL point mutations
were included either for functional, biophysical, and/or
structural studies, they were rationalized according to this
juxtaposition and were projected upon the TbMscL struc-
ture (8,17–28), mostly using computationally derived
homology models based on sequence alignments. Neverthe-
less, despite their high sequence similarity, it has become
clearly apparent that they display substantially different 1)
functional behaviors in vivo, as demonstrated by phenotypic
FIGURE 1 Sequence alignment and site selec-

tion strategy. (a) Protein sequence alignment of

MscL orthologs. Conserved residues are high-

lighted in red. The area of interest is highlighted

in the light blue box. (b) Crystal structure of the

TbMscL pentamer (PDB: 2OAR). Zoomed in im-

age of the area of interest from the side (left) and

the top (right). The protein monomer is shown in

cyan, Y87 in olive, F88 in purple, and L89 in

salmon. To see this figure in color, go online.
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analysis (21) and cell viability in hypoosmotic shocks
(14,29) and 2) biophysical/biochemical properties in vitro,
as revealed by single-molecule-patch-clamp electrophysi-
ology (12–14,30), W-fluorescence (31), mass spectrometry
(32), and continuous wave electron paramagnetic resonance
spectroscopy (13,14,19). Furthermore, similar observations
are also true for other studied MscL orthologs
(13,16,29,33). Such functional differences could be also
associated with unique lipid membrane composition be-
tween the different organisms (i.e., phosphatidylinositol is
present in M. tuberculosis, but not E. coli) or hydrophobic
mismatch due to lipid bilayer thickness differences (20),
as MscL’s structural integrity, folding, and gating properties
are affected by lipids (13,24,30,32,34–36).

Hydrophobic nanopockets (NPs) have been previously
identified on the transmembrane (TM) surface of MS chan-
nels of small conductance (MscS) and MscL and comprise
an integral structural feature of the channel’s architecture
(14,37,38). These NPs are occupied by lipid chains and
play an important role in the MS gating mechanism
(14,39–41). As long as they are occupied by annular lipid
chains, the channel remains closed, but when chain access
to the NPs is disrupted, the channel responds by opening
its pore. Similar NPs have also been identified in other eu-
karyotic ion channels, formed by a motif commonly found
in MS channels: a kink between an amphipathic helix that
lies at the cytoplasmic-TM interface and a pore lining helix
(42–44). The model could be potentially used to explain
experimental observations in a variety of eukaryotic chan-
nels and receptors that seem to form such NPs (45–50).
Interestingly, recent studies on Piezo 1 suggest that when
the four conserved lysines known to bind phosphatidylinosi-
tol phosphates are deleted (i.e., bind phosphatidylinositol
phosphates can no longer bind to proximal to Piezo pore
NPs), a major loss of inactivation is observed (49). Further-
more, in another study, it was suggested that upon tension
application to Piezo within lipid bilayers, phosphatidyletha-
nolamine lipids located at similar sites, move away from
these pockets and outwards in respect to the channel pore
(48), in agreement with our model for MscS (39) and
MscL (14,43). The first direct experimental evidence of
the hypothesis that lipid chain disruption from accessing
the NPs leads to a structural channel response, known as
the ‘‘lipid moves first’’ model (39), has been obtained for
the TbMscL channel (14), the ion channel with the highest
pressure activation threshold known in nature. When the
entrance of the MS channel’s NPs, which are located distal
to the channel pore, is disrupted either by covalent cysteine
modification or mutagenesis, the channel senses this NP
lipid discrepancy and responds by releasing the protein’s
stored elastic energy, gained from its prior bilayer compres-
sion, and opening its pore (expanded and subconducting
state) (14,39,43). The ‘‘lipid moves first’’ model expands
on the ‘‘force-from-lipid’’ model (51,52) and is aligned
with the ‘‘Jack-in-a-box’’ model proposed for MscS (53),
450 Biophysical Journal 119, 448–459, July 21, 2020
but provides a molecular description on how specific lipids
act on MS pressure-sensitive domains and drive mechanical
sensing and response. Therefore, these NP lipids act as pres-
sure safety pins for the channel’s stored elastic energy and
must move first for mechanotransduction to occur. This me-
chanical response could be achieved by sterically excluding
lipid chains from the NPs with a sulfhydryl side chain (14).
Interestingly, this effect could be reversed upon reconstitu-
tion into lipid bilayers (lateral bilayer compression), where
lipid chains are forced back to the occupy NPs, whereas
removal of the modification restores channel function to
wild-type (WT) levels (14). The effect was observed for
one site (out of the total 13 tested and spanning all channel
domains), suggesting the importance of applying localized
pressure to MscL to promote global structural and func-
tional channel responses. Recently, a CryoEM study of
MscS showed that the lipid bilayer is shifted by �14 Å,
and it was suggested that bulk membrane lipids could
directly access and block the channel’s pore (54). This
model neither includes the NPs within the channel’s TM re-
gion, nor does it explain the presence of resolved lipid
chains residing within MscS’ NPs found in cryo-electron
microscopy (CryoEM) and x-ray structures of multiple
MscS states solved by several independent groups
(39,40,55–58). A similar shift of the lipid bilayer for
MscS to the one observed in the CryoEM model (54) was
first reported in an MD simulation study in which the mid-
plane bilayer position relative to MscS stabilized at a level
�10 Å above the position chosen in previous simulations
(59). A similar bilayer shift for both the closed and open
MscS states was demonstrated in a study that combined
structural, computational, and functional observations to
propose a gating model for MscS (39). In particular, few in-
ner-leaflet lipids were shown to partly disengage from the
residual cytoplasmic-facing bulk lipid bilayer to access
and intercalate into the NPs, thereby gating MscS (39).
This membrane shift toward the periplasmic side was also
evident from the first CryoEM MscS structure solved in
lipid nanodisks (40). There, the membrane was also shifted
toward the periplasmic side by >10 Å, and two and one
lipids per subunit were resolved in the NPs and the anchor
domain, respectively. Inner-leaflet lipids accessing the NPs
even when they are located >10 Å away may also be facil-
itated by increased local curvature, observed in the MD sim-
ulations (39), but not in the CryoEM model, in which the
bilayer is flat (54). This curvature shift may not have the
same effect on MscL though, where the amphipathic helix
responsible for structurally forming the NPs, and thus
important for MscL’s mechanosensitivity, lies within or at
the interface of the lipid bilayer (28).

