Biophysical Journal, Volume 119

Supplemental Information

Connecting Coil-to-Globule Transitions to Full Phase Diagrams for Intrinsically Disordered Proteins

Xiangze Zeng, Alex S. Holehouse, Ashutosh Chilkoti, Tanja Mittag, and Rohit V. Pappu

GaussianClusterV2.0.zip is a zip archive of the commented MATLAB code and the data files used to extract system-specific phase diagrams using our adaptation of the Gaussian Cluster Theory. All relevant details are found within the README file in the archive.

Figure S1: Pseudo code for extracting *B*, and *w*

Two approaches were developed to extract *B*, and *w* based on analysis of $\sqrt{\langle R_g^2 \rangle}$ versus *T* that

we obtain from simulations. In Approach 1, we set $\frac{(T^* - T_{\theta})}{T^*}Bn_{K}^{0.5} = -0.35$ irrespective of the value

of w. In Approach, the choice of $\frac{(T^* - T_{\theta})}{T^*} B n_{K}^{0.5}$ is coupled to the choice made for w, although the

equality used in Approach 1 provides bounds on the value for $\frac{(T^* - T_{\theta})}{T^*}Bn_{K}^{0.5}$. The relation between $(T^* - T_{\theta})$

$$\frac{(I^{-} - I_{\theta})}{T^{*}}Bn_{K}^{0.5}$$
 and w is obtained by numerically calculating the saddle point of the contraction

ratio profile from GCT at different values for *w*. These two approaches give very similar results and the choice of approaches does not affect our conclusions. The pseudo code for approaches 1 and 2 is referenced as **Figure S1** in the main text.

A. Pseudo code for Approach 1:

for T^* in $[T_{\min}, T_{\theta}]$, where T_{\min} is the lowest simulation temperature: do

get *B* based on
$$\frac{(T^* - T_{\theta})}{T^*} B n_{K}^{0.5} = -0.35;$$

convert the simulated of $\sqrt{\langle R_g^2 \rangle}$ versus *T* curve to a contraction ratio profile as a function $\tau B n_{\rm K}^{0.5}$ and denote it as $\alpha_s^{\rm sim} (\tau B n_{\rm K}^{0.5})$;

Next, perform a parameter scan for *w*;

For w in $[w_{\min}, w_{\max}]$ ([0.001, 0.04] has proven to be sufficient)

do

Get the contraction ratio profile $\alpha_s^{GCT} \left(\tau B n_K^{0.5} \right)$

Compute the difference between $\alpha_s^{sim}(\tau B n_K^{0.5})$ and $\alpha_s^{GCT}(\tau B n_K^{0.5})$;

Since the minimum of $\alpha_s^{GCT}(\tau B n_K^{0.5})$ always larger than the minimum of $\alpha_s^{sim}(\tau B n_K^{0.5})$, a scaling factor λ is used to best $\alpha_s^{sim}(\tau B n_K^{0.5})$ and $\alpha_s^{GCT}(\tau B n_K^{0.5})$ for λ in [0.3, 0.9]

do

compute difference
$$\alpha_s^{\text{sim}}(\tau B n_{\text{K}}^{0.5})$$
 and $\lambda \left[\alpha_s^{\text{GCT}}(\tau B n_{\text{K}}^{0.5}) - 1\right] + 1$

done

The minimum difference between $\alpha_s^{sim}(\tau B n_K^{0.5})$ and $\lambda \left[\alpha_s^{GCT}(\tau B n_K^{0.5}) - 1 \right] + 1$ is chosen as the difference between $\alpha_s^{GCT}(\tau B n_K^{0.5})$ and $\alpha_s^{sim}(\tau B n_K^{0.5})$ done

done

The parameters (B, w) that yield the minimal difference between $\alpha_s^{GCT}(\tau B n_K^{0.5})$ and $\alpha_s^{sim}(\tau B n_K^{0.5})$ is used for the system.

B. Pseudo code for Approach 2:

 $w \text{ in } [w_{\min}, w_{\max}]$

do

Get $\alpha_s^{GCT}(\tau B n_K^{0.5})$ for the given *w*;

Get the position for the saddle point, namely the value of $\frac{(T^* - T_{\theta})}{T^*}Bn_{K}^{0.5} = a$ for T^* in $[T_{\min}, T_{\theta}]$, do

Compute *B* based the value of $\frac{(T^* - T_{\theta})}{T^*} B n_{K}^{0.5} = a$

Compute $\alpha_s^{sim}(\tau B n_K^{0.5})$ for a given *B* and *w*;

Use the method in Approach 1 to calculate the difference between $\alpha_s^{GCT}(\tau B n_K^{0.5})$ and $\alpha_s^{sim}(\tau B n_K^{0.5})$;

done

done

Again, the parameters (B, w) that yield the minimal difference between $\alpha_s^{GCT}(\tau B n_K^{0.5})$ and $\alpha_s^{sim}(\tau B n_K^{0.5})$ is used for the system.

