Extraction of Nucleic Acids from RDTs (ENAR): step-by-step protocol

This is a detailed protocol describing the procedures for extraction of nucleic acids from malaria rapid diagnostic tests (RDTs) as evaluated in the publication:

Molecular malaria surveillance using a novel protocol for extraction and analysis of nucleic acids retained on used rapid diagnostic tests.

The extraction procedure was adapted from:

Zainabadi K et al. A novel method for extracting nucleic acids from dried blood spots for ultrasensitive detection of low-density Plasmodium falciparum and Plasmodium vivax infections. Malar J. 2017:16(1):377.

They provide an excellent and very detailed instruction on the preparation of the extraction buffer which should be followed.

IDENTIFICATION, SORTING AND TRACKING OF RDTs

The *RDTselect* app is a browser-based application which identifies barcode-labelled RDTs based on an input list containing all barcodes of a certain group. A single barcode can be scanned at a time with a mobile phone camera. The application identifies which group the sorted RDT belongs to.

The source code of the RDTselect app can be found at: https://github.com/Sparclex/barcode-value-finder

The *RDTallocator* app enables tracking of an individual RDT throughout the extraction process. The barcode is scanned with a mobile phone camera and the application allocates the associated RDT strip to the next available position in a 12-channel reservoir and subsequently 96-well plate.

The source code of the RDTselect app can be found at: https://github.com/Sparclex/position-allocator

REAGENTS AND MATERIALS

Table 1: Consumables

Article name	Supplier	Cat. number
12-channel multi-well reservoir	Axygen, Corning Inc, USA	RES-MW12-HP-SI
96-well collection plate	Omega bio-tec, Inc, USA	EZ9602-02
E-Z 96 DNA plate	Omega bio-tec, Inc, USA	BD96
DNA LoBind 96-well plate	Eppendorf AG, Germany	0030 603.303
Sterile, filtered pipette tips with volume	various suppliers	
range of 50-1200ul		

Table 2: Chemicals/Reagents

NB: if available, all chemicals and reagents should be designated as "Molecular Biology Reagents" and suitable for molecular biology applications.

Article name	Company	Cat number
DNA Elution Buffer	Zymo Research, USA	D3004-4-50
Ethanol	Sigma-Aldrich Chemie GmbH, Germany	51976-500ML-F
2-Propanol	Sigma-Aldrich Chemie GmbH, Germany	I9516-500ML
Molecular biology grade H ₂ O	Sigma-Aldrich Chemie GmbH, Germany	W4502-1L
Trizma hydrochloride buffer solution (pH	Sigma-Aldrich Chemie GmbH, Germany	9313-1L
7.4)		
Guanine thiocyanate	Sigma-Aldrich Chemie GmbH, Germany	50981-500G
Triton X-100	Sigma-Aldrich Chemie GmbH, Germany	T8787-50ML
Sodium chloride	Sigma-Aldrich Chemie GmbH, Germany	S3014-500G
Hydrochloric acid, 6N	VWR Life Science, USA	E484-500ML
Ethylenediaminetetraacetic acid disodium	Sigma-Aldrich Chemie GmbH, Germany	E7889-100ML
salt solution (EDTA), 0.5 M		
2-Mercaptoethanol	Sigma-Aldrich Chemie GmbH, Germany	63689-100ML-F

Table 3: Equipment

Article name	Company	Reference number
Centrifuge for 96-well plates	-	
Multichannel pipets for volume range of	Gilson/Eppendorf	PM14156/H41766H
50-1200ul		
Incubator (60 °C) with enough space for a	-	
rocking platform		
Rocking Platform/ lab shaker for 96-well	-	
plates (tolerating 60 °C).		

PREPARATION OF EXTRACTION BUFFERS

Lysis buffer / Wash 1 buffer

NB: Lysis buffer and Wash 1 are identical, with the exception that before use 0.5% 2-mercaptoethanol is added to the lysis buffer.