Pulsed electron-electron double resonance (PELDOR) or
double electron-electron resonance (DEER) spectroscopy
has been proven to be a powerful method for investigating
protein structure and dynamics (60–63). In particular, the
method has been successful in assigning conformation,
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oligomerization, and folding under physiological conditions
or within lipid environment for a variety of membrane pro-
teins (14,37,38,64–72) and is capable of offering subang-
strom accuracy (39,60). Electron spin envelope echo
modulation (ESEEM) spectroscopy has been used for
measuring site-specific deuterium (solvent) accessibility in
membrane proteins (14,73–75), and the method is a valuable
tool for identifying lipid/detergent buried or exposed mem-
brane protein sites.

We hypothesized that functional differences betweenMscL
orthologs should be associated with structural differences and
localized proximate to the NPs.We here reconstitute EcMscL
and TbMscL in lipid nanodisks (NDs) and employ PELDOR
and three-pulse ESEEM (3pESEEM) spectroscopy to obtain
structural information from their TM domain and compare
their NP region in in-lipid closed state.We observe significant
structural discrepancies at the entrance of the NP (allosteric
site), which should account for the substantial functional di-
versity among MscL orthologs.
MATERIALS AND METHODS

n-Dodecyl-b-D-maltopyranoside (DDM) anagrade was obtained from

Anatrace (Maumee, OH) or Glycon (Luckenwalde, Germany). Isopropyl-

b-D-thiogalactoside was obtained from Formedium (Norfolk, UK), and

tris(2-carboxyethyl)phosphine (TCEP) was obtained from Thermo Fisher

Scientific (Waltham, MA). The S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyr-

rol-3-yl)methyl methanesulfonothioate (MTSSL) spin label was obtained

from Toronto Research Chemicals (North York, Canada), dimyristoyl phos-

phatidylcholine (DMPC) (14:0/14:0) was purchased from Avanti Polar

Lipids (Alabaster, AL), and Biobeads were purchased from Bio-Rad Labo-

ratories (Watford, UK). All other chemicals were obtained from Sigma-

Aldrich (Dorset, UK) unless otherwise stated.
Site-directed mutagenesis and protein
expression

All mutants were generated using a modification of the Stratagene

QuikChange protocol, as described previously (76). Both TbMscL and

EcMscL were carrying a C-terminal 6 � His-tag. TbMscL mutants were

generated on a pJ411:140126 vector, whereas the EcMscL mutants were

generated on a pET-52b vector. Subsequently, E. coli BL21 (DE3) cells

(Thermo Fisher Scientific, Oxford, UK) were transformed with the modi-

fied plasmids and the cells were grown in 0.5 L of Luria-Bertani (LB) broth

medium at 37�C until they reached an OD600 z 0.8–0.9. Protein expres-

sion was then induced by the addition of 1 mM isopropyl-b-D-thiogalacto-

side for 4 h at 25�C. Finally, the cells were harvested by centrifugation at

4000 � g, and the pellets were stored at �80�C.
Purification and spin labeling

Protein purification was performed as described previously (14,38,39,60).

