SUPPLEMENTARY MATERIALS

Supplementary Results
Human, largest healthspan pathway, further details

We further investigated the miRNAs that are
statistically enriched in the largest healthspan pathway
using the TFmir webserver [1]. Notably, hsa-mir-34
stands out as a regulator of the Notch genes, and it is
implicated in cancer, intracranial aneurysm and heart
failure (Supplementary Figure 1, Supplementary Table
9). Additionally, hsa-mir-30 regulates many genes of
this healthspan cluster/pathway, including NOTCH?2,
and it is implicated in the epithelial-mesenchymal
transition (EMT), cancer, heart failure and obesity. In
fact, the EMT is known to be involved in kidney disease
and cancer, mediated by Notch signalling [2—4]. It is
also associated with human longevity [5]. Furthermore,
miRNA 34 has been associated with schizophrenia [6],
and miRNA 34a has been associated with Alzheimer’s
Disease [7], and its upregulation was found 30 minutes
after fear conditioning in the amygdala, transiently
downregulating Notch signaling. Finally, according to
Wikipedia’s community annotation facilitated by
miRBase and Rfam, hsa-mir-34 and hsa-mir-30 are both
linked to cancer, see also [8, 9].

Human, second-largest healthspan pathway

The genes in the second-largest pathway/cluster, related
to cell proliferation (with links to inflammation and
apoptosis) feature downregulation as expected, affecting
NFKBI1, STAT1, STATS5a and GSK3B, with likely
beneficial effects. Specifically, JAK/STAT pathway
inhibition is considered to alleviate the cellular
senescence-associated secretory phenotype and frailty
in old age [10]. Furthermore, [11] demonstrated that the
hypothalamus is important for the development of
whole-body ageing in mice, and that the underlying
basis involves hypothalamic immunity mediated by
IKBKB (IkB kinase-b, IKK-b) and NFKB. Zhang et al.
developed several interventional models and could
show that ageing retardation and lifespan extension
were achieved in mice by preventing ageing-related
hypothalamic or brain IKBKB and NFKB activation.
Further mechanistic studies revealed that IKBKB and
NFKB inhibit gonadotropin-releasing hormone (GnRH)
to mediate ageing-related hypothalamic GnRH decline,
and GnRH treatment amends ageing-impaired
neurogenesis and decelerates ageing. For the second-
largest pathway, a miRNA enrichment analysis by
TFmir highlights hsa-mir-146a, which interacts with
NFKBI1 and STAT1 in particular, and is implicated in
many immunity-related diseases (Supplementary Figure

2, Supplementary Table 10). According to Wikipedia’s
community annotation, miR-146 is primarily involved
in the regulation of inflammation and other processes
related to the innate immune system, see also [12].

Human, third-largest healthspan pathway

The third-largest healthspan pathway/cluster features
the strong downregulation of APOE, and to a lesser
extent also of APOC1. The APO family proteins are all
lipid transporters, and severe decreases are detrimental,
as they lead to hypercholesterinemia [13]. On the other
hand, APOE4 has been widely implicated in the
formation of amyloid plaques in Alzheimer’s Disease
[14], and experimental downregulation showed a
protective effect in an Alzheimer Disease mouse model
[15]. A supplementary interpretation of the CR-related
downregulation found for this healthspan pathway is
that fasting reduces lipid load, and hence induces a
downregulation of the corresponding transporter
proteins.

Human, further gene expression data mapping

The three largest healthspan clusters/pathways were
further investigated by mapping aging- and disease-
related gene expression data onto them, as published or
collected by [16], see Supplementary Methods. In the
largest (Notch-related) healthspan pathway (see
Supplementary Figure 3), gene expression changes in
aging blood clearly show the expected upregulation of
Notch genes and LRP1, and the same holds for skin
except for Notch3. In the second-largest (proliferation-
related) healthspan pathway (see Supplementary Figure
4), most genes are upregulated as expected; again, the
signal is stronger in blood than in skin. Finally, the
downregulation of lipid-associated genes by CR we
observed in the third pathway (see Supplementary
Figure 5) is matched by an upregulation of all 4 genes
in blood as well as in skin, with the single exception of
APOE in skin, the downregulation of which may impair
wound healing, since it does so in mice [17].
Furthermore, we mapped disease-related gene
expression changes onto the healthspan pathway map,
including one cancer entity (pancreatic cancer),
coronary disease and Alzheimer disease (AD), see
Supplementary Figure 6. We found the genes in the
Notch-related healthspan pathway upregulated most
consistently in case of Alzheimer disease, whereas
genes in the proliferation-related and the lipid-related
healthspan  pathways  were upregulated most
consistently in coronary disease. All three healthspan
pathways discussed here consist mostly of genes that
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are, for higher values of gene expression, affecting
health in negative ways; they are mostly downregulated
by CR and upregulated by aging and disease.

