
 

 

 

 

 

 

 

 

 

 

Figure S1: Expression of the gene encoding for vitamin D receptor in different human and 

murine breast cancer cell lines. RNA obtained from PyMT-R221A, E0771, ZR-75-1, and MDA-

MB-231 cells were subjected to qPCR using mouse (Vdr) and human (VDR) specific primers to 

determine the basal levels of vitamin D receptor expression. The expression values were 

normalized using Gapdh/GAPDH as an internal loading control and expressed as a bar graph. 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: The coefficient of drug interaction (CDI) between SAM and 25(OH)D 

combination in different cell lines. The CDI values for each of the cell lines were calculated 

using the following equation, CDI = AB/(A × B). Here, AB: relative cell growth of the combination 

compared to control; A or B: relative cell growth of the single agent treated groups compared to 

the control. CDI < 0.7 indicates strong synergistic; CDI between 0.7 to 0.9 indicates moderately 

synergistic; CDI between 0.9 to 1.1 indicates additive and CDI > 1.1 indicates an antagonistic 

effect.  
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Figure S3: Effect on the viability of human breast epithelial cells (HBEC). HBEC cells were 

plated at the same density and treated with vehicle only control, 200 μM SAM, 100 nM 25(OH)D, 

and a combination of SAM+25(OH)D. At the end of the experiment, the cells were trypsinized, 

stained with trypan blue, and the total number of viable cells in each group was counted under a 

light microscope. Results are shown as the mean ± SEM (n=4). No significant difference was 

observed in the percentage of viable cells compared to the total number of cells in each group 

during the time of harvest, which indicated that the doses of the different anti-cancer agents used 

in this study are not toxic to the viability of the normal breast epithelial cells. 
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Table S1: Analyses of different biochemical parameters in the serum. The results are shown 

as mean ± SEM from three different mice in each group.  

 

 

 

 

 

 

 

 

 

 

 

Figure S4: Total bodyweight of the transgenic MMTV-PyMT animals. The control and treated 

MMTV-PyMT animals are weighed at different time intervals from the beginning of the treatment 

regimen on week 4 after birth until sacrifice on week 11. No significant difference was observed 

in the total bodyweight of the animals from different treatment arms. 

Parameter Control SAM 25(OH)D SAM+25(OH)D 

Calcium (mmol/L) 2.26 ± 0.05 2.26 ± 0.6 2.35 ± 0.02 2.40 ± 0.12 

Total protein (g/L) 39.67 ± 1.36 42.33 ± 1.19 42.67 ± 0.27 44.67 ± 0.72 

Albumin (g/L) 20.67 ± 0.54 22.33 ± 0.72 22.33 ± 0.27 21.67 ± 1.29 

Albumin/Globulin 

ratio 

1.1 ± 0.00 1.1 ± 0.00 1.1 ± 0.04 1.1 ± 0.04 

Glucose (mmol/L) 16.1 ± 1.15 15.8 ± 0.49 15.5 ± 1.26 16.36 ± 0.66 

BUN Urea (mmol/L) 9.23 ± 0.12 7.93 ± 0.48 7.23 ± 0.72 6.8 ± 0.23 

Creatinine (µmol/L) 11 ± 0.81 10 ± 1.41 12.67 ± 0.54 11.33 ± 1.51 

Total Bilirubin 

(µmol/L) 

8.33 ± 1.09 9.33 ± 1.9 10.67 ± 0.98 8.67 ± 0.27 

ALT (U/L) 56.6 7 ± 5.52 56.33 ± 3.95 41.67 ± 0.27 48.67 ± 3.81 

Alkaline phosphatase 

(U/L) 

71.5 ± 3.75 80.67 ± 13.37 76.67 ± 6.6 64.67 ± 4.65 

Cholesterol (mmol/L) 2.82 ± 0.14 3.0 ± 0.11 2.79 ± 0.07 2.7 ± 0.18 

Sodium (mmol/L) 143 ± 3.77 145.33 ± 3.81 152 ± 3.29 145.67 ± 6.36 

Potassium (mmol/L) 4.16 ± 0.36 5.17 ± 0.14 4.8 ± 0.21 4.07 ± 0.22 

Chloride (mmol/L) 110.67 ± 1.19 114 ± 2.05 118.67 ± 2.22 116.33 ± 4.72 

Phosphorus (mmol/L) 2.79 ± 0.35 2.35 ± 0.03 2.64 ± 0.24 2.92 ± 0.13 

Magnesium (mmol/L) 1.06 ± 0.03 1.0 ± 0.05 1.11 ± 0.06 1.05 ± 0.05 
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Figure S5: SAM bioavailability in the serum. a The SAM level in the serum of control and 

