SUPPLEMENTAL MATERIALS (Supplemental Tables and Supplemental Figures)

HTS identifies the DNMT1 inhibitor, 5-azacytidine, as a potent inducer of PTEN: central role for PTEN in 5-azacytidine protection against pathological vascular remodeling

Keith A. Strand¹, Sizhao Lu¹, Marie F. Mutryn¹, Linfeng Li⁴, Qiong Zhou⁴, Blake T. Enyart^{2,3}, Austin J. Jolly¹, Allison M. Dubner¹, Karen S. Moulton^{3,2}, Raphael A. Nemenoff^{1,2}, Keith A. Koch^{2,3}, Daniel LaBarbera⁴, Mary C.M. Weiser-Evans^{1,2,†}

¹Division of Renal Diseases and Hypertension, Department of Medicine, ²School of Medicine, Consortium for Fibrosis Research & Translation, ³Division of Cardiology, Department of Medicine, 4 School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA

Supplemental Table I. Compounds rescreened following initial HTS.

Supplemental Table II. Final hit compounds.

Supplemental Table III: Primer sequences for qPCR

Major Resources Table

Genetically Modified Animals (in vivo studies)

Antibodies

Cultured Cells

Supplemental Figure I. PTEN promoter-reporter plasmid generation and high throughput screen assay validation. **(A).** Plasmid used to generate PTEN promoter-mCherry reporter construct. Plasmid constructs were generated using a lentiviral pCDH-CMV-MCS-EF1-copGFP backbone. mCherry ORF was inserted to create pCDH-CMV-mCherry-EFI-copGFP, which was used for positive control cells. A 4032-bp fragment of the proximal PTEN promoter and 5'-UTR replaced the CMV promoter to generate pCDH-PTEN-mCherry-EF1-copGFP, which was used for the PTEN promoter-reporter cells. Image from System Biosciences LLC. **(B).** Transduced SMCs were sorted using FACS to obtain a pure population of GFP+ SMCs expressing only GFP (left), constitutively active GFP and mCherry as a positive control (middle), or constitutive GFP and PTEN promoter driven mCherry (right). **(C).** Live cell expression of GFP and mCherry in PTEN promoter-reporter and positive control cells (images taken using Opera Phenix HCS system). **(D).** mCherry intensity from DMSO stimulated plates was quantified and used to calculate a Z' to assess robustness of the assay prior to compound screening. Top rows show mCherry intensity from PTEN promoter-reporter cells, middle rows show mCherry intensity from positive control cells, bottom row shows calculated Z'. A Z' > 0.5 indicates an excellent assay.

Supplemental Figure II. High throughput screen assay, initial hit identification, dose response testing, and final hit identification. **(A).** (Left panel) Representative mCherry image of all wells in a representative 384-well plate after compound dosing. Left two columns are DMSO-stimulated PTEN promoter-reporter cells used as the negative control, right two columns are positive control SMCs. This image represents only 1 of the 7 images that were taken per well. mCherry signal intensity was calculated as the average mCherry signal intensity per GFP-positive cell, all 7 images were used to calculate average mCherry intensity. (Right panel) mCherry intensity quantified by well expressed in chart format for visualization and analysis. Each peak represents an individual well. **(B).** Representative images of DMSO-stimulated PTEN promoter-reporter cells used as negative control (top left), DMSO-stimulated positive control cells (bottom left) and two hit compounds (right panels) from the initial screen at 10 µM compound concentration. 5-azacytidine and Itraconazole were confirmed as hit compounds during confirmation screening at 10 μ M and dose response screening. Red staining = DRAQ5 nuclear stain, yellow staining = mCherry signal. **(C).** The screening library contained 3,406 compounds. 151 compounds were identified as potential hits in the initial screen. These were re-screened in duplicate at 10.0, 5.0, 1.0, and 0.2 μ M. A dose-responsive threshold of mCherry induction above negative control was used to identify hits at 5.0, 1.0, 0.2 µM concentrations. 57 compounds exibited confirmed activity in at least 2 doses. 44 compounds were excluded due to lower level of activity or previously known mechanism of action undesirable for potential vascular therapeutics. 11 compounds were identified for further *in vitro* and *in vivo* testing. **(D).** Dose response plots from the 11 final hit compounds that were chosen for *in vitro* and *in vivo* testing. mCherry signal is plotted as percent of average mCherry signal intensity in negative control PTEN promoter-reporter SMCs.

Pten mRNA expression 24 hr post treatment ******2.0 1.5** Fold Change **Fold Change 1.0 0.5 0.0 vehicle** Jenicle Highlane

Supplemental Figure III. The DNA methyltransferase-1 inhibitor, 5-aza-2'-deoxycytidine, promotes induction of PTEN. Rat aortic SMCs were plated and treated in triplicate with 10 μ M 5-aza-2'deoxycytidine for 72 hr prior to harvest. PTEN mRNA expression was assessed by RT-qPCR. Paired Ttest; ****p<0.0001.

Supplemental Figure IV. Functional loss of PTEN in PTEN-deficient SMCs. Control shRNA and PTEN shRNA SMCs were growth-arrested in 0.1% CS EMEM plus 5-azacytidine or vehicle control for 48 hrs, then stimulated with 20 ng/ml PDGF-BB for 72 hrs. Western blot analysis of phopho⁴⁷³Akt expression; β -actin is shown as a loading control.

Supplemental Figure V. 5-azacytidine treatment in vivo promotes PTEN induction. Male WT mice underwent left carotid artery ligation as described in Materials and Methods. Mice received daily 2 mg/kg 5-azacytidine or vehicle control i.p. injections for 1 week prior to tissue harvest. Whole lung **(A)** and injured arteries **(B)** were harvested and total RNA extracted for RT-qPCR analysis of PTEN mRNA. N=4 (vehicle, lung), N=3 (vehicle, artery), N=4 (5-azacytidine, lung and artery). Each symbol represents duplicate **(A)** or quadruplicate **(B)** qPCR runs. T test; ****p<0.0001.

Supplemental Figure VI. Uninjured carotid arteries from 5-azacytidine or DMSO treated WT or **PTEN IKO mice.** WT and PTEN IKO mice were treated as described in Figures 6&7. Contralateral uninjured right carotid arteries sections were harvested 3-weeks post-injury and sections immunofluorescently stained for CD68 (red), YFP (green), and α SMA (white); nuclei were stained for DAPI (blue). Representative images from N=7 (WT vehicle), N=6 (WT 5-aza), N=6 (PTEN iKO vehicle), and N=7 (PTEN iKO 5-aza). Scale bars = $100 \mu m$.

*Supplemental Figure VII. Uninjured carotid arteries from 5-azacytidine or DMSO treated WT or PTEN iKO mice.*WT and PTEN iKO mice were treated as described in Figures 6&7. Contralateral uninjured right carotid arteries were harvested 3-weeks post-injury and sections were immunofluorescently stained for SMMHC (red) and YFP (green); nuclei were stained for DAPI (blue). Representative images from N=7 (WT vehicle), N=6 (WT 5-aza), N=6 (PTEN iKO vehicle), and N=7 (PTEN iKO 5-aza). Scale bars = $100 \mu m$.

*Supplemental Figure VIII. Negative IgG controls for immunofluorescence.*Injured arterial sections from WT mice were stained using goat (Gt), rabbit (Rb), or rat (Rt) IgGs followed by respective secondary antibodies as negative controls for immunofluorescence.