Briefly, the cell pellets were thawed, resuspended in phosphate-buffered sa-

line, and lysed with a cell disrupter at 30 Kpsi. The resulting suspension was

centrifuged at 4000 � g for 20 min and, afterwards, the supernatant was

centrifuged again for 1 h at 100,000 � g. The resulting membrane pellet

was resuspended and mechanically solubilized in solubilization buffer

(50 mM sodium phosphate (pH 7.5), 300 mM NaCl, 10% v/v glycerol,

50 mM imidazole, and 1.5% w/v DDM) and then left for 1 h at 4�C with

gentle shaking. The solution was subsequently centrifuged at 4000 � g
for 20 min, and the resulting supernatant was passed through a Ni2þ-nitri-
lotriacetic acid column containing �0.75 mL Ni2þ- NTA beads. After-

wards, the column was washed with 10 mL of wash buffer (50 mM

sodium phosphate (pH 7.5), 300 mM NaCl, 10% v/v glycerol, and 0.05%

w/v DDM) and then with 5 mL of wash buffer with 3 mM TCEP was added

to it. Then, 3 mL of wash buffer supplemented with MTSSL at a 10� excess

of the expected protein concentration was added to the column and was left

to incubate at 4�C for 2 h. Subsequently, the protein was eluted with wash

buffer containing 300 mM imidazole before being subjected to size exclu-

sion chromatography (SEC) using a Superdex 200 column (GE Healthcare,

Chicago, IL) and a SEC buffer (50 mM sodium phosphate (pH 7.5),

300 mM NaCl, and 0.05% w/v DDM). Finally, the pure protein collected

from the SEC column was concentrated to a monomer concentration of

�800 mM. Spin labeling efficiency of the proteins was quantified with a

method previously described (77). To be used for the PELDOR measure-

ments, samples were diluted 1:1 with deuterated ethylene glycol, and 70

mL of the mixture wewasre loaded in 3 mm (OD) quartz tubes and flash

frozen in liquid N2.
Reconstitution in nanodisks

Nanodisk reconstitution was performed as described previously (14,37,60).

Briefly, purified and spin-labeled protein cysteine mutants were mixed with

themembrane scaffold proteinMSP1D1 (78) and presolubilizedDMPC lipids

in a 1:2:160 respective molar ratio. The mixture was diluted to 3–4 mL with

lipid buffer (50 mM sodium phosphate (pH 7.5), 300 mM NaCl, 1% Triton

X-100) and incubated at 25�C for 30 min. Then, 0.8–1 g of Biobeads (Bio-

Rad Laboratories) were added per 1 mL of the mixture and left incubating

with light agitation at 25�C for 4 h. Finally, Biobeads were removed and

concentrated to a final volumeof 35mL. For PELDORmeasurements, samples

were diluted 1:1with deuterated ethylene glycol, and 70mL of themixturewas

loaded in 3 mm (OD) quartz tubes and flash frozen in liquid N2.
Distance modeling

Spin labeling and distance modeling in silico was performed on the

TbMscL crystal structure (2OAR) using the MtsslWizard plugin in PyMOL

(79). Residues were first mutated to cysteines and subsequently spin labeled

using the ‘‘thorough search’’ option for the MTSSL rotamers while Van der

Waals restraints were set to tight.
PELDOR measurements and data analysis

All measurements were performed using a Bruker ELEXSYS E580-pulsed

Q band (at 34 GHz) spectrometer at 50 K with a TE012 cavity. The two fre-

quencies used, detection (nA) and pump (nB), had an offset of 80 MHz be-

tween them and the pulse sequence was (p/2)A - t1 – pA - (t1 þ t) - pB - (t2
– t) - pA - t2 - echo (80) with a shot repetition time of 3 ms. Detection pulse

lengths were set to 16 and 32 ns for (p/2)A and pA, respectively; t1 was

380 ns; and the pB pulse length was set to either 12 or 14 ns. The pump fre-

quency was set to coincide with the maximum of the nitroxide spectrum and

the resonance frequency of the resonator. The detection frequency was set

to an 80 MHz lower frequency. Data were subsequently analyzed using the

MATLAB (The MathWorks, Natick, MA) plugin DeerAnalysis 2016 (81)

by Tikhonov regularization (82) once the raw time domain data were back-

ground corrected. Furthermore, we employed the DeerAnalysis validation

tool as described previously (70). We varied the background-fitting starting

point from 5 to 80% of the length of the time domain trace in 16 steps while

adding 50% random noise at 50 trials per fitting step, which resulted in 800

trials per trace in total. Finally, we discarded data sets that were more than

15% above the lowest, and thus best, root mean-square deviation (RMSD)

value. Some background-fitting functions yielded the best RMSD for an un-

physical, continuously rising background corresponding to negative
Biophysical Journal 119, 448–459, July 21, 2020 451
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concentration. This was associated with real but incomplete dipolar modu-

lation of the trace rather than artifacts. Relaxation is limiting the scope to

extend the time trace and cutting portion of the trace that displays the

incomplete oscillation would greatly compromise the resolution of longer

distances in the resulting distance distributions. Therefore, for all data

sets, the best fit for the full traces of was consistently used. This did not

lead to significant changes to the distance distribution with respect to fitting

the background to the latter two-thirds of the trace (14).