SAM-treated animals was assessed at different time points following oral gavage. Each bar 

represents the concentration obtained from the LC-MS/MS peak intensity for SAM at a specific 

time-point. Here, t=0 represents the baseline value of SAM just before treatment. The highest peak 

of SAM bioavailability in the serum was found between 30 to 60 minutes after administration, and 

the level comes down to the baseline at around 240 minutes after administration. b The serum from 

control (n=3) and SAM-treated (n=5) experimental animals were collected, and LC-MS/MS was 

done to determine the levels of SAM. Results are shown as the mean ± SEM. Significant 

differences were determined using a student’s t-test and are represented by asterisks. 

 

 

 

 

 

 

 

 

 

Figure S6: Serum levels of 25(OH)D,1,25(OH)2D, and 24,25(OH)2D. LC-MS/MS assays were 

done from the serum obtained from control (n=3) and 25(OH)D-treated (n=5) experimental 

animals to determine the levels of 25(OH)D (a), 1,25(OH)2D (b) and 24,25(OH)2D (c). Results 

are shown as the mean ± SEM. Significant differences were determined using a student’s t-test 

and are represented by asterisks. 

 

C
ontr

ol 

25
(O

H
)D

0

10

20

200

400

600

800

2
5

(O
H

)D
 i

n
 s

e
ru

m
 (

n
g

/m
L

)

*

C
ontr

ol 

25
(O

H
)D

0

50

100

150

1
,2

5
(O

H
) 2

D
 i

n
 s

e
ru

m
 (

p
g

/m
L

)

*

C
ontr

ol 

25
(O

H
)D

0

10

20

30

40

2
4

,2
5

(O
H

) 2
D

 i
n

 s
e

ru
m

 (
n

g
/m

L
)

*

a b c

C
ontr

ol 

S
A
M

0

20

40

60

*

a

0

5

10

15

20

25

30

t=0 t=15 t=30 t=60 t=120 t=240

S
A

M
 (

µ
g

/m
L

)

Time after administration (in minutes)

b

S
A

M
 i

n
 s

e
ru

m
 (
μ

g
/m

L
)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7: Heatmap of the top 50 significantly DEGs in each of the three treatment groups 

(log2 fold change>0.5 and FDR<0.05). 
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Figure S8: Heatmap of 106 common DEGs in each of the three treatment groups (log2 fold 

change>0.5 and FDR<0.05). The lists of the commonly up and downregulated genes are shown 

within the boxes on the right. 
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Figure S9: Enriched pathways affected by the genes that are commonly up and 

downregulated by all three treatment groups relative to the control PyMT-R221A cells. The 

pathways enriched with up and downregulated genes are shown in ‘red’ and ‘blue’, respectively. 

Top five up and top 5 downregulated pathways are shown together as a bar graph. The ‘HIF-1 

signaling pathway’, which is enriched with the downregulated genes from all three treatment 

groups, showed the highest statistical significance (P= 3.42x10-07).   

 

 

 

 

 

 

 

 

 

Figure S10: Enriched pathways and biological affected by the genes that are uniquely up and 

downregulated by SAM+25(OH)D treatment relative to the control PyMT-R221A cells. The 

pathways enriched with up and downregulated genes are shown in ‘red’ and ‘blue’, respectively. 

Top five up and top 5 downregulated pathways are shown together as a bar graph. An enrichment 

of several immune-related signaling pathways is seen when the analysis was done using the genes 

that are uniquely upregulated by SAM+25(OH)D. Interferon alpha/beta signaling pathway showed 

the highest statistical significance (P=3.33x10-11). 
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Figure S11: qPCR from RNA obtained from primary tumors. Briefly, total RNA obtained 

from the primary tumors of control and treated animals (from Figure 2) were subjected to qPCR 

to validate the expression of selected genes from the ‘interferon alpha/beta signaling’ and ‘HIF-1 

signaling pathway’. Results are shown as mean ± SEM of RNA obtained from at least three 

animals per group. Significant differences are denoted by an asterisk. 

