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Supplementary Note 1: Description of Transfer Function G 

In experiments, a system identification technique [1] is implemented to identify the linear invariant 

transfer function, G, which is defined by 
1 2

s s

a a

V V
G

V V
= =  with 1aV  and 2aV  being trail actuating 

voltages, and sV  being the corresponding sensing voltage induced by the trail actuating voltage. 

Therefore, the feedback components in the sensing signal are eliminated, and the control system 

becomes feedforward (see Fig. 2a). To experimentally realize G, a six-order pole-zero transfer 

function is firstly predefined, whose parameters are then determined through time series signal 

analyses, such that G can precisely mimic mechanical feedbacks. 

 

Supplementary Note 2: Feedforward Control Loop 

The schematic of the feedforward control loop is shown in Supplementary Figure 1. As 

illustrated in the figure, the piezoelectric sensor is connected to a charge amplifier and a low-pass 

filter (the detailed circuit designs are given in subset figures). Subsequently, the output signal from 

this low-pass filter feeds to a digital control unit (dSPACE SCALEXIO 6001) implemented with 

a band-pass filter and three transfer functions H1, H2 and G connected by two subtract loops. The 

two output signals from the digital controller are applied to the two actuators, respectively, through 

two low-pass filters and two voltage amplifiers. The detailed parameters of those analog circuits 

are given in Supplementary Table 1. Circuit parameters of the fabricated control circuit system 
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Supplementary Figure 1. Diagram of the feedforward control loop. 

 

Supplementary Table 1. Parameters of analog circuits. 

Geometric parameters (mm) 

R1 1MΩ R2,R3 3 kΩ R4, R5 1 kΩ 

C1 100 pF C2, C3 2 nF   

Op-amp OPA445 Controller dSPACE SCALEXIO 6001 
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Supplementary Note 3: Derivation of transfer functions H1 and H2 

 

Supplementary Figure 2. Schematic of a unit cell of the Willis meta-layer. 

To derive transfer functions H1 and H2 achieving desired wave transmission and reflection 

properties, we consider a 1D setting with a single meta-layer embedded into a host beam as shown 

in Supplementary Figure 2. Assume an incident wave coming from the left with the displacement  

 0

ikx

inw w e= .                                                                (1) 

Applying a voltage, 1aV , on the left pair of piezoelectric patches generates two waves propagating 

to the left and right symmetrically, where the displacement wave field can be expressed 
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where a is the effective electromechanical coupling coefficient of the actuating piezoelectric 

patches, and a denotes the distance of the left pair of piezoelectric patches from the origin. 

Similarly, applying another voltage, 2aV , on the right pair of piezoelectric patches generates two 

waves with the displacement wave field being 
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Consequently, the total displacement wave field reads 
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The transmission and reflection coefficients can be directly obtained as 

 

1 2

0

1 2

0

1,

.

ika ika

a a a a
l

ika ika

a a a a
l

V e V e
T

w

V e V e
R

w

 

 

−

−

+
= +

+
=

                                                  (5) 

Equation (5) indicates that both the transmitted and reflected wave fields can be independently 

controlled by properly applying voltages on the two actuating pairs in the Willis meta-layer. 

On the other hand, to obtain desired transmission and reflection coefficients, the voltages applied 

on the actuators should read 

0 0
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                                                 (6) 

As demonstrated in design principles, the sensing voltage of the piezoelectric sensor feeding to 

transfer functions H1 and H2 only contains the incident wave component as 

0s sV w= ,                                                               (7) 

where s  denotes the other electromechanical coupling coefficient of the sensor. 

Therefore, combining Eqs. (6) and (7), transfer functions H1 and H2 for simultaneous control of 

transmitted and reflected waves can be determined 
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Note that frequency responses of transfer functions, H1 and H2, given in Eq. (8), are derived from 

frequency-domain analyses, such that causality may not be guaranteed in time domain. In the 

experiments, we made use of two sixth-order low-pass infinite impulse response (IIR) filters to 

construct the two transfer functions. To achieve the frequency responses described in Eq. (8) at 

each of the single frequencies, we finely tuned the amplification ratio of the filters and added 

proper time delay on the output signals during each of the reconfiguration steps. It can be clearly 

seen from experiments that the linear signal processing filters in the time domain are inevitably 

causal (see Source Data for the coefficients of the filter). 