Unit of interest	Reference temperature T ₀ (K)	Reference free energy of solvation $\Delta G_{FES}(T_0)$ kcal/mol	Enthalpy of solvation ∆H _{FES} kcal/mol	Heat capacity of solvation ∆c _P cal /mol- K
Backbone	298	-10.1	-17.0	4.00
Thr	298	-5.0	-12.5	4.66
Pro	298	2.0	-5.4	7.05
Lys	298	-100.9	-111.8	5.08
Ala	298	1.9	-3.3	4.96
Met	298	1.4	-10.0	5.59

Table S1. Parameters for the temperature dependent free energy of solvation

System	Number of replicas	Temperature schedule	Number of independent simulations
Q20			
Q30			
Q40			
Q50	18	280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410	4
Q60	10	420, 430, 440, 450 K	Т
Q70			
(QGQSPYG)9			
(TPKAMAP)9	18	300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 420, 440, 460, 480, 500, 520, 540 K	3

 Table S2. Details of all-atom simulation parameters for each system

Figure S2. Internal scaling distance for Aro⁺, WT-A1, Aro⁻, and Aro⁻ variants. Dashed line denotes the reference internal scaling profile: $\langle \langle R_{ij} \rangle \rangle = R_0 |j-i|^{0.5}$. Here, R_0 is the average value obtained across all the temperatures when we set |j-i| = 1.

Figure S3. Plot of normalized R_g for Aro⁺, WT-A1, Aro⁻, and Aro⁻⁻.

Figure S4: Analysis of how the width of the metastable regime $\Delta \phi_m(T)$ varies with $(T - T_c)$ for each of the four sequences, Aro⁺, WT-A1, Aro⁻, and Aro⁻.

Sensitivity analysis for estimates of B and w

WT-A1 is used to test the robustness of the fitting result. There are 11 sampled temperatures below T_{θ} for A1-WT. The robustness is tested as following:

- a) A subset of the 11 sampled temperatures which contains N randomly non-repeating temperatures is chosen at random.
- b) This subset is used to fit *B* and *w*.
- c) For each N in [5, 10], repeat a) and b) 10 times, and then get the mean value of B and w:
- B^{mean} and w^{mean}_N, and the corresponding standard deviation B^{std}_N and w^{std}_N.
 d) Plot B^{mean}_N and w^{mean}_N as a function of N. B^{std}_N and w^{std}_N are plotted as the error bar. A complete analysis from a) to d) is denoted as one trial.
- e) Repeat a)-d) 4 times, namely, perform 4 trial analysis.

Results are shown in Figure S5. Black dashed line indicates B or w fitted by using all the data. The fitting result becomes convergent when N>6.

Figure S5: Sensitivity analysis of for estimates of *B* **and** *w***.** Red square indicates the mean values of *B* or *w* for the subset with same number of sampled temperatures. Error bar indicates the stand deviation. Black dashed line indicates *B* or *w* fitted by using all the data.

Fitting result by using different T^*

We assess the impact of different values of T^* on the fitting procedure used to obtain *B* and *w*. The set of parameters $\{T^*, B, w\}$ that best fits the contraction ratio profile from simulation (α_s^{sim}) is chosen as the final parameter to calculate the phase diagram. The searching range for T^* is $[T|_{\alpha_s^{sim}=0.5(1+\min(\alpha_s^{sim}))} - 10, T|_{\alpha_s^{sim}=0.5(1+\min(\alpha_s^{sim}))} + 10]$. Here, $\min(\alpha_s^{sim})$ is the minimum value of the contraction ratio from the simulations. For the UCST system, $\min(\alpha_s^{sim})$ is the contraction ratio at the lowest sampled temperature. For the LCST system, it is the value of the contraction ratio at the highest sampled temperature. **Figure S6** shows the fitting result by using different T* for WT-A1 system. Approach 2 in Figure S1 is used for the fitting process.

Figure S6: Fitting result by using different T^{*} for WT-A1 system. (A)-(C) B, w and the fitting score as a function of T^* . The fitting function is defined as the mean absolute difference between α_S^{simul} and α_S^{GCT} , detailed information about calculating the difference between α_S^{simul} and α_S^{GCT} can be found in Figure S1. T^{*} = 39 has the minimum fitting score, thus B and w fitted from T^{*} = 39 are chosen as the final parameter to calculate the phase diagram.(D)-(F) Comparison of α_S^{simul} and α_S^{GCT} at different T^{*}.