Multispin effects that can hamper data analysis in samples with more

than two spins per protein complex (60,83) can be suppressed by power

scaling (84), reduced excitation bandwidth (85), or sparse labeling (70).

For pentamers and the excitation bandwidth achieved here, power scaling

proved sufficient to produce distance distributions with minimal multispin

artifacts.
ESEEM measurements and data analysis

Sample preparation is identical to PELDOR measurements. All measure-

ments were performed using a Bruker ELEXSYS E580 X band (9.5

GHz) spectrometer at 80 K with a 3-mm split ring (MS3) or 4-mm dielectric

(MD4) resonator. The 3pESEEM was recorded at the maximum of the ni-

troxide spectrum with pulse sequence p/2-t- p/2-T- p/2- t-echo. Each p/2

pulse was set to 16 ns, interpulse delay t was set to �140 ns (two times the

reciprocal 1H Larmor frequency at the magnetic field used), corresponding

to a blind spot of the proton ESEEM, and delay time Twas incremented in

12 ns steps. The obtained time domain signal traces were background cor-

rected with a stretched exponential decay by first subtracting the decay

function and then dividing by it to retain the modulation depth information.

Despite slight imperfections in the corrected traces, this proved more robust

than the use of polynomial background functions. These traces were apo-

dized with a hamming window function and zero filled before being Fourier

transformed (86). Relative deuterium accessibility was then taken from the

absolute of the spectrum at the deuterium Larmor frequency at the magnetic

field the trace was recorded. The errors were estimated from the RMSD of

the imaginary of the phase-corrected and -normalized traces.
RESULTS

We first generated two (F93C and M94C) EcMscL cysteine
mutants and compared with equivalent (by sequence align-
ment) TbMscL variants. Sequence alignments of previous
studies between EcMscL and TbMscL showed that
EcM94 aligns with TbF88 (Fig. 1 a; (12,15,87)). Y87,
F88, and L89 mutants are in the proximity or entrance of
TbMscL’s NPs (Fig. 1 b), with modifications of the latter
known to have significant allosteric effect on TbMscL
gating (14). Because EcM94 aligned with TbF88, we
selected this E. coli mutant along with F93 to ‘‘structurally’’
align TbMscL with EcMscL at the NP equivalent region
dictated by sequence alignment performed among MscL or-
thologs (Fig. 1 a). We further reconstituted MscL channels
in DMPC NDs to ensure that both orthologous channel pro-
teins adopt a closed conformation, consistent with all 13
TbMscL ND-reconstituted variants (presence of bilayer
compression) assessed by PELDOR and found to be in a
closed conformation and pentameric state (14). In the
same study, the use of E. coli polar lipid extract containing
�67% phosphatidylethanolamine, 23.2% phosphatidylgly-
cerol, and 9.8% of cardiolipin lipids of variable acyl chain
lengths and saturation degrees resulted in the same closed
452 Biophysical Journal 119, 448–459, July 21, 2020
TbMscL state as revealed by PELDOR, which retrieves
the distance dependent dipolar coupling between protein
sites, thus providing a direct measure of channel conforma-
tion (Fig. S1; (14)). Previously, continuous wave electron
paramagnetic resonance accessibility measurements, which
report on the local environment of the label, suggested that
in C14 lipids, EcMscL adopts an intermediate closed
conformation compared to C18 lipids (20). Therefore, these
two studies first hinted differences in structural behavior be-
tween the two MscL orthologs.

In detergent solution, spin-labeled EcMscL mutants
F93R1 and M94R1, with R1 denoting spin-labeled cysteine
modification thereafter, displayed very little oscillation
despite their large modulation depths (Fig. 2), which trans-
lates into broader and less defined distance distributions
(Fig. 3; (70)). The three TbMscL (Y87R1, F88R1, and
L89R1)-equivalent mutants in detergent solution displayed
deep modulations and visible oscillations in the raw time
trace (Fig. 2), which lead to clearly defined and reliable dis-
tance distributions (Fig. 3).