Furthermore, changing the incident direction from the left to the right, the total displacement wave 

field becomes 
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Comparing Eqs. (4) and (9), transmission and reflection coefficients for the incidence from the 

right, Tr and Rr, are different from those with the incidence from the left side with the transfer 

function given in Eq. (8) and their relations can be express as  
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= +
                                                              (10) 

Therefore, the Willis meta-layer is intrinsically nonreciprocal. 
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Supplementary Note 4: Transmittance of the meta-layer without electrical control 

We calculate transmittance of the meta-layer without electrical control at frequencies of interested 

using numerical simulations (Supplementary Figure 3). It is found transmittance is very close to 

1 in the presence of the passive meta-layer. Therefore, scattering in the passive state is negligible.  

 

Supplementary Figure 3. Numerically calculated transmittance of the meta-layer without 

electrical control at frequencies from 9 to 18 kHz. 

 

Sample fabrication and experimental setup of a beam with Willis meta-layer 

Supplementary Figure 4 shows the fabricated Willis meta-layer in a beam as well as experimental 

setup for wave field measurements. To fabricate the sample, two slots were firstly cut out of from 

a stainless steel strip with fiber laser machine to form sensing and actuating beams. A piezoelectric 

patch (APC 850) was bonded at the center of the sensing beam. Two pairs of piezoelectric patches 

(APC 850) was then symmetrically attached on the actuating beams. A conductive epoxy 

(Chemtronics) is used for those bonding. Two additional piezoelectric patches were attached on 

the left and right sides of the meta-layer to generate waves propagating from different directions. 



8 
 

Geometric and material parameters of the Willis meta-layer and the host beam are listed in 

Supplementary Table 2. A Polytec PSV-400 3D scanning Laser Doppler Vibrometer (3D SLDV) 

system was used to measure the velocity fields on the host beam. In experiments, 10-peak tone-

burst signals were generated in a built-in function generator in the 3D SLDV system. The signals 

were then amplified through a power amplifier, which were finally applied on the left/right 

piezoelectric patches to generate incident waves.  

 

Supplementary Table 2. Geometric and material parameters of the proposed beam with Willis 

meta-layer 

Geometric parameters (mm) 

L 2000 Lst 12 ws 3.5 

L1 300 Lp1 3.0 h 3 

L2 300 Lp2 2.9 hp1 1.0 

L3 400 w 21.9 hp2 0.6 

L4 400 wst 0.8 a 4.3 

L5 300 wa 8.0   

Material properties (Steel) 

Eb 210.0 GPa Gb 80.8 GPa 𝜌𝑏 7800.0 kg m-3 

Material properties (APC 850) 

𝒔𝟏𝟏
𝑬  16.4 × 10−12 m2 N−1 𝑑33 374.0 × 10−12 C N−1 

𝒔𝟑𝟑
𝑬  18.8 × 10−12 m2 N−1 𝑑31 −171.0 × 10−12 C N−1 

𝒔𝟒𝟒
𝑬  47.5 × 10−12 m2 N−1 𝑑15 584.0 × 10−12 C N−1 

𝒔𝟏𝟐
𝑬  −5.74 × 10−12 m2 N−1 𝜀33

𝑆  830.0 𝜀0 

𝒔𝟏𝟑
𝑬  −7.22 × 10−12 m2 N−1 𝜀11

𝑆  916.0 𝜀0 

𝝆𝒑 7750.0 kg m−3 𝜀0 8.842 × 10−12 C mV−1 
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Supplementary Figure 4. Fabricated sample and experimental setup of the beam with Willis 

meta-layer. 