 

 

 

 

 

 

 

Figure S12: Expression of Vdr, Cyp27b1, and Cyp24a1 in PyMT-R221A cells. Briefly, total 

RNA obtained from the control and treated PyMT-R221A cells were subjected to qPCR to validate 

the expression of Vdr, Cyp27b1, and Cyp24a1. Results are shown as mean ± SEM of RNA 

obtained from at least three different experiments. Significant differences are denoted by an 

asterisk. 
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Figure S13: Effect of Stat1 activator on proliferation. a The PyMT-R221A cells were plated 

on 24 well plates and treated with vehicle control or SAM+25(OH)D for 24 hours. On the other 

hand, 25μM 2-(1,8-naphthyridin-2-yl)-Phenol (2-NP) [Sigma] was added directly into the media 

for 5 hours; the media was then removed and replenished with either regular culture media (for 2-

NP monotherapy group) or media with SAM+25(OH)D for triple therapy treated group for 19 

hours. At the end of 24 hours, cells were trypsinized and counted directed using a Coulter counter. 

Statistical analysis was done using ANOVA followed by post hoc Tukey’s test from the data 

obtained from three independent experiments. b Total RNA obtained from the four different 

groups was subjected to qPCR to validate the increased expression of Irf7, which is a downstream 

target of the Stat1 transcription factor. A significant increase in the expression of Irf7 was observed 

in all three treatment groups with the highest expression in the triple therapy group. It should be 

noted the cells were treated once for a period of 24 hours for this experiment in contrast to the 

other in vitro experiments during this study, where the cells were treated three times every second 

day. Hence, the level of Irf7 increase upon SAM+25(OH)D treatment is less in Figure S13b 

compared to Figure 5c. Results are shown as mean ± SEM of RNA obtained from three 

experiments. Significant differences are denoted by an asterisk. 
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Figure S14: Heatmap of the significantly 53 upregulated and 42 downregulated genes 

following combination treatment with SAM+25(OH)D [denoted by ‘S+V’ in the figure], 

which are also differentially expressed in GSE76772 in the opposite direction. Moreover, 27 

out of the 53 upregulated and 16 out of the 42 downregulated genes are significantly differentially 

regulated by the combination treatment only according to the cut-off set during RNA-Seq analysis. 

The genes unique in combination treatment only are shown by bold letters in the heatmap.  
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Figure S15: GO analysis of the 27 uniquely upregulated genes by SAM+25(OH)D that are 

downregulated in the bone metastasis dataset (GSE76772). The top 20 significant hits are 

shown as a bar graph where a significant enrichment of immune-related signaling pathways is 

seen. 
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Figure S16: Comparison of DEGs in response to SAM + 25(OH)D with human breast cancer 

genes. a Venn diagram of the downregulated genes following combination treatment with 

SAM+25(OH)D showed an overlap of 87 genes that are upregulated in the human breast tumors 

in the BioXpress database. Pathway analysis of these genes is shown in the bar graph below (in 

blue). Out of these 87 overlapped genes, 36 are uniquely regulated by the combination 

only. b Venn diagram of the upregulated genes following combination treatment with 

SAM+25(OH)D showed an overlap of 59 genes that are downregulated in the human breast tumors 

in the BioXpress database. Pathway analysis of these genes is shown in the bar graph below (in 

red). Out of these 59 overlapped genes, 31 are uniquely regulated by the combination. 
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Figure S17: Assessment of animal behavior upon SAM-treatment. a Representative track plots 

from the video recordings of control and SAM-treated animals generated by using ANY-maze 

software are shown in the right panel. b Different parameters determined from the open field test 

of control and SAM-treated mice are provided in a tabular format. Results are shown as mean ± 

SEM (n=7). No significant alterations in animal behavior were observed upon SAM-treatment. 