The distance distributions of TbY87R1 and TbF88R1
along with 10 other modified location variants agree well
with in silico model distances on the pentameric TbMscL-
closed conformation x-ray crystal structure with the excep-
tion of L89R1, which adopted an expanded state in deter-
gent solution (Fig. S2; (14)). The distance distribution of
EcF93R1 is broad, but it coincides more with that of
TbY87R1 while also displaying a probability of long dis-
tances (Figs. 2 and 3; Table S2). WT EcMscL carrying a
His-tag on its C-terminus and solubilized in DDM, similar
to our construct and sample, was in a monodisperse state
consistent with a pentamer, as shown by mass spectrometry
(32). In the case of EcM94R1, the lack of clear oscillations
in the raw data gives rise to a very broad distance distribu-
tion (70). Nevertheless, those peaks seem to agree better
with the distance distribution of TbL89R1 rather than that
of TbF88R1, and our PELDOR data showed a significant
discrepancy between these two variants (Fig. 3; Table S2).
Except for EcM94R1, in which the broad distribution ham-
pers the extraction of exact distances, the ratio between the
two distance peaks agrees well with the value of 1.62 ex-
pected for a symmetric pentamer (Fig. 3; Table S2).

Upon reconstitution into lipid NDs, both modified
EcMscL variants surprisingly were more structurally
defined, as seen by their time domain signals (Fig. 2 b).
The lack of clear oscillations in EcF93R1 further results
in a broad distance distribution, which better agrees with
TbF88R1 (Fig. 4; Table S2). TbMscL mutants are display-
ing time traces similar to the ones in detergent solution
(Fig. 2), and the distance distributions remain well defined
in NDs (Fig. 4; Table S2; (14)). EcM94R1 reconstitution
in NDs gives rise to a slightly clearer oscillation than in
DDM, which results in a more defined distance distribution,
suggesting the channel adopts a closed conformation, more
in agreement with TbL89R1 rather than TbF88R1 (Figs. 2 b



FIGURE 2 Raw and background corrected PELDOR time domain data for TbMscL and EcMscL variants. (a) TbMscL-raw PELDOR time domain data

(14) with the background in red from left (first column) and corrected traces with the fitting function in red (second column). (b) . EcMscL mutants’ raw

PELDOR time domain spectra with the background in red (third column) and corrected traces with the fitting function in red (fourth column). To see

this figure in color, go online.
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and 4; Table S2). Except for EcM94R1 showing significant
contributions of long distances, the ratio between the two
expected distance peaks agrees well with the value of 1.62
expected for a symmetric pentamer (Fig. 3; Table S3). We
refrain from overinterpreting the distance distribution of
EcM94R1 that might arise from a number of distinct con-
formers or a very broad distribution of conformers in
DDM with a reduced number of conformers or a reduced
flexibility in lipid environment. Nevertheless, if the D1

peak is around 2.5 nm, D2 would be expected around
4 nm, and if D1 was 4 nm, D2 should be around 6.5 nm.
We can indeed not exclude two conformations of
EcM94R1 being present with D1 values of 2.5 and 4.0 nm
but do not have the resolution to unequivocally prove the
distance probability around 6.5 nm is significant.

To investigate the solvent exposure of the labeled sites,
we performed 3pESEEM measurements. The buffer con-
tains 50% deuterated ethylene glycol; thus, R1 exposure
to deuterium is assessed by the intensity of the modulation
of the electron paramagnetic resonance signal caused by
Biophysical Journal 119, 448–459, July 21, 2020 453



FIGURE 3 Comparison of PELDOR distance distributions in DDM solu-

tion. TbMscL (blue) versus EcMscL (red). Shaded areas correspond to

mean 5 2s confidence intervals of the measured distributions (calculated

using the DeerAnalysis validation tool), and color bars indicate the reli-

ability of the measured distance ranges (calculated using DeerAnalysis),

depending on the measurement time windows. In each comparison figure,

the color bars correspond to the measurement with the shortest time win-

dow, i.e., lowest confidence. To see this figure in color, go online.

FIGURE 4 Comparison of PELDOR distance distributions in DMPC

NDs. TbMscL (blue line) versus EcMscL (red line) PELDOR distance dis-

tributions in MSP1D1 DMPC NDs. Shaded areas correspond to mean5 2s

confidence intervals of the measured distributions (calculated by the Deer-

Analysis validation tool), and color bars indicate the reliability of the

measured distance ranges (calculated by DeerAnalysis), depending on the

measurement time windows. In each comparison figure, the color bars

correspond to the measurement with the shortest time window, i.e., lower

confidence. To see this figure in color, go online.
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nearby (%1 nm) deuterium nuclei. After reconstitution into
NDs, deuterium accessibility was increased for TbMscL
mutants (Figs. 5, a and c and S4) and reduced for EcMscL
mutants (Fig. 5 b; Table S3). The increases in deuterium
accessibility were 23, 28, and 32% for TbY87R1,
TbF88R1, and TbL89R1, respectively, whereas the de-
creases were 27% for EcF93R1 and 19% for EcM94R1
(Figs. 5, b–d and S4; Table S3).
DISCUSSION