 

Supplementary Note 6: Definition of the polarizability tensor for flexural waves in beams 

We consider the mechanical active meta-layer as a point scatterer, and formulate its polarizability 

tensor, , for flexural waves as 

=
loc

Q βF ,                                                                        (11) 

where  
T

loc
F

loc loc loc loc
w F M=  is the incident wave field vector at the scatterer location, 

with loc
 , loc

w , loc
F  and loc

M  denoting local rotational angle, transverse displacement, shear 

force and bending moment, respectively. The vector 
T

0 0 0 0
Q q f s p =    is the multipole 

vector, representing the “excited” (scattered) field caused by the interaction of the point scatterer 
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with the local field, with 0
q , 

0
f , 0

s  and 0
p  representing the body torque, transverse body force, 

shear strain and bending curvature, respectively. The definition provided in Eq. (11) describes 

general scattering behavior of flexural waves incident on an arbitrary point scatterer, which is 

analogous to definitions of electromagnetic and acoustic polarizability tensors. The physical 

representations of the multipole vector and associated radiation patterns in a host beam are shown 

in Supplementary Figure 5. It can be seen that torque and shear strain generate antisymmetric 

modes, where outward propagating waves are out-of-phase when traveling in opposing directions, 

while transverse force and bending curvature generate symmetric modes, where outward 

propagating waves are in-phase when traveling in opposing directions. 

 

Supplementary Figure 5. Schematic of radiation patterns in the beam caused by the multipole 

vector Q : (a) 0
q ; (b) 

0
f ; (c) 0

s ; (d) 0
p . 

 

To determine orders of those multipole components of 
T

0 0 0 0
Q q f s p =   , we conduct 

numerical simulations on a plate with excitations of body torque, body transverse force, shear 

strain and bending curvature applied in the middle portion of this plate. The out-of-plane 

displacement fields are shown in Supplementary Figure 6.  
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Supplementary Figure 6. Simulated out-of-plane displacement field on a plate with excitations 

of body torque (a), body transverse force (b), shear strain (c) and bending curvature (d). 

 

As shown in Supplementary Figure 6, it is clear that 
0

f  is a monopole quantity of order zero in 

the multipole expansion and that 0
q  and 0

s  are dipole quantities of order one. Similarly, loc
 , loc

w  

and loc
F  are dipole, monopole and dipole quantities, respectively. Furthermore, as shown in 

Supplementary Figure 6c, the field associated with localized curvature, 0
p , results in a 

longitudinal quadrupole quantity. We thus justify 0
p  and loc

M  as longitudinal quadrupoles. 

According to the definition of the polarizability tensor, its diagonal terms can be rewritten as 

( )
11

r

eff
i Z = , ( )

22

t

eff
i Z = , 

33

1

eff
G

 =  and 
44

1

eff
D

 = , where ( )r

eff
Z , ( )t

eff
Z , 

eff
G  and 

eff
D  denote the 

effective impedance of rotational motion, effective impedance of transverse motion, effective 

shear stiffness and effective bending stiffness, respectively. These are physical meanings for 

diagonal terms. On the other hand, the off-diagonal terms represent all possible cross-couplings 

between local fields and excited multipoles, i.e. 13
  and 31

  represent antisymmetric-

antisymmetric coupling between two dipole quantities, 24
  and 42

  represent symmetric-
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symmetric coupling between monopole and multipole quantities, and 
12
 , 

21
 , 

23
 , 

32
 , 

34
 , 

43
 , 

14
  and 

41
  represent symmetric-antisymmetric couplings.  

 

Supplementary Note 7: Polarizability-retrieval method for the meta-layer in the beam 

To obtain all the 16 effective polarizability coefficients of the meta-layer in the 4×4 matrix, we 

formulate the polarizability-retrieval method (with Timoshenko beam assumption) step by step by 

considering both propagated (far-field) and evanescent (near-field) wave solutions. 

First, kinematic equations of the Timoshenko beam with external deformation sources can be 

written as: 

,

,

p
x

w
s

x




 


= +




− = +



                                                           (12) 

where w,  ,   and   respectively denote the transverse displacement, rotational angle, passive 

bending curvature and passive shear strain, while p and s respectively represent externally applied 

bending curvature and shear strain.  

Second, conservation of the translational and rotational momentums of the Timoshenko beam with 

external loadings leads to the equations: 

2

0 2

2

0 2

,

,

w F
f

t x

M
J F q

t x





 
− =

 

 
+ − =

 

                                                   (13) 

where M, F, f, q, 
0

  and 0
J  respectively denote the bending moment, shear force, externally 

applied transverse body force and body torque, mass density, and rotational inertia per unit length 

of the host beam.  
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Thirdly, the constitutive relations of this host beam are expressed as: 

0

0

,

,

M D

F AG G



 

= −

= =
                                                       (14) 

where D0, G, A and  respectively denote the bending stiffness, shear modulus, area of the cross 

section and Timoshenko coefficient.  