C. elegans, next-largest healthspan pathways based
on genetic/intervention data

In case of the mitochondrial and the hormone response
cluster, the rapamycin-induced gene expression changes
are not discussed since these are weak; in the
dauer/dormancy cluster, the daf-16 inhibitor hef-1 [18]
is the most strongly downregulated gene. In the
regulation cluster, the strongest changes consist of the
downregulation of heat shock response genes hsp-16-41
and hsp-12-3.

C. elegans, next-largest healthspan pathways based
on WormBase gene expression effect of intervention
data

The  ER/peroxisome-related  pathway  features
upregulation of phy-2, daf-22 and acox-1. Specifically,
phy-2 is essential for survival and embryonic
development [19], while daf-22 catalyzes the final step in
the peroxisomal -oxidation pathway and is essential for
dauer pheromone production [20], whereas acox-1 is
essential for the prevention of fat accumulation [21]. The
correlation of fat content and health maintenance was
described several times: Fat accumulation in C. elegans
was found to be decreased in phytochemically treated
healthy nematodes [22] [23], during life-prolonging CR
[24], or during increased autophagy [25]. Moreover,
ectopic fat deposition is found in ageing worms and is
discussed as a cause of ageing itself [26]. On the other
hand, increased fat content was described in long-lived
daf-2 mutants [27] and in germline ablated nematodes
[28]. Moreover, acox-5 (aka drd-51), which is implicated
in starvation-sensing and is downregulated by dietary
restriction [29], is downregulated by rapamycin as well.
The lysosome-related pathway is dominated by
upregulated genes involved in fertility/development (gsp-
3, gsp-4, frk-1 and spe-1). Finally, the six genes in the
cluster related to morphogenesis are all upregulated (unc-
52, involved in neuron differentiation [30] and muscle
development [31], is upregulated the strongest), whereas
the six genes in the cluster related to biosynthesis and
transcription are all downregulated by rapamycin.

Overlap of healthspan pathways, first network
alignment (Figure 5, left)

Notably, the serine/tyrosine kinases involved in the
alignment are all known to be involved in proliferative
processes, albeit in complex ways. The five kinases
highlighted by our analysis include pro- and anti-
proliferative genes, that is, tumor drivers as well as tumor

suppressors. Control of proliferation is arguably the most
important aspect of staying healthy, enabling stem cells
to perform their function, while avoiding cancer.
Accordingly, the independent expression data based on
caloric restriction/rapamycin intervention data reflect
that proliferation/biosynthesis is generally, but not
completely, going down by pro-longevity interventions.
Naturally, the phosphorylation status of these kinases
would be more informative than their expression at the
transcript level. Also, not much is known about the role
of PAK4, BRSK2 and MELK in human health or aging.
PAK4 is considered to protect cells from apoptosis [32],
and a positive role in supporting stem cells is possible
[33]. In context of cancer, however, upregulation of
PAK4 has been associated with high-grade human breast
cancer [34] and with malignancy in a variety of cancer
cell lines [35], [36]. PAK4 can positively mediate cell
survival and proliferation as well as enhance cell
migration and invasion [35], [37], [38]. The inhibition of
PAKA4 reduced cell proliferation, migration and invasion
of gastric cancer cells [35]. Further, depletion of PAK4 is
considered to increase cell adhesion dynamics in breast
cancer cells; due to its RhoU stabilizing function, it
promotes the focal adhesion disassembly via
phosphorylation of paxillin [34]. Furthermore, PAK4
modulates Wnt signaling by B-Catenin regulation,
increasing cell proliferation. Concordantly, the Wnt
signaling pathway itself promotes intrinsic processes
such as cell migration, hematopoiesis and cell polarity,
and organogenesis during embryonic development [39],
[40] . Concerning BRSK2, which is usually expressed in
brain, testis and pancreatic tissue, an enhanced activity in
response to DNA damage was reported [41], [42], [43].
In brain, BRSK2 is significant for proper regulation and
formation of neuronal polarity in the developing nervous
system [43], [44]. Finally, MELK as a stem cell marker is
expressed in several types of progenitor cells and
hematopoietic stem cells, and it plays key roles in cell
cycle, embryonic development and in other crucial
cellular processes [45] supporting stem cell function. In
turn, upregulation of MELK has been associated with
tumor progenitor cells of different origin and direct
knock down of MELK leads to significant apoptosis
induction [46]. In general, MELK is preferentially
upregulated in cancer [47]. Overall, the overlap described
highlights a cluster of genes held together mostly by
shared protein domains in both species, with alternating
evidence for their relation to health.