Force in the membrane is mediated through the lipids; a
well-defined transmembrane (TM) region seems to play a
major role in the regulation of mechanically gated channels,
which share the common mechanism of mechanosensitivity
(14,39,43). These highly pressure-sensitive domains or NPs
appear to be an integral part of MS channels of similar (or-
thologs) (15,16) or distinct to MscL’s structural architecture
pro- and eukaryotic ion channels (37–40,42,44). Because of
the high pressure sensitivity of the NPs capable of inducing
structural responses, even subtle differences within the allo-
steric NP site could lead to significant functional differences
in MS channels. Here, we compared the NPs of the two most
extensively studied MscL orthologs (i.e., TbMscL and
EcMscL) and use PELDOR to structurally align them.
These proteins present significant differences in their func-
tion and biophysical properties in vitro and in vivo. Such dif-
ferences may originate from lipid composition membrane
variability between the two species.
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Computational models using different orthologs to ratio-
nalize lipid-protein interactions involved in channel gating
are a useful tool; however, they may not capture all subtle-
ties of the interactions that underpin gating, especially when
they are based on homology-derived protein models.
Importantly, in the case of highly pressure-sensitive NPs,
subtle differences may be so small that they approach the
scale of computational artifacts. In this case, the derived
models may either not provide an accurate representation
of the molecular detail of interactions involved in gating
or unreliable assumptions may be made on the basis that
subtle differences proximate to the allosteric site are negli-
gible for channel gating. Invalid assumptions could be
even further amplified by artifacts induced by ambiguous
sequence alignments or structure registers in model build-
ing. Consequently, nonoptimal orientation of residues
exposed or accessible to the lipid bilayer and thus crucial
for gating could influence data interpretation and scientific
conclusions.

Major functional differences and lipid membrane require-
ments have been reported between EcMscL and TbMscL or-
thologs despite an expected similar architecture (12,13,30).
Here, given their substantial functional differences, e.g., in
pressure sensitivity reported by multiple groups, we hypoth-
esized these should be linked to structural differences (sub-
tle or major), proximate to their NP allosteric site. We
therefore employed PELDOR to assess their structure
within that region and 3pESEEM to measure and compare



FIGURE 5 Comparison of 3p-ESEEM 2H (or

solvent) accessibility of MscL orthologs in deter-

gent and lipid NDs. (a) 2H accessibility of Tb

and EcMscL sites in DDM (light blue) and NDs

(gray) columns calculated as the peak intensity

of 2H in the frequency domain spectra. (b) Percent

change of 2H accessibility after reconstitution of

the detergent (DDM) MscL samples into NDs

(DMPC). (c) Background-corrected ESEEM time

domain traces. (d) Fourier transform frequency

spectra. Detergent (black line) and ND (red line)

samples. The peak at 2.6 MHz corresponds to 2H

Larmor frequency. Errors in (a) and (b) are calcu-

lated based on the background noise of the time

domain trace after a fitting with a stretched expo-

nential decay function. To see this figure in color,

go online.
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the solvent accessibility of key residues. We further per-
formed these measurements within lipid bilayers (i.e.,
NDs) because 1) it is a biologically relevant environment
for TM domains of membrane channels such as MscL and
2) both channels adopt a similar conformational state
(closed). This allowed us to perform a direct valid compar-
ison between the two channels and investigate the existence
of any structural differences between their NP-forming re-
gions, for which only a TbMscL full-length x-ray model is
available (15) in contrast to the unknown TM domain of
EcMscL. Lipids play a crucial role in mechanosensation
as the carriers of tension transmission, and as such, the
detailed description of their molecular interaction with pres-
sure-sensitive MS channel regions is of crucial importance.
PELDOR offers the advantage of providing vital structural
information for proteins for which a structural model is
not available from either by x-ray crystallography and/or
CryoEM. Here, we obtained structural information about
Biophysical Journal 119, 448–459, July 21, 2020 455
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important residues around the pressure-sensitive NP region
(allosteric site) facilitating 3pESEEM to measure solvent
accessibility and also gain insights into their relative orien-
tation in respect to the lipid bilayer. The latter, along with
obtained PELDOR distance measurements for these resi-
dues, allowed a structural alignment of these two ortholo-
gous MscL channels within a crucial for gating, and thus
functional, region.

Amino acid sequence alignments paired EcM94R1 with
TbF88R1 (8,17–25,28). According to our PELDOR data,
the distance distributions of EcM94R1 structurally align
with those of TbL89R1 rather than TbF88R1 in both deter-
gent and ND (closed-state) samples. Our finding is in
contrast with previous assumptions that EcM94 is equiva-
lent to TbF88 and suggests that there is an �90� degree de-
viation between the two residues. The latter is also
supported by 3pESEEM measurements, which suggest
that all TbMscL residues (i.e., Y87, F88, and L89)
(Fig. 1 b) become more solvent exposed (or deprotected),
whereas in contrast, both EcMscL residues (i.e., F93 and
M94) become more buried (or protected), when both chan-
nels transit toward a closed conformation in NDs (Fig. 5 b;
Table S3). This is consistent with a substantial inner-leaflet
TM2-helical rotation for both channels in agreement with
previous suggestion for TbMscL (14). However, comparison
of the subsequent residue 3pESEEM accessibilities for
EcMscL and TMscL strongly suggests a substantial differ-
ence in relative orientation of the structurally equivalent
TM2 residues within their in-lipid closed-state structures
(Fig. 5 b). Consequently, this should have implications for
the analysis and conclusions of previous studies which
based their model assumptions for this residue similarity be-
tween TbMscL and EcMscL.