Combining Eqs. (12) - (14), the governing equation of the Timoshenko beam with external 

force/torque loadings and deformation sources can be obtained as 
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where the time harmonic term, i te  , is dropped from Eq. (15).  

Considering a scatterer located at x = 0 in the Timoshenko beam. Its scattered waves due to the 

inhomogeneity can be equivalently regarded as “excited” waves caused by a multipole vector, Q , 

with external force/torque loadings and deformation sources in the Timoshenko beam being 

( )0
f f x= , ( )0

q q x= , ( )0
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s s x= . Those excited wave fields can be 

expressed in terms of Green’s functions as: 
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with  
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The Green’s functions satisfy the following: 
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On the other hand, when the active meta-layer is excited with an incident wave, the scattered wave 

fields from the meta-layer (considered as a scatterer) can also be numerically extracted in the form 

of (see Supplementary Figure 7)   

1 2
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,

,
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− −+

−

= +

= +
                                                   (18) 

where B1 and B3 denote wave amplitudes of left- and right-propagating (far-field) waves, and B2 

and B4 represent wave amplitude of left- and right- evanescent (near field) waves. 

 

Supplementary Figure 7. Illustrations of coefficients of scattered wave fields. 

 

Therefore, the excited multipole vector, Q , of the meta-layer (scatterer) can be numerically 

determined by equalizing the excited wave fields in Eq. (16) and the scattered wave fields in Eq. 

(18) as 
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     

− −     

.                                 (19) 

To retrieve the effective 4×4 polarizability tensor of the meta-layer attached with piezoelectric 

patches, four independent numerical tests are conducted. In the first two numerical tests (j = 1, 2), 

the transverse force source is located in the left or right ends of the host beam such that only 

propagating (far-field) waves can be measured by the active meta-layer (see Cases I and II in 

Supplementary Figure 8). In the last two numerical tests (j = 3, 4), the transverse force source is 

located adjacent to the left and right sides of the meta-layer such that both propagating (far-field) 
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and evanescent (near-field) waves can be measured by the active meta-layer (see Cases III and IV 

in Supplementary Figure 8).  

 

Supplementary Figure 8. Illustration of numerical tests under the four transverse forces at 

different locations. 

For the j-th test, the excited multipole vector of the active meta-layer, 
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 , is then 

measured, when the control is off. Combining excited multipole vectors with their corresponding 

local field vectors for the four cases (j = 1, 2, 3, 4), one can retrieve the 16 polarizability coefficients, 

according to Eq. (11), as 
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where  
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   = , i = 1, 2, 3, 4 

( )

( )( )
( )

( )( ) ( )
( )( )

( )

( )( )

1 2 3 4

T
i

T
i

i i i i
T

i

T
i

       
       
       

= = = =       
       
       
       

loc

loc
loc loc loc loc

loc

loc

0 0 0
F

0 0
F0T , T , T , T ,0

F0 0

F0 0 0

 i = 1, 2, 3, 4 

To ensure that all terms in the tensor have the same units, we normalize polarizability tensors by 

firstly normalizing the left- and right-hand sides of Eq. (11) to the strain and then multiplying k1 

to the whole tensor as shown: 

( )

2
11 12 13 14 11 0 1 12 0 1 13 1 0 14 0

21 22 23 24 21 1 0 22 0 23 1 0 24 0

2
31 32 33 34 31 1 32 1 33 0 1 0 34

41 42 43 44 41 1 42 43 0 1 0 44

.

G k G k k D G

k G G k D G

k k G k D

k G k D

       

       

       

       

      
     
   =
     
  

        

            (21) 

 

Supplementary Note 8: More results of the Willis meta-layer in a plate 

 

Supplementary Figure 9. Numerically simulated wave fields of total absorption with point 

incidence. 
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Supplementary Figure 10. Numerically simulated wave fields of wavefront transformations in 

the reflected domain. 