Overlap of healthspan pathways, second network
alignment (Figure S, right)

In the second alignment, all genes are considered
health-related based on the C. elegans gene expression
data in WormBase. The genes acox-1 and daf-22 are
involved in the ER, peroxisome and microbody health
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cluster (see above), whereas the genes cat-4 and pept-1
were found to be related to ion transport and homeostasis
(in a smaller cluster of the original healthspan pathway
map, Figure 3). All four genes are differentially
regulated in a long-lived sir-2.1 overexpression strain
[48] and in nematodes suffering from down-regulation
of nhr-49, a key regulator of fat metabolism [49].
Moreover, differential translational regulation of cat-4,
pept-1, acox-1, and daf-22 was observed in wildtypes
during osmotic stress [50], underlining their role in
health- and lifespan regulation. Interactions in C.
elegans are all based on co-expression, while in human
they are based on co-expression, co-localization and
physical interaction (except for the interaction of
SLC5A1 and GCHI1, which is genetic). The
independent gene expression data describing the effect
of rapamycin in C. elegans are plausible for the
ER/peroxisome genes acox-1 and daf-22 (see above).
For cat-4, no data related to its role in health or survival
is available, though the gene is involved in dopamine
biosynthetic processes and is a target of the
transcription regulator skn-1, which is known to be
indispensable for proper stress response [51]. Finally,
healthspan-promoting treatments like tannic acid [52],
colistin exposure [53], or life-prolonging fasting [54]
were shown to induce pept-1 transcription. The
expression data in case of human, reflecting caloric
restriction effects, are matching expectations (SCP2),
are not available (SLC15A1), or are of unknown
significance (ACOX1, GCHI; see also [55]). Overall,
the overlap described here highlights a cluster of genes
held together mostly by co-expression in both species,
with a demonstrated relation to health in C. elegans
only.

Supplementary Discussion

Biological interpretation of the lack of evolutionary
conservation

In some sense, the lack of overlap between healthspan
pathways in C. elegans and humans should not be
surprising, and relates to our definition of health as the
absence of undesirable conditions (that is, disease and
dysfunction). Biologically speaking, each such
undesirable condition may have its own etiology, or
may partially share an etiology with others, such that
depending on environmental factors the prevalence may
vary greatly. For example, heart disease appears to be
largely absent in Tsimane hunter-gatherers [56], but is a
major cause of mortality in modern societies. Any heart
disease pathway would thus have a major impact on
healthspan in modern societies, but not in the Tsimane.
Similar challenges apply to the comparison of
healthspan pathways across modern populations as well
[57]. Tt is thus to be expected that healthspan pathways

will differ not just across distantly related species, but
also among populations of a given species, depending
on the environmental factors that push some pathways
to more or less important roles in determining
healthspan.

Of course it is still possible that there are shared
healthspan pathways that operate across populations and
species. Indeed, the conservation of genetic pathways
related to aging (mTOR, sirtuins, insulin signaling, etc.)
[58], [59] strongly implies the existence of shared
healthspan pathways, since it is expected that these
known aging pathways are also healthspan pathways.
The more interesting question is thus whether there
might be conserved healthspan pathways that are not
also lifespan pathways: pathways that affect health
much more than survival. The preliminary answer from
this study is that there are few, if any, though we must
consider that wvariation in causes of healthspan
deterioration across populations and species might hide
some more subtle effects.

From an evolutionary perspective, the question is how
selection might act to create and maintain pathways that
regulate healthspan. In the case of lifespan, it has been
suggested that conserved pathways regulate a
mechanism to allow individuals to put reproduction on
hold during lean times, increasing lifespan at a cost to
reproduction (a “trade-off”), and leading to diverse
downstream mechanisms of aging with a shared control
switch [60]. One possibility is that healthspan might
undergo a similar trade-off, with individuals sacrificing
reproduction in order to maintain health, or vice versa,
though there is not yet evidence one way or another. If
such a trade-off were facultative (i.e., regulated within
the lifespan of an individual), we should see variation in
gene expression across individuals even in the absence
of allelic variation. If it were an obligate trade-off, we
might see allelic variation in healthspan pathways.
Allelic variation in healthspan could thus either imply
(a) that there is some unknown benefit, through the
trade-off, to having a shorter healthspan; or (b) that the
population is not at evolutionary equilibrium, i.e. is in
an environment for which healthspan regulation has not
been optimized [61].