Although the oscillations of EcM94R1 signal amplitude
in the DDM sample are dampened, leading to a broad dis-
tance distributions and suggesting multiple states in deter-
gent (70), PELDOR reveals this residue is closer
‘‘structurally aligned’’ with TbL89R1 than TbF88R1. We
previously demonstrated (14) that TbL89R1 adopts an
expanded conformation in detergent that is reversed upon
reconstitution in lipid bilayers (NDs or liposomes) (14).
Both EcM94R1 and TbL89R1 adopt a closed conformation
within ND reconstituted samples, and PELDOR distances
are consistent with TbL89R1 rather than with TbF88R1,
presenting a 6- and 12-Å difference in their modal distances,
respectively.

‘‘Structural’’ alignment of TbMscL L89 with EcMscL
M94 would suggest that M94 is also located at the entrance
of the EcMscL’s NPs, and therefore, EcM94R1 modification
may equally affect channel’s gating behavior and pressure
threshold similar to TbL89R1 (14). This could explain the
similar behavior observed in the distance distributions of
EcM94R1 upon lipid reconstitution. Evidently, ND-recon-
stituted EcM94R1, unlike DDM, adopts a more defined
conformation (Figs. 4 and S3). In contrast, EcF93R1,
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located next to EcM94, presents no significant structural dif-
ferences between DDM and DMPC NDs, suggesting the
protein adopts the same conformation (closed) in both envi-
ronments. The EcF93R1 modification does not therefore
affect the channel state, unlike the adjacent EcM94R1 modi-
fication, which seems to have an effect on EcMscL structure
in DDM (Fig. S3). This suggests that the observed structural
change is site specific and only due to EcM94C modifica-
tion. PELDOR revealed that EcM94 is structurally equiva-
lent to TbL89 in lipids (Figs. 2 and 4), which, when
modified with MTS or mutated to a bulky tryptophan, has
shown to cause dramatic effects on TbMscL structure and
function, whereas when adjacent, TbMscL residues are
modified have no effect on structure (14). It is important
to note that these observed distance changes for both con-
structs and the equivalent residues (EcM94 and TbL89)
are much larger and way beyond the length of the MTSSL
spin label, excluding that these changes in PELDOR dis-
tance distributions could have been caused by MTSSL’s ro-
tameric flexibility or restrictions in the presence of lipids
and/or detergent.

The larger distance shortening observed for EcM94R1
when compared to TbL89R1 could be associated with the
differences in the functional behavior between the two or-
thologs and, in particular, that WT EcMscL opens at signif-
icantly lower pressure activation thresholds (�50%) than
WT TbMscL (12,13). This suggests that the former is
more sensitive to tension changes and requires significantly
smaller forces to induce gating transitions. Hence, upon
reconstitution in lipid bilayers, EcMscL has greater confor-
mational (expansion or contraction) space than TbMscL,
which could result in the larger distance reduction for
EcM94R1 when lateral bilayer compression is induced by
the surrounding bilayer within NDs, which is in agreement
with our PELDOR observations (Figs. 3, 4, and S3; (14)).
EcM94R1 in DDM adopts multiple conformational states,
without excluding the possibility though, of multiple oligo-
meric states. However, when the channel was reconstituted
in lipids adopted a defined state with substantially shorter
distances and a D2/D1 distance ratio of 1.69 (Table S2 a),
that is consistent with a pentamer or hexamer, in agreement
with a previous pentameric EcMscL in DDM observed by
native mass spectrometry, for a similar EcMscL C-GFP
construct (32). Therefore, possibly a single oligomeric state
(pentamer) and multiple conformations exist within the
DDM solution, whereas a defined structural state is forced
by the presence of bilayer compression (closed) rather
than multiple oligomeric states altered because of the pres-
ence of lipids (Fig. S3). Interestingly, modification of
EcM94C, or surrounding residues, with different MTS mod-
ifiers did not seem to have an effect on the cell viability of
EcMscL (26,27). However, the molecular mechanism by
which these inner-membrane protein cysteines are modified
(or labeled) in vivo in Gram-negative bacteria, because MTS
is expected to get immediately reduced upon entry to
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the periplasm, is unclear (88,89). 3p-ESEEM deuterium
accessibility measurements are further supportive of
PELDOR findings and provide further insights on the
structure and solvent accessibility of the important to
gating NP channel region. In particular, three subsequent
residues that form a single helix in TbMscL, e.g.,
TbY87, TbF88, and TbL89, become more deprotected (or
solvent exposed) when reconstituted into NDs compared
to DDM. Interestingly, PELDOR revealed that the structur-
ally equivalent EcMscL residues F93 and M94 both display
an inverse effect to TbMscL structurally equivalent resi-
dues by becoming substantially more protected and pre-
senting lower deuterium (solvent) accessibility in lipids
(Fig. 5 b; Table S3). In case this was a site-specific effect,
then we should observe variability among these adjacent
residues. However, that was not the case, as for all tested
EcMscL and TbMscL residues, a similar accessibility
pattern was observed, suggesting the NP region is influ-
enced by the presence of lipids in both channels, though
through completely contrasted ways. The latter is surpris-
ing for equivalent residues and domains of two very closely
sequence-related and structurally similar orthologous ion
channels, but they reportedly present substantial functional
differences.