 

Supplementary Note 9: Material parameters of Willis beams 

Following homogenization approach in Ref [4], we suggest a general homogenization approach 

within the framework of Timoshenko beam theory by defining the general constitutive relation of 

Willis beams in a matrix form as 

12 13 14

21 23 24

31 32 34

41 42 43

MD S S S

J S I S S

FS S g S

VS S S







 

 −   
    
    =
    
    

    

,                                             (22) 

where M, , F and V denote the bending moment, rotational angle of the beam section, shear force, 

and transverse velocity, respectively, and , J,  and  represent the bending curvature, angular 

momentum, shear strain and linear momentum, respectively. In Eq. (22), D , I , g  and   are the 

effective bending compliance, mass moment of inertia, inverse of the shear modulus, and mass 

density of the heterogeneous beam, respectively. The off-diagonal terms, Sij (i ≠ j), in the matrix 

denote the coupling coefficients of a Willis beam using Timoshenko theory. The Willis coupling 

in beams differs from that of 3D linear elastodynamic Willis constitutive form in that it exhibits 
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coupling between the higher order stress, bending curvature, local rotational angle and angular 

momentum. 

 

Supplementary Note 10: Source-driven homogenization theory 

We develop a source-driven homogenization theory to illustrate the connection between the 

polarizability tensor (Eq. (11)) and constitutive properties of Willis beams, which is a result of 

subwavelength periodic mechanical meta-layers (scatterers) embedded into a background beam. 

Consider Timoshenko beam assumptions, conservations of translational and rotational 

momentums and kinematic equations of a beam are 

p
x

V
s

x

F
f

x

M
J F q

x




 




= +




= + +




= −




= − + +



,

,

,

,

                                                                (23) 

where q, f, s and p are source terms that represent the externally applied body torque, transverse 

body force, shear strain and bending curvature, respectively. Assume source distribution terms 

with amplitudes ext
p , ext

s , 
ext

f  and 
ext

q  and time-harmonic term, 
( )i kx t

e
+

, where k is the 

wavenumber along x-direction. Conservation relations in Eq. (23) for a background beam with 

those source distributions (see Supplementary Figure 11a) can be written in the spectrum domain 

as  

0

0

2

0

2

0

ext ext ext

ext ext ext ext

ext ext ext

ext ext ext ext

ik D M p

ikW g F s

ikF W f

ikM I F q





 

 

= − +

= + +

= − −

= + +

,

,

,

.

                                            (24) 
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where the mass density of the background beam is 
0

 , bending compliance is 
0

D , shear 

compliance is, 0
g , and rotational inertia is 0

I . 

 

Supplementary Figure 11. Conceptual illustration of the source-driven homogenization 

procedure: (a) External sources applied on the background beam; (b) External sources applied on 

the background beam with periodic scatterers; (c) External sources applied on the effective 

beam. 

 

We then introduce a periodic array of scatterers into the background beam (see Supplementary 

Figure 11b), conservations of transverse and angular momentums and the kinematic equations 

with the same source distributions in Eq. (28) read 

( )
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

0

0

2

0

2

0

ikx

ext

ikx

ext

ikx

ext

ikx

ext

x
D M x p x p e

x

W x
g F x x s x s e

x

F x
W x f x f e

x

M x
I x F x q x q e

x





 

 


= − + +




= + + +




= − − −




= + + +



,

,

,

,

                                     (25) 
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where ( ) ( ) ( )0
p x D x D M x = − +  , ( ) ( ) ( )0

s x g x g F x = −  , ( ) ( ) ( )2 2

0
f x x W x    = −   

and ( ) ( ) ( )2 2

0
q x I x I x   = −  , accounting for the contrast in bending compliance, shear 

compliance, mass density and rotational inertia, respectively, between the background beam and 

the inhomogeneities. For the continuous source distributions, the effective field amplitudes for a 

representative volume element can be uniquely determined by [3] 

0

0

2

0

2

0

eff eff eff ext

eff eff eff eff ext

eff eff eff ext

eff eff eff eff ext

ik D M p p

ikW g F s s

ikF W f f

ikM I F q q





 

 

= − + +

= + + +

= − − −

= + + +

,

,

,

,

                                                (26) 

where eff
p , eff

q , eff
s  and eff

f  are effective sources of the bending curvature, body torque, shear 

strain and transverse body force caused by the scatterers, respectively. For the effective medium 

(see Supplementary Figure 11c), conservations of translational and rotational momentums and 

kinematic equations in the spectrum domain are 

    

eff eff ext

eff eff eff ext

ext eff ext

eff eff eff ext

ik p

ikW s

ikF f

ikM J F q

 

 



= +

= + +

= −

= − + +

,

,

,

.

