Biophysical Journal, Volume 119

Supplemental Information

Connecting Coil-to-Globule Transitions to Full Phase Diagrams for Intrinsically Disordered Proteins

Xiangze Zeng, Alex S. Holehouse, Ashutosh Chilkoti, Tanja Mittag, and Rohit V. Pappu

GaussianClusterV2.0.zip is a zip archive of the commented MATLAB code and the data files used to extract system-specific phase diagrams using our adaptation of the Gaussian Cluster Theory. All relevant details are found within the README file in the archive.

Figure S1: Pseudo code for extracting *B,* **and** *w*

Two approaches were developed to extract *B*, and *w* based on analysis of $\sqrt{\langle R_g^2 \rangle}$ versus *T* that

we obtain from simulations. In Approach 1, we set $\frac{(T^* - T_{\theta})}{T^*} B n_{\theta}^{0.5} = -0.35$ irrespective of the value $\frac{1}{T^*}$ Bn^{0.5} = -0.35

of *w*. In Approach, the choice of $\frac{(T^* - T_0)}{T^*} B n_{\kappa}^{0.5}$ is coupled to the choice made for *w*, although the $\frac{1}{T^*}Bn_K^{0.5}$

equality used in Approach 1 provides bounds on the value for $\frac{\left(T^* - T_{\theta}\right)}{T^* - T} B n_{\kappa}^{0.5}$. The relation between $\frac{1}{T^*}$ Bn^{0.5}
T^{*} $(\tau^*$ $\tau)$

$$
\frac{(1 - I_{\theta})}{T^*} B n_{\kappa}^{0.5}
$$
 and w is obtained by numerically calculating the saddle point of the contraction

ratio profile from GCT at different values for *w*. These two approaches give very similar results and the choice of approaches does not affect our conclusions. The pseudo code for approaches 1 and 2 is referenced as **Figure S1** in the main text.

A. Pseudo code for Approach 1:

for T^* in $[T_{\min}, T_{\theta}]$, where T_{\min} is the lowest simulation temperature: do

get *B* based on
$$
\frac{(T^*-T_{\theta})}{T^*} B n_{\kappa}^{0.5} = -0.35
$$
;

convert the simulated of $\sqrt{\langle R_g^2 \rangle}$ versus *T* curve to a contraction ratio profile as a function $\tau B n_{\rm K}^{0.5}$ and denote it as $\alpha_{\rm s}^{\rm sim} \left(\tau B n_{\rm K}^{0.5} \right)$;

Next, perform a parameter scan for *w*;

For *w* in $[w_{\text{min}}, w_{\text{max}}]$ ([0.001, 0.04] has proven to be sufficient)

do

Get the contraction ratio profile $\alpha_s^{\text{GCT}}(\tau B n_\kappa^{0.5})$

Compute the difference between $\alpha_s^{\text{sim}}(\tau B n_\kappa^{0.5})$ and $\alpha_s^{\text{GCT}}(\tau B n_\kappa^{0.5})$;

Since the minimum of $\alpha_s^{\text{GCT}}(\tau B n_K^{0.5})$ always larger than the minimum of $\alpha_s^{\text{sim}}(\tau B n_\kappa^{0.5})$, a scaling factor λ is used to best $\alpha_s^{\text{sim}}(\tau B n_\kappa^{0.5})$ and $\alpha_s^{\text{GCT}}(\tau B n_\kappa^{0.5})$ for λ in [0.3, 0.9]

do

compute difference
$$
\alpha_s^{\text{sim}}(\tau B n_{\text{K}}^{0.5})
$$
 and $\lambda \left[\alpha_s^{\text{GCT}}(\tau B n_{\text{K}}^{0.5}) - 1\right] + 1$

done

The minimum difference between $\alpha_s^{\text{sim}}(\tau B n_{\text{K}}^{0.5})$ and $\lambda \left[\alpha_s^{\text{GCT}}(\tau B n_{\text{K}}^{0.5}) - 1 \right] + 1$ is chosen as the difference between $\alpha_s^{\text{GCT}}(\tau B n_\kappa^{0.5})$ and $\alpha_s^{\text{sim}}(\tau B n_\kappa^{0.5})$

done

done

The parameters (B, w) that yield the minimal difference between $\alpha_s^{\text{GCT}}(\tau B n_{\text{K}}^{0.5})$ and $\alpha_s^{\text{sim}}(\tau B n_{\text{K}}^{0.5})$ is used for the system.