 

 

 

 

 

 

 

 

 

 

 

Figure S18: Differentially regulated non-coding RNAs upon SAM+25(OH)D combination 

treatment. a Heatmap of the significantly differentially expressed non-coding RNAs in 

SAM+25(OH)D combination relative to control cells. The expression of Rmrp, a known long non-

coding RNA with oncogenic function, is downregulated by the combination treatment.  b Kaplan-

Meier survival plot from RNA-Seq data of 1089 breast cancer patients reveals that higher 

expression of the human RMRP gene is associated with poor overall survival. 

 

  

Animal 3 (Test 3) Animal 2 (Test 2)

Control SAM

Open field test parameters Control SAM-treated P-value

Total distance travelled (m) 29.7 ± 1.3 30.3 ± 1.9 0.83

Average speed (m/s) 0.1 ± 0.003 0.1 ± 0.006 0.74

Number of entries to the center zone 10.7 ± 0.9 10.6 ± 0.9 0.92

Time in the center zone (s) 7.5 ± 0.9 6.9 ± 0.9 0.65

Distance travelled in the center (m) 1.6 ± 0.1 1.6 ± 0.2 0.78

a b



Table S2: The mouse specific primers used in this study are listed below1-9 

 

Gene Name Sequences used for qPCR (5’→ 3’) 

Vegfa For 

Rev 

CCACGTCAGAGAGCAACATCA 

TCATTCTCTCTATGTGCTGGCTTT  

Cxcr4 For 

Rev 

TCCTCCTGACTATACCTGACTTCATCT 

CCTGTCATCCCCCTGACTGAT 

Egln1 For 

Rev 

GCCCAGTTTGCTGACATTGAAC 

CCCTCACACCTTTCTCACCTGTTAG 

Egln3 
For 

Rev 

AGGCAATGGTGGCTTGCTATC 

GCGTCCCAATTCTTATTCAGGT 

Irf7 
For 

Rev 

GCCAGGAGCAAGACCGTGTT  

TGCCCCACCACTGCCTGTA 

Uba7 
For 

Rev 

GAGTTATACTCCAGGCAGCT 

CACTGAGCAGCCAAGTCAG 

Gbp3 
For 

Rev 

ACATGGCCAAATGAAGACACA 

TGAAAACCCACTTGTGCGTT 

Oas2 
For 

Rev 

GAAGGATGGCGAGTTCTCTACC 

GTGCTTGACCAGGCGGATG 

Ifit1 
For 

Rev 

CAGAAGCACACATTGAAGAA 

TGTAAGTAGCCAGAGGAAGG 

Ifit3 
For 

Rev 

CTGAAGGGGAGCGATTGATT 

AACGGCACATGACCAAAGAGTAGA 

Isg15 
For 

Rev 

TGACGCAGACTGTAGACACG 

TGGGGCTTTAGGCCATACTC 

Mx2 
For 

Rev 

CCAGTTCCTCTCAGTCCCAAGATT 

TACTGGATGATCAAGGGAACGTGG 

Irf9 
For 

Rev 

ACAACTGAGGCCACCATTAGAGA 

CACCACTCGGCCACCATAG 

Stat1 
For 

Rev 

GAACGCGCTCTGCTCAA 

TGCGAATAATATCTGGGAAAGTAA 

Vdr 
For 

Rev 

GATGCCCACCACAAGACCTA 

CGGTTCCATCATGTCCAGTG   

Cyp24a1 
For 

Rev 

AAGAGATTCGGGCTCCTTCA 

 GCAGGGCTTGACTGATTTGA 

Cyp27b1 
For 

Rev 

GCATCACTTAACCCACTTCC  

CGGGAAAGCTCATAGAGTG 

Gapdh 
For 

Rev 

AGACGGCCGCATCTTCTTGT  

ACTGCAAATGGCAGCCCTGG 

 

 

 



Table S3: The human specific primers used in this study are listed below 

 

Gene Name Sequences used for qPCR (5’→ 3’) 

VDR For 

Rev 

CTCAAACGCTGTGTGGACAT 

ACTGTCCTTCAAGGCCTCCT 

GAPDH For 

Rev 

TGCACCACCAACTGCTTA 

AGAGGCAGGGATGATGTTC 
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