                                              (27) 

Comparing Eqs. (26) and (27), effective translational and rotational momentums, effective 

curvature and effective shear strain can be written 

0

0

0

0

,

,

,

.

eff eff eff

eff

eff eff

eff eff eff

eff eff eff

D M p

q
J i I

i

g F s

i W f



 




 

= − +

= −

= +

= −

                                                               (28) 
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The purpose next is to find analytical formulas of eff
p , eff

q , eff
s  and eff

f  in terms of eff
M , eff

 , 

eff
F  and eff

W . Multiple scattering effects are considered for this purpose.  

Based on the retrieved polarizability tensor, sources of the bending curvature and shear strain in 

the multipole vector of each of the scatterers are  

0 44

0 34

,

.

loc

loc

p M

s M





=

=
                                                                       (29) 

The scattered wave fields at x = xm due to the n-th scatterer (x = xn) can be written  

( ) ,mn mn

s m pM n sM n
M x G p G s= +                                               (30) 

where ( ),mn

pM Mw p m n
G R G x x=  and ( ),mn

sM Mw s m n
G R G x x=  with RMw being the ratio of the bending 

moment and transverse displacement. Green’s functions ( ),
p m n

G x x  and ( ),
s m n

G x x  are defined 

in the Eqs. (16) and (17). 

As a result, the local wave fields at the zeroth scatterer can be superposed as 

( )0 0

0

.
n n

loc ext pM n sM n

n

M M G p G s


= + +                                         (31) 

We rewrite Eq. (31) into the following compact form 

0 0
,

loc ext pM sM
M M C p C s= + +                                              (32) 

where 

0

0

0

0

,

,

n

n

ikx n

pM pM

n

ikx n

sM sM

n

C e G

C e G





=

=




 

where CpM and CsM are known as symmetric and antisymmetric lattice sums, respectively. Sources 

of the effective bending curvature and shear strain can be related to microscopic responses using 

spatial averages: 0
eff

p
p

L
=  and 0

eff

s
s

L
=  with L being the lattice constant of the inhomogeneous 
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beam. Combining Eqs. (24), (26), (28), (29) and (32) gives the effective constative relations of the 

inhomogeneous beam   

 

44
0

0

34
0

0

eff eff

eff eff

eff eff eff

eff eff

D M
L

J I

g F M
L

V









 

 
= − − 

 

=


= −



=

,

,

,

,

                                              (33) 

where 

4 2 2 2 2 2 4

0 0 0 0 0 0 0 0 0 0

2 2
2 4 2 20 0

0 0 0 0

2 2 4
2 2 40 0 0 0

0 0 0 0 0 0

dM mM

mM mM

k D D I k g k D I g

ik
D k D I k

L L

I k I g
g k D I g

L L

      

     
  

    
   

− + + + −
 =

+ + − +
 

+ + + +
 

,

 

1
Md dM Mm mM

C C  = − − . 

The third equation in Eq. (33) displays the Willis coupling of the homogenized Willis beam, where 

the bending moment (symmetric) and shear strain (antisymmetric) are coupled. Comparing with 

Eq. (22), the effective material parameters of the Willis beam can be identified by matching terms: 

44
0

0

0

0

34
31

0 for others
ij

D D
L

I I

g g

S
L

S



 




= −



=

=

=


= −



=

,

,

,

,

,

, .

                                                       (34) 

Equation (34) shows the analytical form of the connection between the polarizability tensor of the 

active scatterers considered in this work and the resulting effective constitutive properties of Willis 

beams using Timoshenko theory. From Eq. (34), it can be clearly seen that the effective mass 
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density, rotational inertia and shear compliance are left unchanged, and only one Willis coupling 

coefficient is nonzero. Applying conservation of translational and rotational momentum 

(
F

f
x




= +


, 
M

J F m
x


= − +


), we find that the coupling coefficient, S31, will induce 

nonreciprocal wave propagation in the periodic Willis beam considered in this work. On the other 

hand, the effective bending stiffness of the Willis beam is modified by the polarizability, 44
 , 

which is reciprocal. 
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