B. Pseudo code for Approach 2:

w in $[w_{\text{min}}, w_{\text{max}}]$

do

Get $\alpha_s^{\text{GCT}}(\tau B n_\kappa^{0.5})$ for the given *w*;

Get the position for the saddle point, namely the value of $\frac{(T^* - T_0)}{T^*} B n_v^{0.5} = a$ for T^* in $[T_{\min}, T_{\theta}],$ do $\frac{a}{T^*} B n_K^{0.5} = a$

Compute *B* based the value of $\frac{(T^* - T_0)}{T^*}$ $\frac{(-\theta)}{T^*} B n_{\rm K}^{0.5} = a$

Compute $\alpha_s^{\text{sim}}(\tau B n_K^{0.5})$ for a given *B* and *w*;

Use the method in Approach 1 to calculate the difference between $\alpha_s^{\text{GCT}}(\tau B n_\kappa^{0.5})$ and $\alpha_s^{\text{sim}}(\tau B n_{\text{K}}^{0.5})$;

done

done

Again, the parameters (B, w) that yield the minimal difference between $\alpha_s^{\text{GCT}}(\tau B n_\kappa^{0.5})$ and $\alpha_s^{\text{sim}}(\tau B n_{\text{K}}^{0.5})$ is used for the system.

Unit of interest	Reference temperature T_0 (K)	Reference free energy of solvation $\Delta G_{\rm FES}(T_0)$ kcal/mol	Enthalpy of solvation $\Delta H_{\rm FES}$ kcal/mol	Heat capacity of solvation Δc_P cal /mol- K
Backbone	298	-10.1	-17.0	4.00
Thr	298	-5.0	-12.5	4.66
Pro	298	2.0	-5.4	7.05
Lys	298	-100.9	-111.8	5.08
Ala	298	1.9	-3.3	4.96
Met	298	1.4	-10.0	5.59

Table S1. Parameters for the temperature dependent free energy of solvation

Table S2. Details of all-atom simulation parameters for each system

Figure S2. Internal scaling distance for Aro⁺, WT-A1, Aro⁻, and Aro⁻ variants. Dashed line denotes the reference internal scaling profile: $\langle R_{ij} \rangle = R_0 |j - j|^{0.5}$. Here, R_0 is the average value obtained across all the temperatures when we set $|j-i| = 1$.

Figure S3. Plot of normalized R_g **for Aro⁺, WT-A1, Aro⁻, and Aro⁻.**

Figure S4: Analysis of how the width of the metastable regime $\Delta\phi_m(T)$ varies with $(T - T_c)$ for each of the four sequences, Aro⁺, WT-A1, Aro⁻, and Aro⁻.

Sensitivity analysis for estimates of *B* **and** *w*

WT-A1 is used to test the robustness of the fitting result. There are 11 sampled temperatures below T_{θ} for A1-WT. The robustness is tested as following:

- a) A subset of the 11 sampled temperatures which contains N randomly non-repeating temperatures is chosen at random.
- b) This subset is used to fit *B* and *w*.
- c) For each N in [5, 10], repeat a) and b) 10 times, and then get the mean value of *B* and *w*: B_N^{mean} and w_N^{mean}, and the corresponding standard deviation B_N^{std} and w_N^{std}.
- d) Plot B_N^{mean} and W_N^{mean} as a function of N. B_N^{std} and W_N^{std} are plotted as the error bar. A complete analysis from a) to d) is denoted as one trial.
- e) Repeat a)-d) 4 times, namely, perform 4 trial analysis.

Results are shown in **Figure S5**. Black dashed line indicates *B* or *w* fitted by using all the data. The fitting result becomes convergent when N>6.

Figure S5: Sensitivity analysis of for estimates of *B* **and** *w***.** Red square indicates the mean values of *B* or *w* for the subset with same number of sampled temperatures. Error bar indicates the stand deviation. Black dashed line indicates *B* or *w* fitted by using all the data.

Fitting result by using different ∗

We assess the impact of different values of T^* on the fitting procedure used to obtain *B* and *w*. The set of parameters $\{T^*, B, w\}$ that best fits the contraction ratio profile from simulation (α_s^{sim}) is chosen as the final parameter to calculate the phase diagram. The searching range for T[∗] is $\left[T\big|_{\alpha_s^{\text{sim}}=0.5(1+\text{min}(\alpha_s^{\text{sim}}))-10,T\big|_{\alpha_s^{\text{sim}}=0.5(1+\text{min}(\alpha_s^{\text{sim}}))+10\right]$. Here, $\min(\alpha_s^{\text{sim}})$ is the minimum value of the contraction ratio from the simulations. For the UCST system, $min(\alpha_s^{\text{sim}})$ is the contraction ratio at the lowest sampled temperature. For the LCST system, it is the value of the contraction ratio at the highest sampled temperature. **Figure S6** shows the fitting result by using different T[∗] for WT-A1 system. Approach 2 in Figure S1 is used for the fitting process.

Figure S6: Fitting result by using different T^{*} for WT-A1 system. (A)-(C) B, w and the fitting score as a function of T^* . The fitting function is defined as the mean absolute difference between α_S^{simul} and α_S^{GCT} , detailed information about calculating the difference between α_S^{simul} and α_S^{GCT} can be found in **Figure S1**. T^{*} = 39 has the minimum fitting score, thus B and w fitted from T^* = 39 are chosen as the final parameter to calculate the phase diagram.**(D)-(F)** Comparison of α_S^{simul} and $\alpha_{\rm S}^{\rm GCT}$ at different T^{*}.