Supplementary Methods

Gene sets associated with health, based on
WormBase differentially expressed genes

The basic search for expression clusters in WormBase
(http://www.wormbase.org/species/c_elegans/expressi
on_cluster#1-0-5) was used (status: 13" December
2017), to find transcriptomic data for healthspan-
promoting compounds in C. elegans. For this purpose,
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the search term “treated OR treatment OR exposure”
was used, which resulted in a total of 323 expression
clusters comprising about 100 different chemical,
physical, and biological treatments of various kinds
(differing by exposure time or dosage, and including
RNAI treatment). In order to focus on small molecules,
only studies with RNAi-untreated wild type animals
were selected. The treatment had to lead to at least one
enhanced health-related endpoint such as stress
resistance or locomotion. The data sets covered the
following substances (with results each described in an
accompanying WormBase paper): Allantoin (WBPaper
00048989), astaxanthin (WBPaper00049979), cocoa-
peptide 13L (WBPaper00042404), colistin (WBPaper
00045673), 2-deoxy-D-glucose (WBPaper00044434 and
WBPaper00031060), garlic extract (WBPaper00046741),
hydrogen sulfide (WBPaper00040285), lithium
(WBPaper00046415), quercetin (WBPaper00040963),
rapamycin (WBPaper00048989), resveratrol
(WBPaper00026929), rifampicin (WBPaper00046496),
and tannic acid (WBPaper00040963). All differentially
expressed genes (DEGs) in the selected gene expression
studies were compiled and duplicates were deleted,
resulting in 11312 genes that are mentioned in at least
one data set. For all genes annotated to at least
one GO term (based on the ontology browser in
WormBase), the exact number of associated GO terms
was determined, by entering all 7646 genes in the
search field of the “MGI Gene Ontology Term Finder”
(http://www.informatics.jax.org/gotools/MGI_Term_Fi

nder.html). The number of GO terms per gene was
counted, and the count of each gene in all DEG lists
(regulated, up-regulated only or down-regulated only,
respectively) was determined. Finally, all genes were
chosen which appear in at least four DEG lists in total
or in at least three lists of up-regulated DEGs or in at
least three lists of down-regulated DEGs, and which are
annotated to at least 14 GO terms. These filter criteria
were used to yield a manageable number of annotated
genes; the resulting list of 58 genes was then used
further. For acox-1.1 and acox-1.5, their alternative
nomenclature names acox-1 and acox-5 were used.

Overlaying of expression data onto pathway maps

We searched the GEO (Gene Expression Omnibus)
database in December 2017 for datasets/series where
effects on healthspan or healthy aging in human or C.
elegans were actually observed following an
intervention. We found two gene expression series
describing the effects of caloric restriction, or its
mimetic rapamycin, that featured at least 3 replicates, as
follows. For C. elegans, from GSE64336, “Expression
data of worms under different caloric restriction
mimetic treatments”, we selected 1) wild type versus 2)
rapamycin treatment, since the accompanying paper

[62] claimed the largest number of differentially
expressed genes for this compound (in comparison to
the other compound tested, allantoin). For humans, from
GSE38012, we selected all 25 samples, 1) Western diet
versus 2) caloric restriction diet (for both series, we
checked the box plots but we found no outlier
distribution of expression values for any sample). We
then used the GEO2R tool [63] to compute fold-changes
using default parameters, downloaded the resulting
tables, imported these into Excel (using “Text” column
format for the gene names), removed genes with logFC
equal to NaN and sorted, smallest to largest, by absolute
fold change so that for genes with more than one probe,
the probe with the largest fold-change is taken when the
table is imported using Cytoscape. Selecting the
“Gene.symbol” column as key column of the table and
selecting the “gene name” column created by
GeneMANIA as the “Key column for network”, we
established matching gene names (in case-insensitive
mode) in the GEO2R and GeneMANIA tables as the
common reference, to then import the tables into
Cytoscape. Finally, we adjusted the “Style” of the
resulting networks so that the logFC values from
GEO2R are mapped continuously to a yellow-blue color
scale with the appropriate max/min settings, adding a
handle to map a logFC of 0 to white.