Amino acid sequence alignment and derivation of compu-
tational models as initial approaches based on orthologous
experimental structures are very useful tools in understand-
ing protein-function-structure relationships. Our PELDOR
and ESEEM data suggest that this information should be
treated with caution because these methods rely on sequence
alignment not equivalent to their registry or structural align-
ment. PELDOR could offer such structural alignment
through direct comparison of different constructs and also
within the lipid or native environment in the case of mem-
brane proteins. Furthermore, when these measurements are
supported by ESEEM solvent accessibility measurements
for individual residues located in force-sensitive NP regions
known to be critical forMS function, initial structural models
and rationalization/design could be drastically improved,
leading to more reliable data analysis and interpretation.

The research data underpinning this publication can be
accessed at https://doi.org/10.17630/dbad68d7-7656-4e81-
b790-6eb98bdc4f11.
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Fig. S2: TbMscL mutants’ PELDOR distance distributions (shaded blue)
compared to the modelled distances simulated from the protein’s crystal
structure with MTSSLWizard (red line)

Fig. S2: PELDOR distance distributions of TbMscL in DDM (shaded

blue) compared to the modelled distances simulated from the x-ray

(closed state) crystal structure (PDB 2OAR) with MtsslWizard (red line).
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Fig. S3: EcMscL mutants PELDOR distance distribution comparison in

DDM detergent (shade blue) and in nanodiscs (NDs) (shaded red).
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Fig. S1: Liposome (E coli polar extract) (shaded blue) and NDs (DMPC)

(shaded red) PELDOR distance distributions compared to the modelled

distances simulated from the x-ray (closed state) crystal structure (PDB

2OAR) using MtsslWizard (black line) for TbMscL F88R1 and L89R1.
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Fig. S4: Raw 3p-ESEEM data (black lines) and stretched

exponential background fits (red lines).



Table S1: Pairwise alignment comparisons between MscL orthologues. %
sequence identity is shown in the upper/right half of the table and gaps are
shown in the lower/left half.

Mutant D1; D2; D2/D1 in DDM (Å) D1; D2; D2/D1 in NDs (Å)

TbY87R1 29.7; 45.6; 1.55 26.3; 41.1; 1.57

TbF88R1 34.1; 55.8; 1.64 33.6; 53.1; 1.58

TbL89R1 30.0; 48.8; 1.63 27.8; 45.4; 1.63

EcF93R1 29.6; 45.8; 1.55 31.8; 46.9; 1.47

EcM94R1 27.7; 39.1; 1.41 24.1; 40.7; 1.69

D1 (TbL) – D1 (EcL) DDM (Å) NDs (Å)

TbY87R1 - EcF93R1 0.1 -5.5

TbF88R1 - EcF93R1 4.5 1.8

TbF88R1 - EcM94R1 6.4 9.5

TbL89R1 - EcM94R1 2.3 3.7

a.

b.

Table S2: a. D1 and D2 PELDOR distance for each mutant in DDM

and in nanodiscs (NDs) and their ratio. The expected ratios for

symmetric multimers are 1.41 for a tetramer, 1.62 for a pentamer and

1.73 for a hexamer b. D1 distance differences between distinct

mutants for the two orthologues.

Table S1: Pairwise alignment comparison between MscL orthologues.

% sequence identity is shown in the upper/right half of the table and

sequence residue gaps are shown in the lower/left half.

M. tuberculosis

E. coli

M. acetivorans
S. aureus
M. leprae



Mutant % change in 2H accessibility 

TbY87R1 (23±5)%

TbF88R1 (28±4)%

TbL89R1 (32±7)%

EcF93R1 -(27±4)%

EcM94R1 -(19±4)%

Table S3: Percentage (%) change in deuterium (solvent)
accessibility of MscL in detergent (DDM) following reconstitution in
Nanodiscs (DMPC).
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