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I. MMD METHOD IN TERMS OF ALLELE PROBABILITIES

Here, we present a description of the MMD method in terms of allele probabilities which is
useful to compare with assignment methods that rely on allele probabilities. Our description
applies to the particular case in which genotypes consist of L unlinked loci with two alleles
each. Under this assumption, the Hamming distance dH(u, ai,s) is a random variable obeying a
Poisson’s Binomial distribution [1] with success probabilities {1 − πul,l,s}Ll=1. Here, πul,l,s is the
probability that the allele ul in the individual to be assigned is observed at locus l in source s.
In general, πa,l,s denotes the probability of allele a at locus l in population s.

The measures of similarity between individuals and sources used in previous work based on
allele frequencies can be viewed as particular characteristics of the Hamming distance distribution
used by the MMD method. For instance, the likelihood function,

Lu,s =
L∏
l=1

πul,l,s , (1)

used in many assignment tests [2–7] corresponds to the probability that dH(u, ai,s) = 0, i.e. the
probability that the genotype u exists in source s. Genetic distances used in distance-based
assignment tests [4, 5], can also be expressed in terms of the probabilities {πul,l,s}. For example,
Nei’s DA distance [8] between the individual to be assigned and source s is

DA = 1− L−1
L∑
l=1

πul,l,s .

We note that some classical genetic distances [8] such as Nei’s standard genetic distance, DS,
or Nei’s minimum genetic distance, Dm, depend on the gene identity [9] of the sources, Js =

L−1
∑L

l=1

∑
a∈A πa,l,s, in addition to the probabilities {πul,l,s}. For example, Nei’s standard ge-

netic distance between u and source s is

DS = − ln

[∑L
l=1 πul,l,s

L
√
Js

]

The gene identity is intrinsic to sources and does not reflect the similarity between the in-
dividual to be attributed and sources. In general, methods based on DS and Dm will predict
a higher attribution to the source with lower gene identity but this has nothing to do with the
individual to be attributed.



2

II. ATTRIBUTION ERRORS ASSOCIATED WITH ERRORS IN ALLELE

PROBABILITIES

As mentioned in the main text, errors in the estimates of allele probabilities {πa,l,s} used to
characterise sources will induce an error in attribution. Here we estimate the dependence of the
attribution error on the number L of loci in the genotypes and the number Is of genotypes used
to describe each source.

A. Attribution error for the MMD method

For the MMD method, errors in the estimates of the allele probabilities propagate to the
quantile λu,s(q), score σu,s and attribution probability pu,s defined in the Methods of the main
text. The dependence of the errors of λu,s(q) and σu,s on L and Is can be estimated for a simple
model for unlinked loci in which alleles have the same probability distribution for all loci, i.e. a
model with πul,l,s = rs independently of l. In this case, the Hamming distance obeys a binomial
distribution for L Bernoulli trials with probability of success 1− rs. In the limit of large L, the
binomial distribution can be approximated by a normal distribution with mean µs = L(1 − rs)
and variance ∆2

s = Lrs(1− rs). Under these assumptions, the quantile λu,s(q) satisfies

λu,s(q) = µ+ Φ−1(q)∆s , (2)

and the score σu,s quantifying the proximity of genotype u to source s is

σu,s = Φ

(
λmin − µs

∆s

)
. (3)

Here, λmin = mins{λu,s(q)} and Φ−1(x) is the inverse of the cumulative distribution function for
the standard normal distribution.

From Eq. (2), the error of λu,s(q) in the limit of extended genotypes with large L is given by

δλu,s =

∣∣∣∣∂λu,s∂rs

∣∣∣∣ δrs ' Lδrs . (4)

Here, δrs is the error in the allele probabilities. In the MMD method and other methods that

approximate these probabilities by the observed allele frequencies, the error is δrs = O(I
−1/2
s ).

Therefore,
δλu,s ' LI−1/2s . (5)

Since λu,s ' L (cf. Eq. (2)), we conclude that the relative error of λu,s is δλu,s/λu,s = O(I
−1/2
s ),

i.e. it does not increase with the number of loci, L.
Let us denote the closest source to individual u as sclosest (this is the source with λu,sclosest =

λmin). From Eq. (3), the error in the assignment score σu,s is given by:

δσu,s =

∣∣∣∣∂σu,s∂rs

∣∣∣∣ δrs +

∣∣∣∣ ∂σu,s∂λmin

∣∣∣∣ δλmin '

{
aL1/2e−bL

2
δrs , for s 6= sclosest

a′L1/2δrs , for s = sclosest .
(6)

Here, a, a′ and b are independent of L and we have assumed that δrs is approximately the same
for all sources, including sclosest. One can show that the error for the attribution probability pu,s
is proportional to that of δσu,s.

To summarise, our arguments show that the assignment error for the MMD method is O(L1/2).
In the particular case in which the allele probabilities are estimated by frequencies, one has

δrs = O(I
−1/2
s ) and the assignment error is O(L1/2I

−1/2
s ), i.e. it increases with L and decreases

with the number of genotypes used to define the sources.
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B. Attribution error for the likelihood function

The error for the likelihood function given by Eq. (1) can be easily calculated as a function
of the errors {δπul,l,s} for the allele probabilities. Propagation of errors gives

δLu,s =
L∑
l=1

∣∣∣∣ ∂Lu,s

∂πul,l,s

∣∣∣∣ δπul,l,s = Lu,s

L∑
l=1

δπul,l,s

πul,l,s

' LLu,s , (7)

where we have assumed δπul,l,s > 0 for all loci.
According to Eq. (7), the relative error of the likelihood function, δLu,s/Lu,s, increases with

L unless the errors in the probability estimates, {δπul,l,s}, are zero.
The log-likelihood function is more commonly used than the likelihood itself. One can easily

show that the error for the log-likelihood function typically equals the relative error of Lu,s and is
therefore O(L). This shows that attribution errors based on a likelihood function increase faster
with L than those for the MMD method.
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