Further, we took [16] as reference publication for aging-
and disease-related datasets. We took the human aging
data published alongside the article, contrasting blood
and skin in 24-29 and 45-50 versus 60-65 and 75-80
year-old humans. We took publicly available disease-
related datasets listed in Supplementary Table 5 of [16]:
for cancer we selected pancreatic cancer (GSE28735) as
the only entity with paired data available at GEO; as
cardiovascular disease we selected coronary artery
disease as the only entity with paired data (taking
plaque biopsy data rather than blood), and for
neurodegenerative disease, we took Alzheimer Disease
data based on brain biopsies. In the latter two cases we
chose the tissues directly affected by the respective
disease.

Overlap of healthspan pathways

Figure 4 (middle) summarizes the overall approach. The
human health-related gene list based on Supplementary
Tables 1-3 (Supplementary Table 6) and the health-
related gene-expression-based gene list from wormbase
(Supplementary Table 8) were investigated jointly.
More specifically, both lists were submitted to
Wormhole (wormbhole.jax.org) on Jan 29, 2018, with
“Limit results to ortholog pairs” set to “Do not filter
(keep all results)” and with the “Reciprocal best hits
(RBHs) only” option, to map from human to C. elegans
and from C. elegans to human, respectively. The two
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resulting tables were downloaded, and the ortholog
genes were used to obtain two new gene lists: one list
consisting of the human health gene Ilist from
Supplementary Tables 1-3 supplemented with the
human orthologs of the C. elegans genes implicated by
gene expression in WormBase, and a second list
consisting of the health-related gene-expression-based
C. elegans gene list supplemented with the C. elegans
orthologs of the human health genes. Both new gene
lists were submitted to GeneMANIA with default
parameters', and the two GeneMANIA reports were
exported’. From the two GeneMANIA reports, the two
interaction networks and the two new lists of
genes/nodes in the network were extracted. As input for
the GASOLINE network aligner [64], each network was
then written to a text file, and a single table of ortholog
mappings was created by (a) submitting each of the two
new lists of genes/nodes to Wormhole (with parameters
as above), converting the “WORMHOLE Score” from 0
(worst) to 1 (best) into an E-value-like score as
expected by GASOLINE (using the ad-hoc formula E-
Value-substitute=1/WORMHOLE _Score*1E-20, which
results in values roughly the same as given in the
BLAST-based tables offered by the GASOLINE
website as sample input data), and (b) concatenating
both Wormbhole ortholog tables into a single text file.
Submitting the two network files® and the single table of
ortholog mappings to GASOLINE with default
parameters resulted in no alignment of subnetworks, but
changing the GASOLINE “density threshold” from 0.8
to 0.5 resulted in the two alignments presented. Finally,
the gene expression data describing effects of caloric
restriction and of rapamycin were both imported,
mapping the expression data to the alignments, and
setting node colors, all as described above. Whenever
data were processed by Excel, column formats of gene
names were set to “Text”.

All genes displayed in Supplementary Tables 1-5 and
those derived from WormBase gene expression data are
summarized in Supplementary Tables 6-8, including
GenAge information [65] (https://genomics.senescence.
info/genes/; GenAge Build 19; release date: June 24,
2017), if available.

The web presentation accompanying this paper
employed Cytoscape version 3.6.1 to export the networks

"which ignores some duplications introduced into the
lists by a wormhole bug; non-nomenclature gene names
for IL-6 and IL-12 were processed correctly.
?due to a GeneMANIA feature, reports for the same
input gene lists may vary slightly in the last decimal
?laces of some of the scores.

first the C. elegans and then the human network;
uploading networks the other way around results in
slightly different output due to a GASOLINE feature.

and its views as a Cytoscape]S object, employing a
library used in version 3.29 (http://js.cytoscape.org)
together with an Apache 2 web server [66]. The dynamic
highlighting of genes and GO terms in the pathway was
implemented in JavaScript. The transcriptional profile of
user-selected genes can be inspected in GEO expression
data aggregated by the multi-experiment matrix (MEM,
https://biit.cs.ut.ee/mem/) [67]. Queried with single
genes, the MEM service shows all the transcriptomics
experiments of a selected platform and, underneath, all
the genes with which the query gene is correlating in its
expression [68]. The resulting list is ranked and
differences between experiments with respect to the
observed correlation are indicated graphically. When
queried with a set of genes, specifically with all genes of
a healthspan pathway, only correlations of transcripts
assigned to these genes are shown. This tell us, in which
experiments the genes included in our healthspan
pathways interact, and for which conditions there is no
concerted action of the healthspan-associated genes. One
can thus obtain a characterization of a healthspan
pathway in the light of a large set of gene expression
experiments.
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