- 1. Add ~500 mL of water to a sterile 1 L bottle
- 2. Add all reagents as described in the table below:

Concentrations used for lysis/wash 1 buffer	Amount for 1L of lysis/wash 1 buffer
3M Guanidine thiocyanate	355 g Guanidine thiocyanate
16.7% 2-Propanol	167 mL 2-Propanol
2% Triton X-100	20 mL Triton X-100
10mM EDTA	20 mL 0.5 M EDTA solution
5mM Trizma hydrochloride buffer solution (pH	5 mL Trizma hydrochloride buffer solution (pH
7.4)	7.4)
0.1% Hydrochloric acid	1 mL 6M Hydrochloric acid

- 3. Shake until completely dissolved
- 4. Add up to 1000 mL with mol. biol. grade H_2O
- 5. Transfer 500 mL to a new bottle and label it with "Wash 1".
- 6. Before use, 0.5 mL 2-mercaptoethanol is added to 100 mL lysis buffer.

Wash 2 buffer

1. Add all reagents to a sterile 1L bottle as described in the table below

Concentrations used for wash 2 buffer	Amount for 1L of wash 2 buffer
25% Ethanol	250 mL Ethanol
25% 2-Propanol	250 mL 2-Propanol
100mM Sodium chloride	20 mL 5M Sodium chloride solution
10mM Trizma HCl pH 7.4	10 mL Trizma hydrochloride buffer solution (pH
	(.4)

- 2. Shake until completely dissolved
- 3. Add up to 1000 mL with mol. biol. grade $\rm H_2O$

OPENING RDT CASSETTE AND REMOVING RDT STRIP

- Open the RDT cassette, remove the RDT strip using sterile single-use forceps and transfer the strip into a 12-channel multi-well reservoir. Up to 96 RDT strips can be processed at the same time, using eight 12-channel reservoirs.
- Add one positive control (RDT with known parasitemia, e.g. 5 μL blood with parasite density of 200 Pf/μL) and one negative control (lysis buffer only) to each extraction batch as controls.

EXTRACTION OF NUCLEIC ACIDS FROM RDT STRIPS

- Add 900 μL of Lysis Buffer to each channel of the reservoir using a multichannel pipette. Make sure all RDT strips are completely submerged in the lysis buffer. Seal the reservoir with an adhesive aluminium foil.
- 2. Incubate the reservoirs for 2 hours at 60 °C and shaking at 120 RPM.
- 3. Secure an Omega E-Z 96 DNA plate (96 wells) to a 96-well collection plate with a tape.
- Tilt the reservoir and transfer 900 μL of the supernatant (lysate) from the 12-channel reservoir to the E-Z 96 DNA Plate sitting on top of a 96-well collection plate.
- Centrifuge the E-Z 96 DNA Plate (on top of the 96-well collection plate) at 3,500 RPM (2260 g) for 2 minutes.
- 6. Discard the flow through and reuse the same 96-well collection plate.
- 7. Add 500µL of Wash 1 to the DNA plate and centrifuge at 3,500 RPM (2260 g) for 2 minutes
- 8. Discard the flow through and reuse the same 96-well collection plate.
- 9. Add 500µL of Wash 2 to the DNA plate and centrifuge at 3,500 RPM (2260 g) for 3 minutes
- 10. Discard the flow through and reuse the same 96-well collection plate.
- 11. Centrifuge the empty DNA plate at 3,500 RPM (2260 g) for 3 minutes to completely dry the silica.
- 12. Place the E-Z DNA plate on top of a DNA LoBind 96-well plate for elution of nucleic acids.
- Add 50μL of pre-warmed (60 °C) Elution buffer to each well of the E-Z DNA plate to elute the nucleic acids.
- 14. Incubate the E-Z DNA plate at room temperature for 5 minutes.
- 15. Centrifuge the E-Z DNA plate 3,500 RPM (2260 g) for 3 minutes.
- Add an additional 25μL of pre-warmed (60 °C) Elution buffer to each well of the E-Z DNA plate to elute the nucleic acids.

- 17. Incubate the E-Z DNA plate at room temperature for **5 minutes.**
- 18. Centrifuge the E-Z DNA plate 3,500 RPM (2260 g) for 3 minutes.
- 19. Discard the E-Z DNA Plate and seal the DNA LoBind 96-well plate containing the eluted nucleic acids using aluminum foil.
- 20. Store the DNA LoBind 96-well plate containing the nucleic acids at -20 °C or -80 °C.

